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Abstract: Integrated remote sensing techniques, such as photogrammetry from unmanned aerial
vehicles (UAV), mobile laser scanners (MLS) and multibeam echosounders (MBES), are particularly
effective in detecting and measuring coastal and seabed features and their modifications over time
(4D analysis) induced by sea storms. In fact, these techniques allow the production of very high-
resolution 3D models, with a continuum between above and below sea level. The present research
is focused on the area of Portosole Marina (Sanremo, Western Liguria), affected by a severe sea
storm in October 2018 and the following restoration. Two integrated 3D surveys were performed in
February 2019 and in November 2019, obtaining accurate and reliable high-definition digital surface
models (DSMs) in both emerged and submerged areas. The comparison between the two surveys
highlighted volumetric changes in the seabed induced by the sea storm and the effects of a temporary
worksite on the emerged and submerged breakwater. In particular, a total deficit of sediments of
about 5000 m3 caused an average lowering of about 4 cm over the entire area, concurring with the
breakwater instability. This study aims to contribute to the understanding of coastal system resilience
within ongoing global climate changes, that is, increasing the intensity of extreme events in the
Mediterranean area.

Keywords: geomorphological coastal changes; sea storm effects; integrated 3D remote sensing
surveys; sedimentary dynamics; western Ligurian sea

1. Introduction

The most advanced integrated remote sensing techniques, such as photogramme-
try from unmanned aerial vehicle (UAV), mobile laser scanner (MLS) and multibeam
echosounder (MBES), applied to a geomorphological survey of coastal areas and to topo-
graphic measurements of coastal infrastructures, allow creating very high-resolution 3D
models [1–13]. These methods are particularly effective in detecting and measure seabed
features and their modifications induced by extreme events, such as severe storm surges
and short-term local variations in sea level [14–16]. Detailed reconstructions of sea storms
effects, such as seabed and beach instability other than damage to port infrastructure, pro-
vide coastal scenarios assessment of the impact of extreme marine events, such as the 2018
Vaia Storm [17], which are intensifying in the context of ongoing global warming/climate
changes [18–20]. The application of remote sensing integrated systems also represents
support in assessing resilience and vulnerability, in the monitoring of geo-risk and in
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the evaluation of proper mitigation measures within land management in coastal/fluvial
areas [21–31].

The present research is focused on Portosole Marina (Sanremo, Western Liguria),
affected by a severe storm in October 2018 [32–34]. After this event, the breakwater of
Portosole Marina was restored. Two integrated 3D surveys were performed: the first one
(survey 1) carried out in February 2019 [35] and the second one (survey 2) in November
2019, before and after the restoration, respectively. A system integrating laser scanner
in mobile mode (MLS) and multibeam echosounder (MBES) mounted on a survey boat
was employed to get a continuous metrically reliable 3D model. The good quality of data
coming from such integrated survey has already been verified, both in terms of continuity
and coherence of the MLS and MBES point clouds on the overlapping area and of metrical
accuracy, which was centimetric for both emerged and submerged areas referred to the
0 mean-sea levels (MSL) [35].

The aim of the present research is the 4D very high-resolution morpho-dynamic
analysis through the comparison of the two surveys of the study area to highlight the
seabed changes both from metric and geomorphological points of view.

The comparison between the two surveys was performed employing multiple proce-
dures. First, a simple difference in elevation between the two entire DSMs was performed.
Then, the test area was divided into three regions, characterized by homogeneous morphol-
ogy, applying such difference in elevation to each region. Hence, the total deposited and
removed volumes were computed for each homogeneous region. Finally, a comparison
was performed along vertical sections.

Then, the high-resolution bathymetric data were analyzed both for verifying the
state of conservation of the maritime structures from a structural point of view and for
highlighting erosion and accumulation of sediments. The detailed and quantitative analysis
of these elements represents a useful tool for assessing the coastal area’s vulnerability to
intense storm surge.

The paper follows with a brief description of the study area and the employed survey
techniques (Section 2). Subsequently, details on the storm that affected Sanremo in October
2018 are reported (Section 3). A description of the analysis procedure and a discussion on
the obtained results are outlined in Sections 4 and 5, respectively.

