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Abstract: In this study, we compare infinite slope and the three-dimensional stability analysis
performed by SCOOPS 3D (software to analyze three-dimensional slope stability throughout a
digital landscape). SCOOPS 3D is a model proposed by the U. S. Geological Survey (USGS), the
potentialities of which have still not been investigated sufficiently. The comparison between infinite
slope and 3D slope stability analysis is carried out using the same hydrological analysis, which
is performed with TRIGRS (transient rainfall infiltration and grid-based regional slope-stability
model)—another model proposed by USGS. The SCOOPS 3D model requires definition of a series of
numerical parameters that can have a significant impact on its own performance, for a given set of
physical properties. In the study, we calibrate these numerical parameters through a multi-objective
optimization based on genetic algorithms to maximize the model predictability performance in terms
of statistics of the receiver operating characteristics (ROC) confusion matrix. This comparison is
carried out through an application on a real case study, a catchment in the Oltrepò Pavese (Italy),
in which the areas of triggered landslides were accurately monitored during an extreme rainfall on
27–28 April 2009. Results show that the SCOOPS 3D model performs better than the 1D infinite
slope stability analysis, as the ROC True Skill Statistic increases from 0.09 to 0.37. In comparison
to other studies, we find the 1D model performs worse, likely for the availability of less detailed
geological data. On the other side, for the 3D model we find even better results than the two other
studies present to date in the scientific literature. This is to be attributed to the optimization process
we proposed, which allows to have a greater gain of performance passing from the 1D to the 3D
simulation, in comparison to the above-mentioned studies, where no optimization has been applied.
Thus, our study contributes to improving the performances of landslide models, which still remain
subject to many uncertainty factors.

Keywords: TRIGRS; SCOOPS 3D; rainfall induced landslide; slope stability analysis; optimization

1. Introduction

Shallow rainfall-induced landslides frequently cause human losses and substantial
damages to infrastructures in many mountain and hilly regions worldwide [1]. Landslides
can have devastating effects on the downstream area, especially when they evolve into debris
flow [2–4]. As a result, many efforts have been devoted to the development of techniques
and methodologies useful for the space-time prediction of rainfall-induced landslides.

Models for determining the rainfall conditions that trigger landslides can be broadly
divided into two categories, namely rainfall triggering thresholds and numerical physically
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based models. The former are defined as the rainfall conditions the exceedance of which
is likely to trigger landslides [5–7]. Due to the empirical nature of this approach [8–16],
the quality and reliability of input data can affect the reliability of the prediction [17–20].
The latter simulate the hydrological and geotechnical processes responsible for the trig-
ger [21–25], and can be used also for hazard mapping and thus for land planning purposes.
However, their application may be hampered by the limited availability of data on soil
properties [26,27]. These models are composed of two parts: a hydrological model to deter-
mine the soil response to rainfall in terms of pore pressure changes and a slope stability
model to estimate the induced change in the ratio of resisting to driving forces acting on
potential sliding masses [28,29].

The great majority of landslide models used infinite slope stability analysis [21,22,30–36],
according to which the failure of each cell is assumed to be independent of the other ones
in the catchment, resulting in unstable areas that have low connectivity, which are thus
quite unrealistic. Hence, there is an increasing scientific interest towards the development
of software that implements three-dimensional slope stability analysis [37–43]. SCOOPS
3D (software to analyze 3D slope stability throughout a digital landscape) [44] belongs to
the 3D models category and uses a three-dimensional (3D) approach to assess the stability
of many potential landslides within a user-defined size range and considering landslide
triggering as a cascade of failures of interconnected soil columns. When applied to the
catchment scale, based on a digital terrain model (DTM), 3D slope stability analysis requires
rather complex algorithms aimed at searching iteratively the unstable surfaces (landslides),
which involve several numerical parameters. Setting these parameters in the optimal
manner may be a tedious task and discourage the application of these models, or even
induce performances which do not reflect their potentialities.

In this paper, we firstly aim to contribute to the investigation of the real advantages
and disadvantages of 1D vs. 3D slope stability analysis at the catchment scale. Given
the limitation mentioned above, we propose to use optimization techniques to define the
numerical parameters of 3D slope stability models. In this context, we propose the use
of genetic algorithms, a technique known for its efficiency and stability in finding global
optimum solutions.

Specifically, we investigate the performance of two different models from the pub-
lished literature, namely: TRIGRS (transient rainfall infiltration and grid-based regional
slope-stability) [24,45], and the above mentioned SCOOPS 3D [44]. This methodology is ap-
plied on a river basin in the Oltrepò Pavese area (northern Italy), where several landslides
were triggered after an extreme rainfall event (160 mm in 48 h) on 27–28 April 2009.

