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Abstract: This paper features an application of Regular Vine (R-vine) copulas, a recently developed
statistical tool to assess composite risk. Copula-based dependence modelling is a popular tool in
conditional risk assessment, but is usually applied to pairs of variables. By contrast, Vine copulas
provide greater flexibility and permit the modelling of complex dependency patterns using a wide
variety of bivariate copulas which may be arranged and analysed in a tree structure to explore
multiple dependencies. This study emphasises the use of R-vine copulas in an analysis of the
co-dependencies of five reservoirs in the cascade of the Saint-John River basin in Eastern Canada.
The developed R-vine copulas lead to the joint and conditional return periods of maximum volumes,
for hydrologic design and cascade reservoir management in the basin. The main attraction of this
approach to risk modelling is the flexibility in the choice of distributions used to model heavy-tailed
marginals and co-dependencies.

Keywords: cascade reservoirs; quantile regression; Vine-Copulas; watershed management

1. Introduction

A successful reservoir system management requires pertinent information to make
appropriate decisions about the release or diversion of water at a particular time t or over
different periods of the year. Such choices are crucial and enormously complex because
of the multiple uses of reservoirs such as flood control, hydroelectric production, irriga-
tion, drinking and industrial water supply, navigation and water sports. For instance,
fixing water upper extremes is very advantageous in flooding problems management,
and coping with the destruction of water structures. In the same way, the utility of lower
extremes management is establishing guidelines for drought management, water shortage
management, and other disasters on flora and fauna. In practice, this type of manage-
ment is dictated by well-defined rules and operation policies, often in the form of curves
stipulating which action should be taken, depending on the current status of the sys-
tem. The decision calls for optimization techniques examining all possible alternatives [1].
There is a multitude of methods that can be used for flood control management, for exam-
ple implicit stochastic optimization (ISO) [2], explicit stochastic optimization (ESO) and
parameterization-simulation–optimization (PSO) [3]. Each of these methods has its advan-
tages and limitations, as discussed in [4]. More recently, the multiple reservoir management
method, called the Aggregation-decomposition (AGDP) method, has been introduced to
solve dimensionality problems in large-scale reservoir systems. It has been the subject of
several studies, in particular those of [4–6] where different operating rules are developed.

In this framework, we discuss the best hydrological modelling approach for reproduc-
ing observed streamflow and handling extremes, low and high quantiles. Our method also
deals with information transfer from one station to another, which improves the knowledge
of geographical mechanisms behind an event. The derivation of the contribution of each
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upstream station in the downstream station quantiles can help predict runoff in ungauged
stations and determine the responsible upstream stations of extreme downstream events.

To this aim, we introduce a new approach based on R-vine copulas. As their name
suggests, they are based on the combination of theories of R-vines and copulas. The latter
have been extensively used in hydrology. For instance, for the estimation of extreme values,
Ref. [7] considered flooding as a joint behavior of peak and volume. Asymmetric copulas
were used in [8] to model the structure of spatial interdependence between precipitation
rate and its occurrence. Ref. [9] used copulas to model the correlation structure of runoff
time series pairs and transfer properties from one basin to another. Ref. [10] used copula-
based multivariate analysis with a joint return period to define particular T-year rainfall
patterns. However, the multivariate case is not easy to handle with copulas. R-vine
copulas propose the division of the multivariate structure to pair copulas, which are easier
to manipulate. This approach has many remarkable properties, as detailed in [11,12].
Two particular types of R-vines (see Figure 1) are the canonical (C-) vine which has a
star structure and the drawable (D-) vine, which has a path structure. The order of the
nodes of the first tree entirely determines the construction of these two R-vine types,
making them easy to use. R-vines are increasingly being used, principally in finance and
climatology. For example, Ref. [13] use vine-copulas to analyse the interdependencies
between bank and insurers in the financial market. Ref. [14] use C-vines to analyse stock
exchange. Ref. [15] demonstrate the superiority of vine-copulas over conventional copulas
when modelling the dependence structure of a credit portfolio. Ref. [16] used vine-copulas
in trading strategies and asset allocation. Ref. [17] used R-vine models to investigate the
existence of different global dependence regimes. In climatology, Ref. [18] considered a
copula approach to model the dependence of multivariate factors of rainfall. Ref. [19]
proved the existence of a relationship between the vine-copula parameters and the station
distances in a daily mean temperature study. Ref. [20] used vine copulas to incorporate
all relevant dependencies between storm variables. Ref. [21] develop a method using
vine copulas to estimate prediction uncertainty in an environmental framework. Ref. [22]
obtained a stochastic simulation of stream-flow scenarios using vine copulas. Ref. [23] use
vine copulas to model the multivariate dependence among the glacier discharge and other
related meteorological variables. More recently, Ref. [24] used vine-copulas to forecast the
release of a hydro-power reservoir conditioned by its initial volume. Vine-copulas have
also been used in diverse other fields, for example in the analysis of aviation safety [25]
and to capture spatial and temporal dependence between hydroelectric power plants [26].
We can find in [27] a detailed survey of vine-copulas applications.