2. Study Area

The study area is located in the central sector of the Sanremo coastline (Liguria,
northwest of Italy). It is included in a wide bay of about 8 km extent, located between the
Cape Nero promontory to the west and the Cape Verde promontory to the east (Figure 1),
respectively featured by outcrops of marly arenaceous flysch (Campanian–Eocene) and
polygenic conglomerates (Pliocene) [36].

The area is characterized by a narrow fluvial-coastal plain formed by the alluvial
deposits of the Foce, Mafalda, San Romolo, San Francesco, San Lazzaro, San Martino and
Val D’olivi streams and by the sediments deriving from sea cliff erosion and landslide
phenomena affecting the nearby rocky coast [37–44]. The coast is mainly exposed to storms
of Libeccio (225◦) and Scirocco (135◦).

The former coastal morphology has been almost totally modified by the expansion
of urban settlements and by the construction of port infrastructures. Consequently, today
this coastal zone appears as a “techno-coast”, as occurs in many other Ligurian and Italian
areas [45–51].

The natural geomorphological dynamics, together with the anthropic transformations
that have occurred over time, have marked different conditions of the coastline and its
beaches here summarized:
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Figure 1. Location of Sanremo: Portosole study area. (A) The orthophoto of the Liguria Region (2016) shows how the
narrow coastal plain of Sanremo and the course of the main streams crossing it (light blue dotted and continuous lines) are
totally occupied by urban settlements. The zoom (B) shows the area of the Porto Antico and its ancient piers (dotted yellow
line) and the Portosole area, where the morpho-bathymetric surveys were realized (C).

• Up to the middle of the 19th century, the coast was affected by a progradation of
the beaches, thanks to the sedimentary input by the different watercourses and the
erosional retreat of the sea cliffs. It is demonstrated by the historical map of Matteo
Vinzoni [52], showing the former conditions of the coast in 1753 (Figure 2);

• After the second half of the 19th century, the beaches were generally affected by
erosion, albeit with alternating phases of advancement and retreat. Since the beginning
of the 20th century, to counteract the effects of sediments deficit connected to the
port works on sediment transport, the construction of numerous defense works
was necessary;

• Since 1965 up to the mid-seventies, several works of sea-embankments (reclamation
area) and beach nourishment have been carried out;

• Between 1975 and 1980, the Portosole Marina was built between the Porto Vecchio
(west) and the mouth of the San Martino stream (east). This has determined the
current coastal layout, together with recent and further expansion and reinforcement
work. The construction of Portosole caused the disappearance of pre-existing beaches,
in erosion (about 13 m in the period 1944–1973) and protected by six groins. The
artificial advancement of the coastline due to the construction of the infrastructures
(techno-coast) was more than 350 m;

• The small beach about 90 m in extent, located between the mouth of the San Martino
Stream and the root of the breakwater, assumed the characteristics of an anthropic
pocket-beach [53–55]. In fact, it is between the maritime works and the jettied mouth
of the stream, which reached its current layout between 2013 and 2016. Figure 3
shows the variations of the shoreline position over the years. Overall, the multi-
temporal coastal line comparison shows a fairly stable equilibrium of the shoreline,
with advancement of about 3 m (1983–2016). The alternating stages of advancement
and retreat were presumably due to the restoration works at the river mouth and to
small maintenance interventions of beach nourishment [56–58]. Since 1983 (Figure 3),
the eastern side of the jetted mouth is constituted by the seawall.

The study here presented concerns the breakwater of the Portosole Marina and the
facing seabed (Figure 1, box C), with a total extent of about 850 m, together with the small
artificial pocket beach immediately to the east.
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Figure 2. Historical map of Sanremo coast (1753): (1) Mafalda, (2) San Romolo, (3) San Francesco,
(4) San Lazzaro streams; (A) and (B) represent the current locations of Porto Vecchio and Portosole,
respectively (modified after [52]).

Figure 3. Variations of the position of the shoreline over the years 1944–2016 [58], Liguria Region orthophoto of 2016 used
as background. (A) Photo taken from the west (the point of view is indicated in white on the main map) shows the features
of the shoreline deposits. The coordinates are expressed in the ETRF2000–2008.0 reference system with UTM 32 projection.
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3. The Event of 29 October 2018

On 29 October 2018, the Portosole Marina and the entire coastline were affected by an
intense storm that caused severe damage to the breakwater and surrounding areas.