The last version of TRIGRS, i.e., v.2.1, provides as output a dedicated 3D format of
pore water pressures suitable for the slope stability analysis in SCOOPS 3D [24]. Besides,
TRIGRS also performs a 1D stability analysis, based on infinite slope assumption, which can
be compared to the results of the 3D analysis through SCOOPS 3D. In our work, TRIGRS is
used for the hydrological analysis. Then, the resulting pore pressure field is used first as
input to the infinite slope stability model embedded into TRIGRS model itself, and then as
input to SCOOPS 3D for the geomechanical analysis. Though the present is not the first
application of SCOOPS 3D methodology to a real case study [46,47], here it is applied to a
case study where a detailed knowledge of the occurred landslide geometries is available,
due to a post-event processing of aerial images. The use of the multi-objective optimization
and the availability of detailed spatial information on observed landslides enable a more
in-depth assessment of the concerned models as compared to the two above-cited studies.

The paper is organized as follows. First the proposed methodology is presented in the
“Materials and Methods” section, focusing on the models adopted in the models (TRIGRS,
version 2.1 [24]; SCOOPS 3D, version 1.1 [44]) and on the genetic algorithm NSGAII (Non-
dominated Sorting Genetic Algorithm II) used in the optimization of SCOOPS 3D. Then the
“study area” section describes the relevant features of the study area. Next, a comparison
of the performance of the 1D and 3D approaches is presented in “Results and Discussion”
section. Finally, conclusions are drawn in the last section.
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2. Materials and Methods

The methodology adopted in this work aims to compare the performance of a 3D
model vs. a 1D model in the prediction of landslide areas as a result of an intense rainfall
event. This comparison requires a hydrological analysis to be performed as a preliminary
step. In this work, this is done through the hydrological module of TRIGRS program,
which uses a linearization of the 1D vertical infiltration Richards equation (see Section 2.1).
Taking as input the pressure head fields of the hydrological analysis, the geomechanical
analysis is performed using the infinite slope model implemented within TRIGRS (see
Section 2.2) and the SCOOPS 3D model (see Section 2.3). While using the software SCOOPS
3D, a novel parameterization method based on the use of multi-objective optimization is
proposed (see Section 2.3.1) in order to improve its prediction capability.

To test the performance of TRIGRS and SCOOPS 3D in terms of landslide prediction
against observations in a real case study using the inventory of the occurred landslides
geometries, the ROC analysis (receiver operating characteristic) [48] is used. ROC curves
show the full picture of the relationship between true-positive rate and false-positive
rate across all possible threshold values [49], namely, in this case, the link between the
probability to obtain a true-positive result in the class of the observed landslides and the
probability to obtain a false-positive result in the class of not occurred landslides [50].

In more detail the performance of the models can be assessed through indices based
on the confusion matrix or the receiver-operating characteristics (ROCs), that is, in terms of
the count of true positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN) (e.g., [51]) (Table 1) in each cell of the domain.

Table 1. Confusion matrix for receiver-operating characteristics (ROC) analysis.

Observed Landslide

Landslide (P) No Landslide (N)

Predicted Landslide
Landslide: FS < 1 TP FP

No landslide: FS ≥ 1 FN TN

As a function of the variables reported in Table 1, the three reference standard ROC
indices—namely, true positive rate, false positive rate and true skill statistic—are listed
below (Equations (1)–(3)):

TPR =
TP

(TP + FN)
(1)

FPR =
FP

(TN + FP)
(2)

TSS =
TP

TP + FN
− FP

TN + FP
(3)

The highest performances correspond to FPR = 0 and TPR = 1, when, relatively to a
given rainfall event, all observed landslide cells are equal to all unstable cells predicted
by the model, i.e., model produces no false or missing predictions. A description of the
methodology is presented in Figure 1. Additional remarks concerning the simulation
framework are reported in Section 2.4.

2.1. Pressure Head Computation by TRIGRS Model (The Transient Rainfall Infiltration and
Grid-Based Regional Slope-Stability Model—V.2.1)

TRIGRS (transient rainfall infiltration and grid-based regional slope-stability model) is
a research computational model developed by U. S. Geological Survey (USGS) to describe
the timing and distribution of rainfall-induced shallow landslides [52].

This is an event-based spatially-distributed model to assess the pore water pressures
on a cell-by-cell basis and to outline variations in factor of safety (FS) resulting from extreme
rainfall events that have durations ranging from hours to few days. Different outputs of
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the model can be displayed in a geographical information system (GIS) [52] and can be
saved at multiple times during the simulation.

Figure 1. Description of the methodology.

The software is founded on analytical solutions for Richards’ one-dimensional (1D)
partial differential equation representing the vertical subsurface flow in vertically isotropic
and homogeneous material.