Our approach, called “the reduced-network vine” combines all the information avail-
able on all sections of a watershed. We prove throughout this article that, the notion of
a “basin”, can be captured through high quantile modelling. This approach will help to
know the exact quantity of the quantiles of the volume of water. It will help quantify the
minimum and maximum volumes expected in a dam and how to manage water require-
ments or face expected floods. It will also help decide how much excess water is to transfer
and how much water should be released.

We capitalize on the argumentation of [28] for regular vines and the one of [29] for
D-vines about the performance of quantile regression to other regression models. In
both cases, vine models make less restrictive assumptions on the choice of the covariates
influencing the response and can solve analytically for conditional quantiles. Unlike the
classical approach (Kendall’s Tau (τ) R-vine), our method finds the quantile regression
for the station downstream due to the new constraint of having the station downstream
estimated. Moreover, using the reduced-network R-vine copes with the imposed order
condition in a D-vine, making the restrictive model assumptions easier to obtain and
allowing the formulation of the conditional form.
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(a) (b) (c)

Figure 1. Three different vine structures obtained from the Saint-John basin structure. The blue
circles represent the vine nodes which are the analyzed control stations listed in Table 1. The thick
black arrows represent the vine edges. The black lines represent the sub-catchment delimitations.
(a) A C-vine with 4 nodes. (b) A D-vine with 4 nodes. (c) An R-vine with 5 nodes.

Table 1. Control stations selected to illustrate the Vine-copula approach.

Station Code Name River Drainage Area (km2)

S3 FX01AF002 Grand Falls Saint John 21,900
S7 FX01AG003 Tinker Aroostook 6060
S8 FX01AH002 Riley Brook Tobique 2230
S11 FX01AJ010 Coldstream Becaguimec stream 350
S15 FX01AK010 Mactaquac Generating Station Saint John 39,900

Our contribution aims to estimate the quantiles of hydrological variables in stations
located downstream of a basin. We show how the quantile regression obtained from an
R-vine copula model based on the basin’s structure allows us to find the desired condi-
tional quantiles. Besides, our method makes it possible to find the station(s) responsible
for extreme hydrological events downstream, and therefore, leads to a better-cascade dam
management. We illustrate our approach by analysing the co-dependencies of five reser-
voirs in the cascade of the Saint-John River basin in Eastern Canada. The developed R-vine
copulas lead to the joint and conditional return periods of water’s maximum volume and
the hydrologic design and cascade reservoir management in the basin.

In Section 2, we recall the main definitions of copulas and R-vine-copulas and how
to obtain conditional copula expressions. We also detail how to estimate the conditional
quantiles. In Section 3, we present our data and the results of the new R-vine quantile
regression method for the studied variables with a discussion. In Sections 4 and 5, we
discuss our main contributions and some perspectives for further studies. Supplementary
material to our work is in Appendices A and B.

2. Materials and Methods
2.1. Copulas

A bivariate copula C is a distribution C : [0, 1]2 → [0, 1] with uniform margins.
The theorem of Sklar [30] shows that for a bivariate distribution F with continuous margins
F1 and F2, there exists a unique copula C(., .), such that:

F(x1, x2) = C12(F1(x1), F2(x2)), ∀(x1, x2) ∈ R2 (1)

The following functions, related to copulas, can be found in [31,32]:
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Density c12(u1, u2) =
∂2C12(u1, u2)

∂u1∂u2

Bivariate density f (x1, x2) = c12(F1(x1), F2(x2)). f1(x1). f2(x2)

Conditional density f (x2/x1) = c12(F1(x1), F2(x2)). f2(x2)

Conditional density of the copula h(u/v) =
∂C(u, v)

∂v

(2)

2.2. R-Vines

We also recall the notion of a vine as introduced in [11].