This event was part of a wider meteorological event, known as the Vaia storm, which
affected the entire Mediterranean basin with particular intensity on the Ligurian and North
Adriatic Sea. The storm developed from 27 to 29 October 2018, generating a cyclonic
circulation centered on the west of Corsica, with a drop in pressure up to 17 hPa in 18 h.
This depression, moving towards Italy’s northeast, caused extreme southerly winds with
gusts up to 119 km/h at Genoa airport and 171 km/h at La Spezia weather stations [17].
This cyclogenesis, together with the collision of warm air masses from the south and
the cold front over the Alps from the north, led to developing heavy rainfall, winds and
storms (Figure 4).

Figure 4. Wind at 10 m (m/s) and mean sea-level pressure (hPa) during Vaia Storm on 29 October
2018, 00 UTC (modified after ARPAL (Regional Agency for Ligurian Environment Protection) [34]).

Referring to the study area, at the Marina of Loano weather station, located about
52 km northeast of Sanremo, southerly winds from 230◦, with gusts of 180 km/h and
average velocity of 82 km/h, were recorded on 29 October 2018 [33,34]. It resulted from a
baric minimum of 976 hPa and a gradient of 8 hPa between Provence and Corsica (Figure 4).

The wave buoy at Capo Mele, located about 35 km northeast of Sanremo, recorded a
significant wave height (Hs) of 6.5 m with a period of 11–12 s and a maximum wave peak
of 10.3 m, with the sea initially coming from the southeast and then in rotation from the
southwest. A sea-level rise of about 50–60 cm was recorded [34], ascribed to a storm surge
due to a depression minimum, with a wave tide of about +/− 15–20 cm.

4. Materials and Methods
4.1. Portosole

The site was surveyed in February 2019 (survey 1) using a survey boat equipped with
a multibeam echosounder (MBES) and a mobile laser scanner (MLS). On that occasion,
the emerged part of the breakwater was surveyed also using a camera mounted on an
unmanned aerial vehicle (UAV) and the 3D model was derived by Agisoft Metashape© [59]
Structure for Motion processing. To correctly set the parameters of such elaborations, refer
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to [60] while adopting the tool coming from [61] to plan the UAV photogrammetric survey
in a realistic way, obtaining a rigorous evaluation of the precision. The UAV 3D model
resolution and accuracy are comparable with MLS ones [35]. Note that the Laser Scanner
accuracy could be higher, on the order of a few millimeters in static conditions [62], but the
results of an MLS on a boat, hence supported by IMU measurements, could be on the order
of a few centimeters.

A second survey was performed in November 2019 (survey 2) with the same survey
boat and the same survey criteria.

The survey boat was equipped with the Teledyne Reson PDS2000 platform (Teledyne
RESON B.V., Rotterdam, Netherlands [63]) for the simultaneous acquisition of an MBES
R2Sonic 2024 (R2Sonic, Austin, TX, USA), a sound velocity profiler (SVP) RESON mod. SVP-
15 ( RESON B.V., Rotterdam, The Netherlands), an inertial measurement unit (IMU) IXBLUE
mod. HYDRINS III (IXBLUE, Paris, France), a MLS RIEGL mod. LMS-Z420i (RIEGL, Horn,
Austria) used in profiler mode and a GPS 5700 TRIMBLE (Trimble Navigation Limited,
Dayton, OH, USA) receiver in “rover” real-time kinematic configuration (GPS-RTK).

The MBES R2Sonic 2024 is characterized by 256 beams of 0.5◦ × 1.0◦, along and across
track beamwidth, at 400 kHz.

To investigate the portions of the sea bottom close to the free surface, the transducer
was mounted on a joint angled at 25◦, thus physically tilting the transducer to exploit the
entire swath of the MBES.

The MLS RIEGL mod. LMS-Z420i is a time of flight (TOF) instrument, characterized
by a 1 km maximum range and a repeatability of 8 mm on a single measurement and 4 mm
on average in static 3D configuration. In mobile profiler mode, accuracy varies between
2 and 5 cm, depending on the distance of targets and objects measurement and on the
quality of IMU (angular precisions). In the present case, precisions in the order of 2–3 cm
were obtained, measured and compared both with Total Station and GPS-RTK data.