Version 1.0 of TRIGRS [45] was based on the hydrological model of Iverson [53] for a
finite basal boundary bedrock depth by Savage et al. [54] whereas the version 2.0 and the
version 2.1, which is used here, are based on less restrictive hypotheses than the previous
version, i.e., an analytical solution to the Richards’ vertical infiltration equation with a
Gardner [55] retention curve. A scheme for a simulated hillslope cell is shown in Figure 2,
representing the soil profile as a system consisting of two layers with a saturated zone
beneath the water table that is overlain by a capillary fringe in addition to an unsaturated
zone extending to the ground surface [52].

Figure 2. One-cell sketch for the transient rainfall infiltration and grid-based regional slope-stability
model (TRIGRS) model [52].
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For the simulation of the vertically rainfall infiltration at the ground surface through
the unsaturated zone, the one-dimensional Richards equation is applied as follow:

∂θ

∂t
=

∂

∂Z

[
K(ψ)

(
1

cos2 δ

∂ψ

∂Z
− 1
)]

(4)

where Z is the vertical downward coordinate, t is the time, θ(Z, t) is the soil water con-
tent, ψ(Z, t) is the pore pressure, K(ψ) is the hydraulic conductivity and ∂ is the ground
slope surface. According to Srivastava and Yeh [56], Equation (1) can be linearized using
the exponential soil water retention curve proposed by Gardner [55] described by the
following equations:

K(ψ) = Kseα(ψ−ψ0) (5)

θ = θr + (θs − θr)eα(ψ−ψ0) (6)

where Ks is the saturated hydraulic conductivity, α is the inverse height of the capillary
rise, −ψ0 = 1

α is the vertical height of the capillary fringe above the water table, θr and θs
are the residual and saturated water contents, respectively.

Using Equation (5) and the computation of K(Z, t) based on a generalized form of
the solution of Srivastava ad Yeh [56], the pressure head in the unsaturated zone ψ(Z, t)
is obtained:

ψ(Z, t) =
cosδ

α1
ln
[

K(Z, t)
Ks

]
+ ψ0 (7)

where δ is the ground surface slope and α1 = αcos2δ.

Infiltration, Runoff and Flow Routing

The infiltration at each cell of the domain, I, is evaluated as the sum of the precipitation
rate P plus the runoff rate from the upslope cells, Ru, as long as the infiltration does not
exceed the hydraulic conductivity Ks:

I = P + Ru i f P + Ru ≤ Ks (8)

I = Ks i f P + Ru ≥ Ks (9)

When the precipitation and the supplied runoff from adjacent cells exceed infiltra-
bility, runoff Rd appears and is diverted flowing down to adjacent downslope cells. The
distribution among the downslope cells is computed as follows:

Rd = P + Ru − Ks se P + Ru − Ks ≥ 0 (10)

Rd = 0 se P + Ru − Ks < 0 (11)

Further details on the TRIGRS governing equations have been reported by [24,52].

2.2. Slope Stability Analysis by TRIGRS Model (The Transient Rainfall Infiltration and
Grid-Based Regional Slope-Stability Model—V.2.1)

Following Iverson (2000), the slope stability analysis in TRIGRS is assessed under
the infinite slope assumption, assuming failure plans parallel to the ground surface [57].
The factor of safety FS is computed on cell-by-cell basis for an arbitrary depth Z with the
following formula:

S(Z, t) =
tanϕ′

tanδ
+

c′ − ψ(Z, t)γwtanϕ′

γSZsinδcosδ
(12)

where ϕ′ is the soil friction angle for effective stress; c′ is the soil cohesion for effective stress;
γs and γw are the soil unit weight and the unit weight of groundwater, respectively; ψ(Z, t)
is the pressure head as a function of time t and of depth Z; δ is the slope angle. Therefore,
pressure head affects slope stability and, as shown by Equation (12), an increase in pres-
sures provides a decrease in the safety factor FS. In accordance with most of the studies,
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FS = 1 is assumed as limiting equilibrium stadium for landslides triggering [19,21,28,53,58],
therefore the failure is predicted when FS < 1 and stability holds where FS ≥ 1.

It should be pointed out that TRIGRS, as it works on cell-by-cell basis, needs GIS
software for preparing the necessary input gridded data in ASCII format. This allows
investigating several scenarios by varying the geotechnical and hydraulic parameters
which could be assumed homogeneous in the whole study area or not.

2.3. Slope Stability Analysis by SCOOPS 3D Model (Software to Analyze Three-Dimensional
Slope Stability throughout a Digital Landscape)

SCOOPS 3D is a research computational model developed by U. S. Geological Survey
(USGS) [44] which uses a three-dimensional method of columns approach for analyzing
slope stability throughout a digital landscape (digital elevation model, DEM). This model
utilizes a considerable number of spheres to cut the terrain in order to generate several
intersections, corresponding to various potential slip surfaces (Figure 3). For each potential
slip surface, SCOOPS 3D applies the 3D limit equilibrium method (LEMs) to assess the
slope stability. The use of spatially distributed spheres (Figure 3) as predefined potential
slip surfaces allows considering the three-dimensional characteristics of topography. These
spatially distributed spheres can be user-defined by a series of model parameters.