Definition 1. V is a vine on n elements if

1. V = (T1, . . . , Tm).
2. T1 is a tree with nodes N1 = {1, . . . , n} and a set of edges denoted E1.
3. For i = 2, . . . , m, Ti is a tree with nodes Ni ⊂ N1 ∪ E1 ∪ E2 ∪ · · · ∪ Ei−1 and edge set Ei.

As described in [11], V is a regular vine when m = n, Ti is a connected tree with
edge set Ei and node set Ni = Ei−1, with cardinality #Ni = n− (i − 1) for i = 1, . . . , n.
In addition, the proximity condition must hold, i.e., for i = 2, . . . n− 1, if a = {a1, a2} and
b = {b1, b2} are two nodes in Ni connected by an edge then #a ∩ b = 1.

2.3. R-Vine Copulas

We define the specification of the R-vine copula corresponding to an R-vine as in [33].

Definition 2. Let F = (F1, . . . , Fn) be a vector of continuous invertible distribution functions,
V an n-dimensional R-vine and B = {Be/i = 1, . . . , n − 1; e ∈ Ei} where Be is a bivariate
copula and Ei is the edge set of tree Ti of the R-vine V. The triplet (F, V, B) is called an R-vine
copula specification.

Bedford et al. [11,34] showed that the density of an R-vine-copula, specified by the
assignment of an appropriate bivariate copula to the edges of the R-vine, is equal to the
product of the conditional and unconditional copula assigned to its edges. More precisely,
they proved the following theorem.

Theorem 1. Let (F, V, B) be an R-vine specification on n elements. The distribution F is unique
and its density is given by

f1,. . . ,n(x) =
n

∏
k=1

fk(xk)
n−1

∏
i=1

∏
e∈Ei

cCe,a ,Ce,b/De(FCe,a/De(xCe,a /xDe), FCe,b/De(xCe,b /xDe)), (3)

where x = (x1, . . . , xn), e = a, b, xDe = xi/i ∈ De and fi denotes the density of Fi for i = 1, . . . , n.

To obtain conditional copulas, Joe [35] showed that:

FCe,a/De(xCe,a /xDe) =
∂CCa/Da

(
FCa,a1 /Da(xCa,a1

/xDa), FCa,a2 /Da(xCa,a2
/xDa)

)
∂FCa,a2 /Da(xCa,a2

/xDa)

:= h
(

FCa,a1 /Da(xCa,a1
/xDa), FCa,a2 /Da(xCa,a2

/xDa)
)

, (4)

where each term of the partial derivative of the copula must be obtained recursively.
To specify the necessary copulas for a pair-copula construction, we use the graphical

structure of R-vines [36]. Adapting an R-vine copula specification to a given data set
requires, in general, the following separate tasks, as detailed in [37].
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1. Selection of vine R (structure), i.e., selection of unconditioned and conditioned pairs
to be used.

2. Choice of a family of bivariate copula for each pair selected in the previous step.
3. Estimation of the corresponding parameter(s) for each copula.

Other methods for selecting regular vine-copulas are investigated in [38].
We have tried to fit several combinations of copulas (Joe, Tawn, and two-parameter

mix copulas) to our data. However, these copulas were not appropriate for our data and
resulted in poor estimators. We have, therefore, limited our choice to copulas that best
fit our data : Gumbel, Clayton and Frank copulas. These copulas are members of the
Archimedean family. Because of their flexible structure, Archimedean copulas are the
most commonly used to model dependence in hydrology [39]. Gumbel copula has a range
between independence and perfect positive dependence, Clayton copula has more mass
in the negative tail and Frank copula is a flexible copula which takes no restrictions in
its parameter [40]. The distributions of these copulas and their properties can be found
in [31]. The choice of bivariate copulas (conditional and unconditional) of each tree is made
individually each time. In this work, we use the maximum likelihood method to obtain
copula parameter estimators (MLE) [32], and retain the copulas minimizing the Akaike
information criterion (AIC).