The MBES/MLS systems required a preventive calibration phase both to synchronize
the time scale of each instrument (including IMU) and to compensate the roll, pitch and
yaw angles of the system concerning the theoretical (0,0,0) point, called common reference
point (CRP). Data of both instruments were processed by the software platform Teledyne
Reson PDS2000.

The two performed surveys are framed in the same reference system and cartographic
projection, i.e., ETRF2000–2008.0 projected in UTM 32. Three ground control points (GCPs)
located along the breakwater structure permit to to register the two point clouds so that
they are in the same reference frame.

For survey 1, a (10 × 10) cm digital surface model (DSM) was produced for the
forthcoming elaborations. The DSM reproduces both the emerged and submerged parts
of the study area; the first one was obtained from the MBES survey, while the latter was
obtained from the MLS survey.

On the contrary, for survey 2, the single point clouds deriving from the MBES and
MLS surveys were made available. A (10 × 10) cm DSM of the entire study area, including
both MBES and MLS, surveyed areas, was realized using the Rasterize tool of the free and
open-source CloudCompare ver. 2.10 [64].

4.2. Resulting Products

As a preliminary step, particular attention was paid to the removal of the background
noise (despiking) and to data filtering. This is essential for automatic/semi-automatic noise
removal in the water column, typically caused by navigation motion and reflections of
some types of structures geometries.

The quality of the original point clouds related to survey 1 was assessed as follows:
First, the MBES, MLS and UAV point clouds have been compared at the head of the
Portosole breakwater through the free and open-source software CloudCompare ver. 2.10,
to estimate their overlapping area. From these point clouds, three DSMs with (10 × 10) cm
cell resolution were computed using the CloudCompare Rasterize tool. Besides the DSM
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cell height, the Rasterize tool allows computing the per-cell population (i.e., the number of
points falling in a cell) and the heights standard deviation (i.e., the dispersion of height
values inside a cell) for each cell of the DSM. Thus, these two parameters can give a rough
indication of the point cloud density and of the distribution of height values, respectively.
It resulted that the UAV DSM had a higher average value of per-cell population (48),
whereas the MBES and MLS DSMs have lower and comparable values; moreover, the
MBES and MLS DSMs have similar values of average standard deviation (0.074 m and
0.067 m), showing a substantial comparable distribution of heights in the point clouds,
while the UAV DSM has a lower value (0.036 m), probably due to the flatter surveyed area
(the breakwater emerged part, mainly constituted by a flat service area, other than the
rocky blocks forming the breakwater). These results confirmed the good quality and the
reliability of the point clouds derived by the integration of the employed survey techniques.
Further details on point clouds quality assessment are available in [35].

The DSMs, derived by MBES and MLS integrated surveys, describes both the break-
water and the sea bottom facing it. The difference in time between the two surveys was
enhanced employing different procedures here described, thought to be applied as much
automatically as possible and to different case studies.

A simple difference in elevation between the DSMs was performed using the Cloud-
Compare M3C2 plugin [2], which computes the signed distances between input point
clouds, i.e., the obtained distances have positive or negative signs. The M3C2 output is a
new point cloud where each point represents the distance along a defined direction (the
vertical direction in the present case, i.e., along the z-axis of a conventional right-handed
orthogonal Cartesian triplet) between the reference and the compared point clouds. The
M3C2 output cloud follows this convention: positive sign if the compared DSM has a
higher height concerning the reference DSM, negative sign vice versa.

To better quantify the metrical difference, a histogram was created, dividing the
distance values into 256 classes of 0.05 m of amplitude and computing the number of
occurrences for each class. Therefore, the histogram displays the number of occurrences
of each class along the y-axis and the central value (vc) of the 256 classes along the x-axis,
obtained as

vc =
vf − vi

2
(1)

where vf and vi are the final and the initial value of each class.
The average value µ and standard deviation σ of this distribution were computed

as follows:
µ =

∑ vc × n
∑ n

(2)

σ =

√
∑((vc − µ) · n)2/n

∑ n
(3)

where vc and n are the central value and the number of occurrences of each class, respectively.
This procedure was first applied to compare the entire surveyed area, then on smaller

areas, characterized by homogeneous morphology. To divide the entire surveyed area
into regions characterized by homogeneous morphology, a manual re-allocation was
necessary using the Segment tool of CloudCompare. It allows the assignment of the
boundary between areas with near-zero slopes (the sea bottom) and areas characterized by
slopes different from zero (the rocky blocks constituting the breakwater). Moreover, the
breakwater was divided into two regions, the submerged and emerged areas, respectively.