Figure 3. Diagram showing a 3D search lattice above a digital elevation model (DEM). Each dot
represents the center of multiple spherical trial surfaces [44].

SCOOPS 3D inspects the DEM for potential failure based on well-defined size criteria
and a user-defined search grid assuming several soil layers with different properties and
several groundwater inputs (dry, piezometric surface, pore-pressure ratio etc.). For a
given trial surface, the three-dimensional factor of safety, FS3D, is computed using two
limit equilibrium methods: the Fellenius ordinary method [59] and Bishop’s simplified
method [60]. Being cell-by-cell computation method, each cell within the domain is
analyzed by different trial surfaces until the lowest value of FS3D is found. This means
that, for each intersection, the FS3D is uniformly distributed along the trial surface and
the final slip surface for an individual landslide consists of many portions of spheres
which represent the minimum stability for every cell. At the end of the research procedure,
SCOOPS 3D generates a new terrain map with all the materials above the potential slip
surface removed. Although the slope stability is related to the hillside deformations, only
the balance of the involved forces is analyzed considering a rigid mass potentially sliding
regardless of deformations and displacements. In general, all limit-equilibrium methods
define the factor of safety as the ratio of the average shear resistance (strength), s, to the
shear stress τ, required to maintain limit equilibrium along a predefined trial surface:

Fs3D =
s
τ

(13)

As usual, in Equation (13), the slope is considered unstable when Fs3D < 1.
Bishop’s simplified method [60] is the most conventional and diffused one since it

provides reliable FS3D results that are close to more recent and rigorous LEMs [44,61–63].
It is based on the assumption according to which all forces acting on vertical faces of
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each column can be neglected in the equilibrium equations. In SCOOPS 3D, the same
assumption is made for columns according to the method proposed by Hungr [62] and
the shear resistance, τ, acting on a pontential slip surface in defined by Coulomb-Terzaghi
law [64]

τ = c′ + (σn − u)tanϕ′ (14)

where c′ is the soil cohesion, ϕ′ is the angle of internal friction, σn is the total normal stress
acting on the failure surface and u is the pore water pressure acting on the shear surface.
Therefore, the three-dimensional factor of safety is computed summing, for all columns
within the potential failure surface, the FS3D with the following formula:

FS3D =
∑ Ri,j

[
ci,j Ahi,j

+
(

Wi,j − ui,j Ahi,j

)
tanϕi,j

]
/mαi,j

∑ Wi,j
(

Ri,jsinαi,j + keqei,j
) (15)

where, for the i,j column in a potential failure mass, Ahi,j
is the horizontal area of the trial

slip surface, Ri,j is the distance from the axis of rotation to the center of trial slip area, Wi,j
is the weight, ui,j is the pore-water pressure, ci,j is the cohesion of the trial slip surface and
finally ϕi,j is the angle of internal friction on trial slip surface; mαi,j is a term for part of the
computation of normal force acting on the trial slip surface of the i,j column in a potential
failure mass, used in Bishop’s simplified method of analysis; keq and ei,j are terms related
to the option to simulate earthquake or seismic loading effects (equal to 0 in this study).

More details and a complete description of the SCOOPS 3D model are reported by
Reid et al. [44].

2.3.1. SCOOPS 3D Search Grid Configuration and Optimization by NSGAII
Genetic Algorithm

As explained in the previous section, SCOOPS 3D model utilizes a considerable
number of spatially distributed spheres (defined by model parameters) to generate a
number of trial surfaces. The set-up of the search grid is a crucial step in order to optimize
the computational speed and to ensure high performance of the model, thus it needs to be
systematically and efficiently configured. The following parameters require to be set for
the SCOOPS 3D simulations:

The radius increments ∆r used to explore trial surfaces. The value of ∆r is used
to increase the radius of the spheres that create a series of trial surfaces ranging in size
between the user specified minimum and maximum area of the potential slip surfaces.
When the potential failure mass exceeds the maximum area or intersect a DEM boundary,
the generation of the spheres with radius increment ∆r is stopped.

The minimum and the maximum elevation, zs,min and zs,max, of the search-lattice
nodes with respect to the DEM elevation. The elevation of the first search-lattice node is
calculated as the sum of zs,min and a multiple of zsrchres (a user defined parameter usually
equal to the DEM resolution). This is so that, the lattice node being used is always above
the DEM.