2.4. Quantile Regression

As demonstrated in [41], the R-vine-copula-based quantile regression showed its
superiority to linear regression in terms of making inferences. The goal is to predict
the quantile of a response variable Y given the outcome of certain predictor variables
X1, . . . , Xd, (d ≥ 1), where Y ∼ FY and Xj ∼ Fj, j = 1, . . . , d [29]. Hence, all the effort is
made on the joint modelling of Y and X, and more particularly on the quantile function for
α in [0, 1] [29,42]:

qα(x1, . . . , xd) := F−1
Y/X1,...,Xd

(α/x1, . . . , xd), (5)

using probability integral transforms [43,44]. More precisely, let V := FY(Y) and
Uj := Fj(Xj) we have that:

FY/X1,...,Xd
(y/x1, . . . , xd) = P(Y ≤ y/X1 = x1, . . . , Xd = xd)

= P(V ≤ v/U1 = u1, . . . , Ud = ud)

= CV/U1,...,Ud
(v/u1, . . . , ud). (6)

Applying the inverse function F−1
Y , we have that

F−1
Y/X1,...,Xd

(α/x1, . . . , xd) = F−1
Y (C−1

V/U1,...,Ud
(α/u1, . . . , ud)). (7)

An estimate of the conditional quantile can, therefore, be obtained by estimating the
marginal distributions FY, Fj(j = 1, . . . , d) as well as the copula CV/U1,...,Ud

:

q̂α(x1, . . . , xd) := F̂−1
Y (Ĉ−1

V/U1,...,Ud
(α/û1, . . . , ûd)). (8)

More details about R-vine-copula-based quantile regression are to be found in [29].

3. Results
3.1. Data

The Saint-John River watershed is an inter-provincial watershed connecting Quebec
and New Brunswick. It is also an international watershed connecting Canada and the
United States. It covers an area of approximately 55,200 km2, of which just over half is in
New Brunswick [45]. The Saint-John River is often known by an increase in water levels
above the flood threshold in several collectivities, the most remarkable of which is that of
spring (April-May) of the year 2008 [45].
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Reservoirs in New Brunswick generally serve several purposes, of which flood control,
both at tributary and mainstream level. Therefore, the joint operation rule should be able
to coordinate not only the individual reservoirs but also the different uses of the water.
From this perspective, the R-vine-copula-based quantile regression is considered suitable
for a large basin such as that of the Saint-John River (Figure 2).

Figure 2. The Saint-John basin and the studied sub-basins.

To cope with flooding episodes in the Saint-Jean basin, the implementation of efficient
management rules is essential for the decision-maker. It is within this framework that we
try to derive management rules for a reservoir system by limiting flood losses at the level
of five selected flood control sections, based on our database. In Figure 3, the structure of
reservoirs determined by these control stations chosen to cover the entire basin can be seen.
We also give the station codes and names in Table 1.

Among the characteristics of the hydrographs identified for all the stations and all
the observation periods, we considered the peak flow and the flood volume [46–48]. We
choose these two indices to illustrate the use of the R-vine-copula-based quantile regression
approach on five sections of flood control. We then have a matrix of 10 components for each
of the 42 years of the observation period (from 1975 to 2016). For the reader’s convenience,
the time series of the volume variables are represented in Appendix A.

We used the Anderson–Darling test as a criterion to choose the most fitted distribution
to our data [49]. Gamma distribution (Pearson type III) usually represents the maximum
annual flows, the volume of annual runoff. Weibull distribution is a particular case of the
Generalized extreme value distribution (GEV) recommended for representing maxima [50].
These distributions have fat tails and are the most convenient to represent the extremes.
Gumbel distribution is another special case of the GEV distribution when its Kappa shape
parameter is zero. We represent the fitted distributions and the results of the Box-Ljung
independence test in Table 2.
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Figure 3. Location of the control sections used to illustrate the Vine-copula approach.

Table 2. Marginal distributions and results of the independence test.

Variable Station Distribution Parameter 1 Parameter 2 Box-Ljung Test

3 Gumbel 0.2054731 0.8775550 0.5819
7 Weibull 3.956469 1.100047 0.2502

Volume 8 Gamma 12.26178 12.26174 0.6783
11 Weibull 3.498557 1.111809 0.864
15 Gamma 18.47347 18.47331 0.778

3 Gumbel 0.2391086 0.8574496 0.6619
7 Gumbel 0.2508672 0.8574092 0.2957

Peak flow 8 Gumbel 0.2432496 0.8625942 0.3618
11 Gumbel 0.2801832 0.8363660 0.365
15 Gumbel 0.2201248 0.8738290 0.2701

3.2. The New R-Vine

The (unique) reduced-network R-vine corresponding to the Saint-John basin is given
in Figure 4. In Table 3, the fitted copulas corresponding to each edge of the R-vine with their
parameters are provided. The associated fitted normalized contour plots of the selected
copulas are presented in Figure 5 to visually investigate their influence.