A comparison was also performed along vertical sections oriented orthogonally to
the pier. The sections were extracted starting from a directrix polyline following the pier
development using the CloudCompare Extract sections along polylines tool, with a 10 m
step between two consecutive sections, for a total of 75 sections. Each section trace is 250 m
long orthogonally to the directrix, and it has a thickness of 0.2 m in the xy plane. The
section thickness is a required parameter for the Extract sections along polylines tool in case,
besides the linear sections (profiles), the corresponding point cloud portions (section clouds)
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are needed, as in the present case. For this purpose, a thickness of 0.2 m guarantees that
the section includes at least one point of the DSM, as its spacing is 0.1 m. Thus, following
the tool terminology, the section cloud is a set of points falling inside a parallelepiped of
undefined height and base given by the section trace length and its thickness, whereas
the profile is a line that approximates the points joining them. Since the profile, for its
definition and construction, describes the points configuration using approximation, the
section clouds were analyzed. Figure 5 graphically represents the difference between the
profile (depicted as a black line) and the section cloud (depicted as red points), referring to
a portion of a representative section on the head of the breakwater of Portosole.

Figure 5. Profile (black line) and section cloud (red points) of a portion of a representative section on the head of the
breakwater of Portosole.

Finally, the total deposited and removed volumes were computed for each homoge-
neous region using the CloudCompare Compute 2.5D volume tool. It requires a reference
point cloud (DSM 1) as input, which is referred to as the initial epoch of study, and a
second surface (DSM 2), referred to as the final epoch. The computed volumes and the
ratio q between deposited and eroded volumes (in absolute value) were computed for the
three portions.

Then, to give an overall idea of the average height variation (∆h), the ratio between
the volume variation ∆V and the total extent S was computed for the sea bottom, the
submerged and the emerged breakwater portions, using the relation in Equation (4), where
Vd and Ve are the deposited and the eroded volumes, respectively.

∆h =
∆V
S

=
|Vd| − | Ve|

S
(4)

5. Results

A comparison between the DSMs derived by MBES and MLS integrated surveys,
performed on February 2019 and November 2019, was carried out for the entire Portosole
breakwater extent, revealing breakwater modifications (Section 3). Moreover, the analysis
revealed some peculiar aspects of the morphological features and sedimentary dynamics
of the seabed facing the breakwater and of the beach located between the root of the
breakwater and the mouth of the Rio San Martino.

5.1. Results on DSMs Comparison

The difference in time between the DSMs relative to surveys 1 and 2, hereafter DSM
1 and DSM 2, were enhanced employing different procedures, whose results are pre-
sented here.

First, a simple difference in elevation between the two entire DSMs was performed.
The DSM 1 was taken as a reference, whereas the DSM 2 was assumed than the surface.
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The result is depicted in Figure 6. The distances between DSM 1 and DSM 2 range between
−7.5 and 5 m, but most of the values are centered around 0 m, as shown in the histogram
in the top left part of Figure 6. The resulting average value and standard deviations of
different values are 0.06 m and 0.43 m, respectively.

Figure 6. Comparison between digital surface model (DSM) 1 (reference surface) and DSM 2 (compared surface). The
histogram shows the distribution of distance values.

Assuming a tolerance interval of ± 3σ in amplitude, the difference values must range
between ±1.3 m, centered on the average value (µ), and, at least theoretically, the distance
values outside the tolerance interval should be considered as outliers. It is evident that this
criterion is not applicable to the area surveyed as a whole because height differences due to
changes over time, both in the sea bottom and in the breakwater, can be higher than 1.3 m,
not being outliers.

For this reason, three homogeneous regions were identified and analyzed separately:
sea bottom, submerged breakwater and emerged breakwater. The obtained homogeneous
regions of DSM 1 and DSM 2 are shown in Figure 7a,b, respectively.

