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1.1. USGS Hydrographs from Selected Santa Ana River Locations During Flood Event 

 

Figure S1. USGS hydrographs from Santa Ana River near Prado Wetlands demonstrate high flows 

during period of flood event. [a] Illustrates the February high flow period was not higher than the 

following months. [b] Demonstrates the gage height at the Prado Dam, illustrating the confluence 

of events that occurred during the time period (high storage pool) and high flows that resulted in 

the levee break inundating the Prado Wetlands. The rebuilt levee held in the following months, 

demonstrating the need for proactive design and implementation. 

1.2. DNA Extraction, Sequencing, and Analysis 

For 16S rRNA gene sequencing, PCR amplification was performed using 2 µL tem-

plate DNA in a 25µL reaction using 5PRIME HotMasterMix (Quanta Biosciences, Beverly, 

MA, United States) with a nearly universal bacterial and archaeal primer set as per Kraus 

et al. (2018); the forward primer 515F-Y with the M13 primer (bolded) and gene specific 

[a]

[b]
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forward primer (underlined) (GTA AAA CGA CGG CCA G CCG TGY CAG CMG CCG 

CGG TAA-3′) [1] while the reverse primer 926R (5′-CCGYCAATTYMTTTRAGTTT-3′) 

was unmodified from Parada et al. (2016) [2]. 

Raw reads were demultiplexed with AdapterRemoval [3] and imported into R for 

quality visualization and processing using DADA2 [4]. Adapters were manually trimmed 

with forward and reverse reads truncated to 239 and 251 base pairs, respectively. The 

respective maximum expected errors were limited to 2. Filtered and trimmed reads were 

then dereplicated, denoised and merged. Chimeric sequences were identified and re-

moved based on identification by consensus. 

1.3. Prado Wetlands Analog Water 

Table S1. Analog water recipe based on Prado Wetlands influent without NO3− or NO2− [5]. 

*NaNO3 utilized for specific NO3− concentration (15 mg/L – N). 

Salt MW (g/mol) g/L 

MgSO4-7H2O 246.5 0.12 

CaCl2 147.0 0.24 

K2HPO4 136.09 0.01 

NaHCO3 84.01 0.30 

Na2SO4 142.02 0.05 

KCl 74.55 0.025 

NaCl 58.4 0.064 

*NaNO3 

(15 mg/L – N) 
85.0 0.091 

*NaNO3 

(30 mg/L – N) 
170.0 0.182 

2. Results 

2.1. Adonis and Beta-Dispersion Results for Microbial Ecology Comparison 

Table S2. The post-flood biomat community was significantly different from mature and nascent biomats, as seen in the 

adonis results below. Additionally, the rehydrated biomat microbial communities were significantly different from ma-

ture, nascent, and fresh biomat communities. 

Comparison 
Adonis 

Beta 

Dispersion 
Distance from Centroid 

Distance Matrix R2 P-Value P-Value Nascent Mature Flood-Impacted Rehydrated Fresh 

Mature : Flood-Impacted Weighted UniFrac 0.50 0.001 0.38 n/a 0.12 0.098 n/a n/a 

Mature : Flood-Impacted UniFrac 0.29 0.001 0.015 n/a 0.36 0.47 n/a n/a 

Rehydrated : Mature Weighted UniFrac 0.50 0.002 0.021 n/a 0.12 n/a 0.050 n/a 

Rehydrated : Mature UniFrac 0.46 0.002 0.025 n/a 0.36 n/a 0.26 n/a 

Nascent : Rehydrated Weighted UniFrac 0.49 0.002 0.007 0.15 n/a n/a 0.050 n/a 

Nascent : Rehydrated UniFrac 0.34 0.002 0.001 0.4725 n/a n/a 0.26 n/a 

Nascent : Mature Weighted UniFrac 0.41 0.001 0.311 0.15 0.12 n/a n/a n/a 

Nascent : Mature UniFrac 0.25 0.001 0.04 0.47 0.36 n/a n/a n/a 

Rehydrated : Fresh Weighted UniFrac 0.91 0.034 0.11 n/a n/a n/a 0.050 0.031 

Rehydrated : Fresh UniFrac 0.51 0.034 0.05 n/a n/a n/a 0.26 0.31 

Rehydrated : Flood-Impacted Weighted UniFrac 0.56 0.008 0.038 n/a n/a 0.098 0.050 n/a 

Rehydrated : Flood-Impacted UniFrac 0.34 0.008 0.001 n/a n/a 0.47 0.26 n/a 
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2.2. Microbial Community UniFrac and DCA Ordinations 

 

Figure S2. Ordinations demonstrate the changes in 16S rRNA gene microbial community structure 

by sample types. Though Weighted UniFrac distances were used in the primary analysis, a PCoA 

using UniFrac distances [a] and the Detrended Correspondence Analysis (DCA) [b] show the 

grouping of communities by sample type were evident in all visualizations. 

  

[a]

[b]
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2.3. Rank Abundance of Biomat Types 

 

 

 

Figure S3. Rank abundance of the Top 20 Orders in each biomat type: mature biomat [a], flood-

impacted biomat [b], and rehydrated biomat [c]. 

[a]

[b]
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