To compare the proposed R-vine structure with a classical model, we construct the
vine corresponding to our data using the maximum spanning tree method. The ob-
tained Kendall’s τ values summarized in Figure 6 suggest a D-vine structure represented
in Figure 7. We compare the efficiency of our model by illustrating the basin dependency
structure with that of the D-vine and an all-Gauss D-vine as a reference structure. The
results of Table 4 show that the Tau D-Vine model has the highest MLE, followed by the
new R-Vine then all Gauss D-Vine. For the results of the AIC and the Bayesian informa-
tion criterion (BIC), we have the same classification. Moreover, based on Vuong’s tests
results [51], we cannot reject the hypothesis that the new R-vine and the Tau D-Vine are
equivalent. For the peak flow variable, the maximum spanning tree method suggests
an R-vine. The results of the efficiency comparison and Vuong’s tests in Table 4 lead to
the same conclusion as for the volume variable. But even with the results preferring the
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classically obtained vine-copulas to the new R-vine, we keep this last to do the regression
because it gives consistent results with the geographical position of the stations.

Table 3. Bivariate copulas and conditional bivariate copulas of the reduced-network R-vine. Sur
Gumbel and I stand for Survival Gumbel and Independence copulas, respectively.

Tree Edge Copula Volume
Parameter K-Tau Copula Peak Flow

Parameter K-Tau

1 4,5 Sur Gumbel 1.45 0.31 Sur Gumbel 1.42 0.30
2,4 Sur Gumbel 1.65 0.39 Sur Gumbel 1.58 0.37
2,3 Frank 5.38 0.48 Gumbel 1.50 0.34
1,2 Frank 11.21 0.70 Gumbel 2.12 0.53

2 2,5;4 Gumbel 2.13 0.53 Gumbel 3.34 0.70
3,4;2 I - 0.00 I - 0.00
1,3;2 I - 0.00 I - 0.00

3 3,5;2,4 Clayton 0.67 0.25 I - 0.00
1,4;3,2 I - 0.00 I - 0.00

4 1,5;3,2,4 Clayton 1.18 0.37 Gumbel 1.53 0.35

V2

V1

V4 V5

V3

(a)

V1,V2 V2,V3 V2,V4 V4,V5

(b)

V2,V5;V4 V3,V4;V2 V1,V3;V2

(c)

V3,V5;V2,V4 V1,V4;V3,V2

(d)

Figure 4. The reduced-network R-vine. V1, V2, V3, V4 and V5 stand for stations 3, 7, 8, 11 and 15,
respectively. (a) Tree 1. (b) Tree 2. (c) Tree 3. (d) Tree 4.

Figure 5. Fitted R-vine normalized contour plots of the specified pair copulas for the volume variable.
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Figure 6. Pair-plots (bottom left of the diagonal), Kendall’s τ values (top right of the diagonal), and
the histograms (diagonal) of the volume variable in the five stations.

V4 V2 V1 V5 V3

(a)

V2,V4 V1,V2 V5,V1 V5,V3

(b)

V1,V4;V2 V5,V2;V1 V3,V1;V5

(c)

V5,V4;V1,V2 V3,V2;V5,V1

(d)

Figure 7. Tau D-vine of the volume variable. (a) Tree 1. (b) Tree 2. (c) Tree 3. (d) Tree 4.

Table 4. Comparison between the different Vine structures for the volume variable. R-N, K-Tau and
All-G stand for Reduced-Network, Kendall’s τ and All-Gauss vines, respectively.