Figure 7. Sea bottom (blue), submerged breakwater (green) and emerged breakwater (red) for DSM 1 (a) and DSM 2 (b).

The differences in elevation between DSM1 and DSM2 relative to the three homoge-
neous areas (Figures 8–10), together with their average values (µ) and standard deviations
(σ), were computed.
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The Gaussian functions N(µ,σ2) fitting the distribution of DSMs differences of the
three homogeneous portions are represented in Figure 11. The differences between DSMs
and Gaussian functions are represented by blue histograms and red lines, respectively,
with their values, reported on the left and right y-axes, respectively. For all the three cases,
the class values are limited within their confidence intervals (amplitude of 3σ) to improve
the readability of the graphs. The average values (µ) and standard deviations (σ) of DSMs
distances in the three homogeneous portions are also reported in the table inside Figure 11.

Figure 8. Comparison between DSM 1 (reference) and DSM 2 (compared) on the sea bottom, with distance values limited
within the interval (−0.25; 0.25) m.

Figure 9. Comparison between DSM 1 (reference) and DSM 2 (compared) on the submerged breakwater, with distance
values limited within the interval (−0.25; 0.25) m.
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Figure 10. Comparison between DSM 1 (reference) and DSM 2 (compared) on the emerged breakwater, with distance values
limited within the interval (−1; 3) m.

Figure 11. Fitting between a Gaussian function (red line) and the distribution of DSMs differences of sea bottom (a),
submerged breakwater (b), and emerged breakwater (c). The distance values are limited within the interval (−1; 3) m,
corresponding to the µ ± 3σ confidence interval.

For a more accurate comparison between the DSMs, 250 m long vertical sections and
with a 10 m, for a total of 75 sections, were extracted. These section traces, represented
in pink in Figure 12, are oriented orthogonally to the breakwater, whose directrix is
represented as a black line in Figure 12.



Water 2021, 13, 1040 12 of 19

Figure 12. Sections traces (pink) and directrix (black) along the pier. Section trace number 12 is highlighted in red for
considerations in the text.

Figure 13 represents a view of the section clouds (from the head of the breakwater,
thus almost from southwest to northeast). The red-magenta and blue-cyan section clouds
depict the submerged and emerged breakwater points for DSM 1 and DSM 2, respectively.
To perform this, the CloudCompare Filter points by values tool was used to distinguish the
points below 0 m from the points above it. Figure 14 represents a zoom of the extracted
section clouds along the section trace number 12, highlighted in red in Figure 12, to better
underline and quantify the distances between DSM 1 and 2.

Figure 13. View of the section clouds of DSM 1 and DSM 2. The red and blue sections refer to the submerged portion of
DSM 1 and 2, respectively, whereas the magenta and cyan sections are relative to the emerged portion.

Figure 14. Zoom of the section cloud relative to section trace number 12.
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As highlighted in the overall view of the section clouds (Figure 13) and in the zoom
reported in Figure 14, and as expected from the previous analysis, the section clouds
relative to DSMs 1 and 2 are almost undistinguishable over sea bottom and submerged
breakwater areas, whereas a distance between them is noticeable concerning the emerged
part of the breakwater.

In conclusion, the DSM 2 is globally slightly lower than the DSM 1 over the sea
bottom and the submerged breakwater areas, due to the erosive phenomena that took
place; on the contrary, its average height is higher for the emerged breakwater area due to
the construction of a temporary service track, which was built to allow the transit of the
vehicles transporting rocky blocks and other materials for the restoration of the breakwater.

Moreover, it is noteworthy to underline how the values of average values µ and stan-
dard deviations σ reported in the table inside Figure 11 are compatible with the ones com-
puted using an independent method and contained in the following Table 1. Furthermore,
in this case, the most pronounced variation is found in the emerged breakwater portion.

Table 1. Deposited and removed volumes between DSMs 1 and 2, surface extensions, ratios (q) between deposited and
removed volumes, and average height variations (∆h) for the three homogeneous portions.