The minimum and the maximum horizontal surface area limits, amin and amax, for
potential failure masses. The area of a potential failure mass must fall in this range for a
trial surface to be considered valid.

At the moment, no well-established procedures exist in the scientific literature for the
parameterization of SCOOPS 3D. As an example, Tran et al. [46] analyzed several ranges of
the concerned parameters until no change was found on the predicted Fs3D map. Here, the
search for the optimal parameters was thus carried out by using a multi-objective approach,
namely the NSGAII multi-objective genetic algorithm [65].

Genetic algorithms are a heuristic search and optimization method inspired by nat-
ural evolution. The basic concept is that evolution will find an optimal solution for the
analyzed problem after a number of successive generations, similar to natural evolution.
Any genetic algorithm includes the following elements: the chromosome encoding (string
representations of the decisional variables in each solution), the fitness function (computa-
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tion evaluating the quality of the chromosome as a solution), selection (designed to use
fitness to guide the evolution of chromosomes), recombination (recombination of selected
chromosomes through crossover and mutation processes to form members of the offspring
population) and the evolution scheme (iteration of the scheme until the stopping criteria
are reached) [66]. Due to its random nature, the genetic algorithm improves the chances of
finding a global solution and proves to be very efficient and stable in searching for global
optimum solutions [67].

The NSGAII [65] is the second generation evolutionary multi-objective optimization
genetic algorithm that improves the previous NSGA thanks to its novel features, namely:
a more efficient non-domination sorting algorithm, no sharing parameter (i.e., the niche
radius), and an implicitly elitist selection method that greatly aids in solving high order
problems (i.e., problems with more than two objectives) [68]. NSGAII is one of the most
popular multi-objective optimization algorithms and, unlike the single objective optimiza-
tion approach, it simultaneously optimizes various objective functions [69]. In NSGAII, a
population of individuals featuring a number of genes equal to the number of decisional
variables is considered. Like for the evolution of living organisms, the population of
individuals evolves through processes of mutation and crossover, until they converge, in
a certain number of generations, to the set of final solutions. This set will take the shape
of a Pareto front or Pareto band, in the case of two or more than two objective functions.
The diversity inside the Pareto front is ensured by means of the crowding distance, a
parameter that encourages the spacing between the solutions in the front. NSGAII is an
elitist algorithm, in that it prevents an undominated solution to be deleted from the front.
Inside the Pareto front, indeed, no solution is better than any others, since all solutions are
in the optimal trade-off between the two objective functions.

Thanks to the abovementioned features, the NSGAII genetic algorithm turns to be a
suitable tool in order to thoroughly find the optimal search input parameters responsible
for the failure surfaces search for SCOOPS 3D.

In more detail, the two objective functions considered for the present optimization
problem are the true positive rate (TPR, Equation (1)), and the false positive rate (FPR,
Equation (2)), to be maximized and minimized, respectively. The aforementioned SCOOPS
3D parameters ∆r, zs,min, zs,max, amin and amax represent, on the other hand, the decision
variables ranging between the minimum and the maximum constraints defined by the user.

Inside the Pareto front, the choice of the ultimate solution can be made using several
criteria. As an example, the set of parameters that yields the expected performance in
terms of one of the two objectives (either FPR or TPR) can be chosen. Otherwise, the set of
parameters that yields the Pareto front solution closest to the theoretical performance of
the best possible model (FPR = 0 and TPR = 1) can be chosen. Finally, another criterion lies
in selecting the solution farthest up from the bisector line which corresponds to a totally
random prediction in a ROC plane.

In view of these consideration, a Matlab code was designed in order to implement the
NSGAII optimization and to call and run SCOOPS 3D in a single routine. This avoided
launching manually the model multiple times, with evident savings in terms of simula-
tion time.

2.4. Simulation Framework

The methodology described in the previous sections (Figure 1) can be applied as
follows for a generic case study, i.e., a certain catchment in which landslides occur during
an intense rain event. In a preliminary step aimed at constructing the input of the slope
stability analysis, on the one hand, the hydrological properties of the soil are evaluated
together with the recorded rainfall data. On the other hand, the geomechanical soil
properties are evaluated and the terrain morphological analysis is performed. Then, once
the pore pressure field is computed through the TRIGRS model, the soil stability analysis is
performed based on the following simulations:

Simulation I: 1D slope stability analysis using the TRIGRS model.
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Simulation II: 3D slope stability analysis using the SCOOPS 3D model.
As for the first simulation, TRIGRS requires several hydrological soil properties

(total unit weight of water γw, saturated hydraulic conductivity Ks, saturated hydraulic
diffusivity D0) and the soil water characteristic curve for wetting of the unsaturated
soil (Gardner’s parameter [49] α, saturated volumetric water content θs, and residual
volumetric water content θr). All the parameters of TRIGRS can be derived from in-situ
measurements of the soil in the analyzed case study. In more detail, field surveys together
with laboratory test results have enabled to derive the hydrogeological properties needed
for the abovementioned simulations. The geotechnical characterization was based on
standard soil analyses carried out according to the ASTM (American Society for Testing
and Materials) standards. The performed tests included an assessment of the physical
parameters of the materials and triaxial tests which allowed the determination of the
shear strength parameters. The hydrological properties in the study area, instead, were
determined through a laboratory reconstruction of the soil water characteristic curve
(SWCC) and the hydraulic conductivity function (HCF). These functions were reconstructed
using undisturbed soil samples.