R-N Vine Volume
K-Tau Vine All-G Vine R-N Vine Peak Flow

K-Tau Vine All-G Vine

MLE 86.17 97.2 87.98 81.1 87.13 84.22
AIC −158.34 −182.41 −155.96 −150.2 −166.26 −148.43
BIC −146.18 −171.98 −138.58 −139.78 −159.31 −131.06

Parameters 7 6 10 6 4 10

Plain V −1.59 −0.30 −1.48 −0.78
Akaike V −1.73 0.20 −1.97 0.22

Schwarz V −1.86 0.63 −2.39 1.09
Plain P 0.11 0.77 0.14 0.44

Akaike P 0.08 0.84 0.05 0.83
Schwarz P 0.06 0.53 0.02 0.28

3.3. Quantile Regression

The expression of the h-function of the reduced-network vine of the Saint-John basin
is detailed in Appendix B. Next, we show the relative contribution of each station in the
final estimate of the quantiles of the volume in the downstream station (station 15). In (a)
and (b) of Figure 8, we represent the situations where the volume in station 15 is the most
extreme. This occurs when the volumes in stations 3 and 7 are extreme simultaneously
(scenario 5), the severity is high but, less when stations 7 and 8 are extreme simultaneously
(scenario 8). In (c) and (d) of Figure 8, we can see that when station 7 is extreme and
the volume in the other stations is set to the median (scenario 2), there is no noticeable
effect on station 15. This is also the case when stations 3 and 8 are extreme simultaneously
(scenario 6) or alone as in (e) and (f) of Figure 8. We can, therefore, deduce that station
7 (which is in up-mainstream) has a key role to play in the occurrence of extreme events
in station 15 when it is associated with extremes in the station 3 (also up-mainstream but
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more distant from station 15) or station 8 (up-tributary and the farthest from station 15). On
the other hand, the scenarios for station 11 have not been represented because they have
no noticeable effect on the extreme quantiles of station 15 (even if it is down-mainstream
and closest to station 15).

(a) (b)

(c) (d)

(e) (f)

Figure 8. Illustration of the obtained scenarios with respect to downstream conditional quantiles.
The red color means values are set to Q100 as in Table 5. White means values are set to Q2. For
station 15, blue means the conditional quantile S15 Q100 is less than the marginal index, it is pink when
they are almost equal and red when S15 Q100 is much greater than the marginal index. (a–f): scenarios
5, 8, 2, 6, 1, and 3 respectively.

We resume the obtained quantiles of the volume in station 15 in each of the above
scenarios in Table 5. We also give a comparison with the observed and marginal quantiles
using indexes.



Water 2021, 13, 964 11 of 16

Table 5. Classification of possible scenarios according to the severity of the extreme quantile of
station 15. M. index: Marginal index. O. index : Observed index.

Scenarios S 3 S 7 S 8 S 11 S15 Q100 (1000 m3) M. Index O. Index

Scenario 5 Q100 Q100 Q2 Q2 300.91 1.77 1.81
Scenario 8 Q2 Q100 Q100 Q2 166.32 0.98 1.00
Scenario 7 Q100 Q2 Q2 Q100 153.73 0.90 0.92
Scenario 4 Q2 Q2 Q2 Q100 148.81 0.87 0.90
Scenario 2 Q2 Q100 Q2 Q2 145.54 0.86 0.88
Scenario 6 Q100 Q2 Q100 Q2 145.22 0.85 0.87
Scenario 1 Q100 Q2 Q2 Q2 141.78 0.83 0.85
Scenario 3 Q2 Q2 Q100 Q2 139.56 0.82 0.84

To complete the results, we set the values of the first four stations with the quantiles
of return periods 2, 20 and 100 years. We then calculate the conditional quantiles of station
15 based on these values for different probabilities. Figure 9 represents the conditional
distributions of the extreme events at station 15 as a function of potential scenarios in
the upstream sub-basins. It is then possible to deduce the conditional distributions of
the quantiles, at station S15, depending on the levels recorded in the other four stations.
This is an estimate based on the multivariate model and, therefore, takes into account
the uncertainties and interactions between the series of extremes observed at each of the
measuring stations.

Figure 9. Conditional quantiles of the volume (1000 m3) in station 15 according to the variations in
probabilities with fixed covariates.