Homogeneous Portion Deposited Volume
(m3)

Eroded Volume
(m3)

Surface
(m2)

q
(–)

∆h
(m)

Sea bottom 950 −5964 113,500 0.16 −0.04
Submerged breakwater 1094 −1483 18,068 0.74 −0.02

Emerged breakwater 15,022 −221 13,688 67.9 1.08

The total deposited and eroded volumes, the ratio q between them and the ratio
∆h between the volume variation ∆V and the total extent S were computed for each
homogeneous portion (Table 1).

5.2. Results on Morphological and Sedimentary Dynamics of the Seabed

The survey conducted in February 2019 (Figure 15A), before the restoration of the
breakwater, and the one in November 2019 (Figure 15B), when the restoration was com-
pleted, have allowed highlighting variations both in the emerged structure of the breakwa-
ter and in the morpho-sedimentary features of the seabed (Figure 15C).

The seabed morphology facing the breakwater shows a regular deepening (about 4%)
of the bathymetry, between 10 m up to 14 m (section A–A’ in Figure 15C).

Section A–A’ in Figure 15C shows the erosion operated at the base of the breakwater
by the reflection of the waves, highlighted by a depression between 0.5 and 0.8 m in-depth.
The section B–B’ in Figure 15C shows the presence of Posidonia oceanica matte partially
affected by erosion [65–68]. The Posidonia oceanica upper limit, reported after [58,69], is
mapped in the zoom of Figure 15.

Between the root of the breakwater and the mouth of the Rio San Martino, there is a
small anthropic pocket beach, confined between the maritime infrastructure and the jetted
river mouth with quays and embankments, whose foot extends into the submerged beach.

As shown in the sections C–C’ in Figure 15C, D–D’ and F–F’ in Figure 16, ripple
marks of different sizes can be recognized, whose wavelengths range between 0.4 and 1 m,
according to the hydraulic regime. Their structures indicate a vergence towards the coast.

The section E–E’ in Figure 16 indicates two erosive channels due to the backflow
currents following the sea wave runup on the beach [51].

As shown in Table 1, the ratio between deposited and eroded volumes highlights that
the sea bottom was affected by a total deficit of about 5000 m3 of sediment, with an average
lowering of about 4 cm over the entire area. In particular, as shown in Figure 15C, erosional
features were found close to the base of the submerged breakwater (section A–A’) and
along the sea bottom (e.g., section C–C’); no significant change was detected in the matte
areas (section B–B’).
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Figure 15. Morpho-bathymetry of the study area related to the two surveys: (A) February 2019;
(B) November 2019. The zooms in (A) and (B) show the high detail of the acquisition; the white
dotted line indicates the upper limit of the Posidonia oceanica seagrass after [58]. The red lines indicate
the sections reported in (C), where the black and red lines refer to February and November 2019,
respectively. The red box in (A) indicates the location of the zoom reported in Figure 16.

Figure 16. Zoom of the eastern sector of the study area (for location, see Figure 15): the red lines indicate the location of
sections shown in the left box.
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Analyzing the height variations along the entire breakwater, an average lowering
of 2 cm was found in the submerged breakwater due to the adjustment of stone and
concrete blocks, while the emerged breakwater shows an average increase of 1 m due to
the restoration works.

6. Discussion

The comparison between the DSMs obtained from the survey immediately after the
storm (survey 1) that affected Sanremo in October 2018 and the second one (survey 2) after
the restoration of the breakwater allowed the detection of 3D variations of the study area
over time (4D analysis) with centimetric accuracy. In particular, significant breakwater
modifications due to the temporary worksite, the block adjustment of the submerged
breakwater and a globally slight erosive phenomena along the sea bottom were revealed.

Concerning the comparison on the sea bottom, the average value of the difference be-
tween the surve1 and survey 2 was very close to zero, and the standard deviation was very
low, as expected, due to the almost 2D structure, with limited variation along the z-axis. The
observed differences, highlighted in blue in Figure 8, could be due to different meteorologi-
cal and marine conditions encountered during the two surveys. In fact, the blue “stripes”
highlight the roll artifacts of the MBES, so they are not effective differences concerning
the previous survey, i.e., accumulation/erosion of sediments. In the area where such blue
“stripes” are not present, the comparison between the two surveys provided quantita-
tive data of the effects of the October 2018 storm on the geomorphological-sedimentary
processes on the sea bottom in front of the breakwater, confirming the reliability of high-
resolution survey data within coastal hazard evaluation [70–72]. The comparison on the
submerged breakwater area shows an average value of differences close to zero but a
higher standard deviation concerning the value of sea bottom, probably due to the 3D
structure of the blocks forming it. In fact, even in the case of small movements/rotations
of the blocks forming the breakwater, the standard deviation of the differences can vary
significantly. The comparison in the emerged breakwater area presents the highest average
value and standard deviation. In particular, the height difference of approximately 1 m is
due to the temporary service track built over the breakwater between the two surveys to
allow the transition of material-handling vehicles to transport rocky blocks. The new road
construction also affects the standard deviation value, which is higher than the ones of the
sea bottom and submerged breakwater.