As for the second simulation, instead, in addition to the geotechnical and hydraulic
properties, the hydrological data obtained from the TRIGRS model and the configuration of
the search grid as a result of the optimization procedure through NSGAII genetic algorithm
are required.

2.5. Study Area

The study area is located in the Oltrepò Pavese, Lombardy region, northern Italy
(Figure 4).

Figure 4. (a–d) Examples of landslide in the study area [70]; (e) catchment within Oltrepò Pavese region.

A catchment was selected with a surface area of about 2 km2 where many shallow-
seated landslides occurred due to rainfall on 27–28 April 2009 (Figure 5a). Based on aerial
photographs taken immediately after the event and subsequent field surveys, the shapes of
the observed landslides were individuated and inventoried. Observed landslides featured
very variable size, ranging from about 15 m2 to 6300 m2 with an average value of 500 m2.
The distribution of terrain slope of the catchment is also shown in Figure 5b.

One crucial step in the application of the TRIGRS model is the definition of the initial
conditions, mainly the finite depth of the basal boundary (that is the covering soil above of
the impermeable bedrock) and the depth of the water table, both referred to the ground
surface. To this end, generally steady state initial conditions are assumed. Here, it was
assumed that the water table had un upper limit located approximately 0.1 m above the
bedrock, accordingly to the in situ measurements collected by a monitoring station installed
in the study area after the event taken as reference [71]. In more detail, some probes were
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installed in the soil at different depth to measure some of the main hydrological features
such as the soil water content and the soil water pressure.

Figure 5. (a) Catchment topography with observed landslides triggered after the extreme rainfall on
27–28 April 2009 and location of soil thickness sampling points. Maximum and minimum areas (amin,
amax) considered as lower and upper limits in the optimization process of the slip-surface search
parameters for SCCOPS 3D are also represented; (b) catchment slope.

The thickness of the basal boundary, instead, can vary as a function of many different
and interplaying factors, such as the underlying lithology, the slope gradient, the hillslope
curvature, the upslope contributing area, and other factors [72]. Since many applications
require the availability of soil thickness measures on a dense scale, several methods for
estimating the spatial patterns of soil thickness have been proposed in the scientific litera-
ture [72–75]. In this application, the empirical method proposed by Saulnier [76] has been
adopted according to which the effective soil depth is defined as a function of the slope
angle within the catchment [46,77]:

yi = ymax

[
1− tan(xi)− tan(xmin)

tan(xmax)− tan(xmin)

(
1−

ymin
ymax

)]
(16)

where ymin and ymax are, respectively, the minimum and the maximum values of effective
soil depth, and xi is the slope angle at point i. The minimum and the maximum values of
soil thickness were derived from field data collected after the event investigated in this
study [78] (Table 2).

Table 2. Geotechnical and hydraulic properties for the study area [71,78].

γs ϕ′ c′ θs θr αG KS D0 ymax ymin

[kN·m−3] [◦] [kPa] [-] [-] [kPa−1] [m·s−1] [m·s−1] [m] [m]

18 26 3.8 0.46 0.08 0.014 1.4·10−5 2.8·10−4 2.4 0.5

The location of the measuring points concerning the soil thickness used for the com-
putation of the distribution of the soil depth within the study area is also reported in
Figure 5a and the correlation between measured soil thickness points and the estimated
ones is shown in Figure 6.
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Figure 6. Measured vs. estimated soil thickness points.

During the mentioned landslide event dates, the Cigognola rain-gauge station recorded
160 mm of rain in 48 h (20% of the annual average amount), with a peak intensity of
22 mm/h at 09:00 p.m. on 27 April. After this maximum intensity was reached, many
shallow landslides were triggered, causing one fatality, several damages to agriculture, and
road blockages [78].

The geotechnical and hydraulic properties in the study area are summarized in Table 2.
For a more detailed description of the geological features of the study area, please refer to
Bordoni et al. [71].

Lastly, Table 3 summarizes the minimum and maximum constraints concerning the
decision variables used in the optimization process of the slip-surfaces search parameters
for SCOOPS 3D. These values were set based on some practical considerations available in
SCOOPS 3D reference book [44].