4. Discussion

This study established multivariate models for flood-risk assessment of cascade reser-
voirs. The management approaches for multi-reservoir flood control mainly concern
minimizing the maximum water level in the dam itself or discharges at downstream flood
control points. For a large watershed, such as the Saint-John River, this management is
even more challenging. It should take into account the interactions between the sub-basins.
Moreover, the time lag and the flooding interdependence along the river are two significant
parameters. They should be taken into consideration during the management process.
The proposed multivariate vine copula model offers some flexibility to combine all risk
sources with different dependence structures. The flooding capacity of existing reservoirs
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cannot hold back flooding downstream when extreme flooding has occurred in the upper
Saint-John River basin. Therefore, more reservoirs are needed to control flooding in some
downstream areas. The sub-basins that require more control are those connected to stations
S3 and S7. This result might suggest the necessity to control all the stations on the main
river and chief tributaries. The model also makes it possible to estimate the contribution of
each of the sub-basins to extreme floods.

The Saint-John River has seasonal regulation reservoirs for medium and low floods.
In the case of extreme upstream floods, the valves of downstream reservoirs are opened
prematurely, causing high levels downstream in early spring. By better estimating the
conditional risk of floods downstream of the basin, managers can make informed decisions
to reduce vulnerability to flooding.

One of the extensions to our study would be the use of Extreme value copulas such
as Joe, Tawn or 2-parameter Archimedean copulas (BB class). Due to the known ability of
this class of copulas to model tail behaviours, this extension would be adapted to other
hydroclimatic regions. We also think that an extension of this analysis could involve all
the basin’s sub-catchments. In this case, each sub-catchment network could be modelled
separately by a vine structure, then all the vine models obtained can be regrouped to one
multivariate model.

5. Conclusions

In this article, we have introduced a new approach to combine all the information
available on the different sections of a river basin. Flooding in a large basin, as in the case
of the Saint-John River, is a highly complex phenomenon and depends on several temporal
and spatial parameters. The R-vine-copula-based quantile regression approach enables
dimensionality to be reduced while retaining essential information on the contribution
of each section to the entire basin’s flood. A similar study can be done based on climate
forecasts to produce decision-making tools on the management of available reservoirs and
help to mitigate the effects of floods and protect vulnerable areas to flooding. The three main
achievements of the work can be summarized as follows: (1) Conception of the multivariate
distribution for multi-reservoirs volumes’ extremes; (2) Development of the conditional
quantile regression expressions at the downstream station; (3) Simulation of scenarios for
cascade reservoirs, considering both sub-basins local characteristics and interactions.

The use of an R-vine structure suggested by the geographic system of the watershed
allows precise modelling of the dependency structure between stations for a given variable.
The proposed model can reproduce the periodic behaviour of the volume and peak flow
series. The choice of the reduced-network R-vine allows for the alleviation of the condi-
tions imposed during the construction of other vine types (calculation of the correlation
coefficients and respect of the covariates order for the D-vine).

The generated scenarios show that the extreme conditions in the two stations S3 and
S7 are decisive for the downstream sub-basin. These indicate the need for an improvement
in the capacity and management of flood volumes at the level of these two sub-basins.
Indeed, station S15 is located near Fredericton city, the capital of New Brunswick province,
which experiences frequent flooding.

The predicted quantiles are of crucial importance for decision-makers, allowing bet-
ter management of existing dams as well as the development of new hydraulic struc-
tures. Besides the studied case, vine copulas could be very useful for many other hydro-
meteorological variables with a spatial and/or temporal component. Such models also
allow for information transfer from gauged to ungauged areas.
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Appendix A

Figure A1. Time series, histograms with densities of theoretical laws and QQ-plots of the volume
variable of the five studied stations. From top to bottom: station 3, 7, 8, 11 and 15.

Appendix B

As in [32], the relative distribution density of the 5 nodes R-vine is as follows:

f12345 =
︷ ︸︸ ︷
f1. f2. f3. f4. f5 .

︷ ︸︸ ︷
c12.c23.c24.c45 .

︷ ︸︸ ︷
c13/2.c34/2.c25/4 .

︷ ︸︸ ︷
c14/23.c35/24 .

︷ ︸︸ ︷
c15/234, (A1)

where the grouped terms represent, respectively, the densities of the univariate distribu-
tions, the densities of the unconditional copulas of tree 1, the densities of the 1-conditional
copulas of tree 2, the densities of the 2-conditional copulas of tree 3 and the 3-conditional
copula density of tree 4.