The employed survey methods and the resulting products allowed to detect and
measure bottom forms related to sedimentary structures and subcritical/supercritical
hydraulic flows, such as ripple marks and erosion channels. This highlights their usefulness
in recognizing the direction of sedimentary transport and the intensity of the hydraulic
flow [73–75]. In fact, in both the surveys, the orientation of the ridges of the asymmetrical
ripple marks allowed to identify the directions of the provenance of the waves and the
refraction waves due to the interaction with the breakwater and the seabed [76,77]. DMS 1
showed the erosive effects produced by the storm, while DMS 2, confirming the persistence
of these erosive processes, provided detailed quantitative data on the variation of the seabed
that occurred during the 9 months between the two surveys. In fact, a noteworthy result
of the comparison between the two surveys was the measurement of volumetric changes
in the seabed and the submerged and emerged breakwater. The surveys showed that the
erosion produced by the October 2018 storm, especially at the base of the breakwater, was
not compensated by sufficient sedimentary contributions after 9 months. This is evidence of
an ongoing sedimentation deficit, resulting in the instability of the rock and concrete blocks
at the base of the breakwater. As found in other coastal sectors with high anthropogenic
pressure, insufficient sediment supply is attributable to changes in the river network, the
obstacle of port infrastructure on the littoral drift and the capture of the sediment by canyon
heads [28,42,78–81].
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7. Conclusions

Integrated remote sensing techniques have been successfully applied to survey both
the breakwater and the neighboring beach of Portosole Marina. Mobile laser scanner
(MLS) and multibeam echosounder (MBES), eventually integrated with photogrammetry
from (unmanned aerial vehicle) UAV, result to be very effective and reliable to obtain
high-definition digital surface models (DSMs) both of the emerged and submerged areas.

The surveys presented in this study were carried out in a coastal stretch totally
modified by human intervention consisting of a port infrastructure, an artificial pocket
beach and a jetted stream mouth, defined as “techno-coast”.

The marine event of 29 October 2018 that affected the area of Portosole Marina repre-
sented an outstanding storm associated with the transition of deep low-pressure (976 hPa)
over the Ligurian Gulf. This caused a significant sea-level change with a local increase of
about 50–60 cm. The phenomenon provoked a great wave penetration on the coasts, as ob-
served in other sectors of Eastern Liguria, with catastrophic effects on port infrastructures
and urban facilities.

To verify the coastal impact of the storm, two integrated 3D surveys were performed
in February 2019 and in November 2019. The collected data allowed to obtain accurate
and reliable high-definition DSMs, both of the emerged and the submerged areas. The
comparison between the two surveys highlighted volumetric changes in the seabed and the
effects on the emerged and submerged breakwater induced by storm. The estimated deficit
of sediment is about 5000 m3, with a lowering of about 4 cm over the entire submerged area,
which contributed to the instability of the breakwater base. The second survey confirmed
the sea bottom’s erosional state, which is not compensated by the coastal sediment supply.
This shows that the storm’s effects superimposed ongoing erosional phenomena along the
coastal stretch strongly affected by anthropogenic impact.

The recurrence of high-intensity sea storms, as also evidenced by the event that affected
Eastern Liguria in November 2000 with similar characteristics (Hs 5.8, period 9–11 s), shows
the current increase of storm surges hazard and coastal risk in the Mediterranean area.
This highlights the importance of providing adequate coastal zone management measures
for risk mitigation through the definition of proper marine flooding hazard scenarios),
considering the ongoing climate change and related sea-level rise.
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