Table 3. Decision variables constraints used in the optimization process of the slip-surfaces search
parameters for SCOOPS 3D.

zs,min zs,max amin amax ∆r, increment

[m] [m] [m2] [m2] [m]

Lower limit 100 300 500 6300 0.25
Upper limit 200 600 2500 25,000 25

The results of the slope stability analysis in Simulations I and II were considered at
the time step of the maximum rainfall intensity, namely, 9 p.m. on 27 April 2009, when the
most devastating landslides were triggered [70].

3. Results and Discussion

Figure 7 shows the spatially-averaged max pressure head (Panel (b)) and the amount
of potential unstable cells (Panel (c)) within the study catchment during the rainfall event
(Panel (a)) as a result of the 1D slope stability analysis (simulations by TRIGRS software v.
2.1). It can be noted that the number of cells corresponding to a factor of safety (FS1D) < 1
increases with total rainfall.

Figure 8 shows, in terms of FPR and TPR, the results of the comparison between 1D
and 3D slope stability analysis as output of the two main simulations carried out. As
expected, the output of TRIGRS is made up of a single pair of values FPR and TPR. The
output of SCOOPS 3D is, instead, made up of a Pareto front of optimal solutions in the
trade-off between FPR and TPR.
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Figure 7. (a) Hourly rainfall series used in input for simulations; (b) simulated catchment-averaged
pressure head series; (c) simulated potential unstable cells for the event of 27–28 April 2009 (1D
analysis using TRIGRS v. 2.1).

Figure 8. Comparison of the results of TRIGRS and SCOOPS 3D in the false positive rate (FPR)–true
positive rate (TPR) space. Selection of the ultimate solution of SCOOPS 3D.

The figure shows that, in general, the 3D approach gives better results than the 1D
method in terms of model performance, demonstrating that the 3D approach is able to
better describe the landslide triggering mechanisms through the assumption of more
realistic slip surface geometries. Although the point in the ROC plane corresponding
to 1D analysis is higher than the line of no discrimination (random prediction), it lies
significantly below the points corresponding to all 3D simulations, i.e., independently from
the choice of the slip-surface searching parameters. The Pareto front representative of the
Simulation II features TPR values ranging between 0.54 and 0.87 and FPR values ranging



Water 2021, 13, 801 13 of 18

between 0.28 and 0.53. In particular, if two extreme points are considered within the ROC
plane, namely (a) TPR = FPR = 0 (no unstable areas predicted by the model—most extreme
underestimation of landslide area) and (b) TPR = FP = 1 (no stable areas predicted by the
model—most extreme overestimation of landslide areas), as shown in Figure 8, the point
representing the performance of the TRIGRS model is closer to the extreme condition (a)
than SCOOPS 3D model to the condition (b). This means that, by using SCOOPS 3D, it is
more likely to exactly predict unstable areas than to obtain a false positive result in the
class of not occurred landslides.

The wide range of performance variation associated with the different values of the
slip-surface search parameters highlights the importance of their correct choice, and thus
of the optimization performed. Among the solutions in the Pareto front, the best can be
assumed as the one closest to the ideal performance point (FPR = 0, TPR = 1), which is
FPR = 0.39 and TPR = 0.76 (true skill statistic = TPR − FPR = 0.37).

The results described above in terms of FPR and TPR are reported in the following
Table 4 as well as the optimized value of the slip surfaces search parameters for SCOOPS
3D in correspondence with the ultimate solution of Simulation II.

Table 4. Ultimate values of the objective functions FPR and TPR in Simulations I and II and cor-
responding responses of the true skill statistic (TSS). Optimized values of the slip-surfaces search
parameters for SCOOPS 3D are also reported.

FPR TPR TSS zs,min zs,max amin amax ∆r, increment

[-] [-] [-] [m] [m] [m2] [m2] [m]

Simulation I 0.12 0.21 0.09 - - - - -
Simulation II 0.39 0.76 0.37 100 300.5 596 16,074 21

The results of the analysis conducted in terms of factor of safety FS are shown in
Figure 9. In more detail, Figure 9a,b present the spatial distribution of the factor of safety
as a result of both simulations carried out. According to Equations (12) and (13), the
potentially unstable cells are defined by a FS < 1, namely the dark red cells of the maps. As
expected, the 1D slope stability analysis, i.e., Simulation I, yield a more disconnected field
of the FS, if compared to the FS3D distribution, i.e., Simulation II. This reflects the fact that,
for the infinite slope assumption, the possible failure of each cell within the study area is
independent of the other ones, neglecting connectivity of the real failures.