The conditional distribution in the downstream station of our study case is given by:

F(x5/x1, x2, x3, x4) =
∂C15,234(F(x5/x2, x3, x4), F(x1/x2, x3, x4))

∂F(x1/x2, x3, x4)
, (A2)

https://climat.meteo.gc.ca/historical_data/search_historic_data_f.html
https://climat.meteo.gc.ca/historical_data/search_historic_data_f.html
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where the expressions of the 3-conditional distributions are:

F(x1/x2, x3, x4) =
∂C14,23(F(x1/x2, x3), F(x4/x2, x3))

∂F(x4/x2, x3)
(A3)

F(x5/x2, x3, x4) =
∂C35,24(F(x5/x2, x4), F(x3/x2, x4))

∂F(x3/x2, x4)
. (A4)

The expression of the 2-conditional distributions are

F(x1/x2, x3) =
∂C13,2(F(x1/x2), F(x3/x2))

∂F(x3/x2)
, F(x4/x2, x3) =

∂C43,2(F(x4/x2), F(x3/x2))

∂F(x3/x2)
, (A5)

F(x3/x2, x4) =
∂C34,2(F(x3/x2), F(x4/x2))

∂F(x4/x2)
, F(x5/x2, x4) =

∂C52,4(F(x5/x4), F(x2/x4))

∂F(x2/x4)
, (A6)

and the expressions of the 1-conditional distributions are:

F(x1/x2) =
∂C1,2(F(x1), F(x2))

∂F(x2)
, F(x3/x2) =

∂C2,3(F(x2), F(x3))

∂F(x2)
, (A7)

F(x4/x2) =
∂C2,4(F(x2), F(x4))

∂F(x2)
, F(x2/x4) =

∂C2,4(F(x2), F(x4))

∂F(x4)
, (A8)

F(x5/x4) =
∂C4,5(F(x4), F(x5))

∂F(x4)
, (A9)

where the F(xi) correspond to the univariate distributions. Then, following [29], we can
write the conditional distribution of X5 given (U1, U2, U3, U4) :

CX5/U1,U2,U3,U4
(x5/u1, u2, u3, u4) = hX5/U1,U2,U3,U4

(
CX5/U2,U3,U4

(x5/u2, u3, u4), CX1/U2,U3,U4
(x1/u2, u3, u4)

)
= hX5/U1,U2,U3,U4

(
hX5/U2,U3,U4

(
CX5/U2,U4 (x5/u2, u4), CU3/U2,U4 (u3/u2, u4)

)
,

hU1/U2,U3,U4

(
CU1/U2,U3 (u1/u2, u3), CU4/U2,U3 (u4/u2, u3)

))
= hX5/U1,U2,U3,U4

(
hX5/U2,U3,U4

(
hX5/U2,U4

(
CX5/U4

(x5/u4), CX2/U4
(x2/u4)

)
,

hU3/U2,U4

(
CU3/U2 (u3/u2), CU4/U2 (u4/u2)

))
, hU1/U2,U3,U4

(
hU1/U2,U3(

CU1/U2 (u1/u2), CU3/U2 (u3/u2)
)
, hU4/U2,U3

(
CU4/U2 (u4/u2),

CU3/U2 (u3/u2)
)))

= hX5/U1,U2,U3,U4

(
hX5/U2,U3,U4

(
hX5/U2,U4

(
hX5/U4

(x5/u4), hX2/U4
(x2/u4)

)
,

hU3/U2,U4

(
hU3/U2 (u3/u2), hU4/U2 (u4/u2)

))
, hU1/U2,U3,U4

(
hU1/U2,U3(

hU1/U2 (u1/u2), hU3/U2 (u3/u2)
)
, hU4/U2,U3

(
hU4/U2 (u4/u2),

hU3/U2 (u3/u2)
)))

. (A10)

By inverting, we get:

C−1
X5/U1,U2,U3,U4

(α/u1, u2, u3, u4) = h−1
X5/U4

{
h−1

X5/U2,U4

(
h−1

X5/U2,U3,U4

(
h−1

X5/U1,U2,U3,U4

(
α, hU1/U2,U3,U4(

hU1/U2,U3

(
hU1/U2 (u1/u2), hU3/U2 (u3/u2)

)
, hU4/U2,U3

(
hU4/U2

(u4/u2), hU3/U2 (u3/u2)
)))

, hU3/U2,U4

(
hU3/U2 (u3/u2), hU4/U2

(u4/u2))), hU2/U4
(u2/u4)

)
, u4
}

, (A11)

by introducing the inverted estimated marginal as in Equation (8), we obtain an estimate
of the desired conditional quantile.
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