For a more objective comparison between the two maps, the conditional distributions
of the factor safety, respect to observed landslide and stable areas have been computed,
and represented as cumulative empirical frequency plots in Figure 9c. As can be seen,
the 3D model is able to better distinguish stable from unstable conditions, with a general
higher cumulative frequency and factor of safety values ranking from 0.5 to 1.2 in the case
of the observed landslides and until 2.5 in the case of no landslide occurrence. Relative to
the 1D model, instead, lower cumulative frequencies are accompanied by a missing clear
discrimination in terms of factor of safety between the areas interested by the observed
landslides and the remaining part of the study area, as depicted by the dashed lines in
Figure 9c.

Furthermore, in order to evaluate the performance of the landslide models adopted
in this paper, the landslide ratio of each predicted FS class was used, namely the LRclass
index [79]. LRclass index is defined as the ratio of the percentage of contained slope failure
locations in each FS class to the predicted percentage of area in each class of FS category. A
larger value of %LRclass corresponds to a lower over-prediction by the model [79].

Table 5 shows the results obtained concerning the LRclass analysis to allow an ad-
ditional comparison with Tran et al. [46]. The unstable areas predicted are 37.5% by the
3D method and 12.8% by the 1D method. The %LRclass = 82 of the 3D approach is pretty
higher than %LRclass = 64.5 of the 1D method.
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Figure 9. (a) Factor of safety spatial distribution as a result of 1D slope stability analysis (Simulation
I); (b) factor of safety spatial distribution as a result of 3D slope stability analysis (Simulation II);
(c) cumulative frequency of the factor of safety resulting by both 1D and 3D models.

Table 5. Comparison of LRclass index obtained with the 3D and 1D approaches, both calculated at
9 p.m. on 27 April 2009.

FS
Class

Observed
Sites (a)

Observed
Sites (%) (c)

Predicted
Area (%) (d)

LRclass (e) =
(c)/(d)

%LRclass
(e)/(f)

3D 1D 3D 1D 3D 1D 3D 1D 3D 1D

FS < 1 2365 676 73.4 21 37.5 12.8 1.9 1.6 82 64.5
FS ≥ 1 857 2546 26.6 79 62.5 87.2 0.4 0.9 18 35.5
Sum 3222 3222 100 100 100 100 2.3 (f) 2.5 (f) 100 100

Overall, these results show that there is a large uncertainty in landslide prediction.
In this regard, it is worthwhile to compare the performance we obtained with similar
studies in the literature. In particular, relatively to the 1D model, Baum et al. [80] showed
performance of the TRIGRS model for a study area north of Seattle, Washington in terms of
ROC statistics, reporting a FPR = 0.08 and a TPR = 0.35 which are better than in our case
(FPR = 0.12 and TPR = 0.21), likely for the availability of more detailed geological data
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than in our case. If we compare our results with those of Tran et al. [46], in terms of the
%LRclass index for FS < 1, again we find better performances for the 1D model (85.6% vs.
64.5% in our case), while for the 3D model we obtain only slightly worse performances
(87.4% vs. 82%). From another standpoint, this comparison, reveals a greater gain in
performance when passing from the 1D to the 3D model. When comparing our results to
those of He et al. [47], again in terms of the %LRclass index for FS < 1, the results for the
1D model are closer (71.28% vs. our 64.5%), while we obtain slightly better performances
for the 3D model (82% in our case, vs. 80.16%). The greater gain in performances from 1D
to the 3D that we obtain demonstrates the success of the optimization process we propose.

4. Conclusions

This work presented the comparison of 1D (TRIGRS) and 3D (SCOOPS 3D) slope sta-
bility models combined with the hydrological analysis performed with the former software.
The applications concerned the simulation of the landslides triggered by an intense rain
event, with 160 mm in 48 h, in the Oltrepò Pavese in the year 2009. Compared to other case
studies in the scientific literature, this paper is the first, to the best of our knowledge, where
SCOOPS 3D is tested against a detailed inventory of observed landslides with accurately
measured shapes. This resulted in a more accurate evaluation of the modelling performance
and in the opportunity to set up a more reliable model parameterization, obtained through
the application of multi-objective optimization in the trade-off between true positive rate
(TPR) and false positive rate (FPR), to be maximized and minimized respectively.

Overall, the analysis of the results has pointed out that SCOOPS 3D can enable better
prediction of landslide prone areas, leading to TSS values up to 0.37, in comparison with
a value of 0.09 for the 1D model TRIGRS. In comparison to other studies, we find the
1D model performs worse than in other studies, likely for the availability of less detailed
geological data. On the other hand, for the 3D model we find even better results than the
two other studies present to date in the scientific literature. This is to be attributed to the
optimization process we proposed, which allows to have a greater gain of performance
passing from the 1D to the 3D simulation, in comparison to the above-mentioned studies,
where no optimization has been applied. Thus, our study contributes to improving the
performances of landslide models, which still remain subject to many uncertainty factors.
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