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Abstract: This study evaluates General Circulation Models (GCMs) participating in the Coupled
Model Intercomparison Project Phase 6 (CMIP6) for their ability in simulating historical means and
extremes of daily precipitation (P), and daily maximum (Tmax), and minimum temperature (Tmin).
Models are evaluated against hybrid observations at 2255 sub-basins across Alberta, Canada using
established statistical metrics for the 1983–2014 period. Three extreme indices including consecutive
wet days (CWD), summer days (SD), and warm nights (WN) are defined based on the peak over the
threshold approach and characterized by duration and frequency. The tail behaviour of extremes is
evaluated using the Generalized Pareto Distribution. Regional evaluations are also conducted for four
climate sub-regions across the study area. For both mean annual precipitation and mean annual daily
temperature, most GCMs more accurately reproduce the observations in northern Alberta and follow
a gradient toward the south having the poorest representation in the western mountainous area.
Model simulations show statistically better performance in reproducing mean annual daily Tmax
than Tmin, and in reproducing annual mean duration compared to the frequency of extreme indices
across the province. The Kernel density curves of duration and frequency as simulated by GCMs
show closer agreement to that of observations in the case of CWD. However, it is slightly (completely)
overestimated (underestimated) by GCMs for warm nights (summer days). The tail behaviour of
extremes indicates that GCMs may not incorporate some local processes such as the convective
parameterization scheme in the simulation of daily precipitation. Model performances in each of the
four sub-regions are quite similar to their performances at the provincial scale. Bias-corrected and
downscaled GCM simulations using a hybrid approach show that the downscaled GCM simulations
better represent the means and extremes of P characteristics compared to Tmax and Tmin. There is
no clear indication of an improved tail behaviour of GPD based on downscaled simulations.

Keywords: climate extremes; hybrid downscaling; tail behaviour; peaks over threshold; CMIP6

1. Introduction

Simulations from the state-of-the-art General Circulation Models (GCMs) are becom-
ing available for analysis and being included in the 6th assessment report (AR6) of the
Intergovernmental Panel on Climate Change (IPCC) through the Coupled Model Inter-
comparison Project Phase 6 (CMIP6) [1]. One of the major differences between CMIP5 [2]
and CMIP6 is the set of future scenarios used to project climate evolution. The CMIP6
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implemented scenarios are based on socioeconomic trajectories (i.e., shared socioeconomic
pathways or SSP) [3], which work in harmony with the Representative Concentration
Pathways (RCP) [4] from CMIP5. The development of the CMIP6 phase is to overcome and
improve the limitations identified in CMIP5, namely as identifying (and interpreting) sys-
tematic errors in simulations, improving the estimation of radiative forcings, identifying the
response of climate to aerosol forcing, and improving the representation of impacts of land
use changes on climate [1,5]. Multiple business-as-usual scenarios are available in CMIP6,
and simulations from climate models are focused on biases, processes, and feedbacks. More
reliable climate projections motivates the research community to address climate change
impacts on various processes involved in terrestrial and aquatic environments at numerous
geospatial scales. Therefore, evaluating the performance of CMIP6 models in reproducing
the historical mean and extreme climate characteristics at a local scale is crucial and is an
integral part of the confidence-building exercise for climate change projections.

Climate varies across different geospatial regions due to the uneven distribution
of radiative heating, the individual responses of the earth and environmental systems
(e.g., atmosphere, ocean, and land surface) as well as their interactions, and the physical
characteristics of the regions [6]. Furthermore, the response of these systems to climate
forcings is partly governed by feedback processes that are continuously variable across
regions. Therefore, the amplitude of climate change is varied from one region to another.
For example, annual mean precipitation has decreased in much of the West, Southwest,
and Southeast of the United States and increased in most of the Northern and Southern
Plains, Midwest, and Northeast areas from 1986–2015 relative to 1901–1960 [7]. In Canada,
the annual mean precipitation has increased with larger relative increases over northern
Canada (region of 60º north latitude) during the 1948–2012 period [8]. One of the earliest
and consistent global warming theories suggests that regions in high latitudes would
experience greater temperature increases than their lower latitude counterparts [9]. In fact,
the annual average temperature has increased by 0.7 ◦C over the contiguous United States,
i.e., low to mid-latitudes, during the 1986–2016 period relative to 1901–1960 [10], while in
Canada (high latitudes), the annual average temperature has increased by 1.7 ◦C at the
country scale and 2.3 ◦C in northern Canada between 1948 and 2016 [8]. Furthermore,
topography plays a vital role in the formation and changes in precipitation and temperature
patterns and their distribution. Higher uncertainties in reproducing extreme climate
appeared in regions with rapid topographical change [11]. Therefore, testing the ability of
climate models to reproduce the historical climate over a range of geospatial domains is
important and will benefit the users of climate model output in aspects such as hydrological
modelling and natural hazard risk assessment.

The impacts of climate extremes on humans and natural ecosystems are profound
at the current moderate warming level [12], and they are often the most significant and
costliest impacts on these ecosystems [13–15]. Extreme precipitation events can generate
devastating floods with severe risks on human lives, properties, and critical infrastruc-
ture [16–18]. Similarly, extremely high temperatures can result in heat waves and catas-
trophic consequences that include deaths from hyperthermia [13,19], crop failures, and
reduced food security [20]. For example, an uncommon multi-day extreme precipitation
event combined with above-normal spring snowmelt in the Canadian Rockies and substan-
tial antecedent rainfall [21,22], resulted in the 2013 Calgary flood in Alberta, Canada—the
largest flood in the Canadian history. This flood resulted in four deaths, displaced tens of
thousands of people, and caused an estimated $6 billion in damage [23]. Further, drought
conditions that were experienced during eight consecutive seasons from September 2000
to August 2002 with below-normal precipitation, was one of the most severe droughts
on record in the Canadian Prairies [24,25]. During this drought, agricultural production
dropped by $3.6 billion in the year 2000–2001, and the gross domestic production declined
by $5.8 billion [26]. These observations signify the importance of estimating the proba-
bility of such extreme events accurately. The probability estimation depends on the tail
behaviour of the distribution that models extreme events [27,28]. For instance, a heavy
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tail implies a higher probability of more frequent extreme events [29,30]. Therefore, cor-
rect representation of the tail characteristics, as described by the shape parameter of the
extreme value distribution [31], avoids serious under- or overestimation of occurrence
probabilities of extreme events and ensures a proper assessment of future climate risks and
uncertainties [32]. Hence, analyzing the tail behaviour of historical climate extreme events
using CMIP6 data can provide important information and allows thorough investigation
of CMIP6 model capabilities in projection of climate change and their impacts.

A wide range of research has been conducted using the extreme indices of temperature
and precipitation developed by the Expert Team on Climate Change Detection and Indices
(ETCCDI). Karl et al. [33] and Frich et al. [34] provided a comprehensive overview of
ETCCDI developed temperature and precipitation extreme indices. Alexander et al. [34]
and Donat et al. [35] also supported this effort by developing a gridded dataset of climate
indices (e.g., HadEX and HadEX2) based on a reasonably dense global coverage. Most
of these climate indices describe relatively moderate climate extremes with reoccurrence
times of at least once a year [36]. However, the analysis of extreme climate events involves
several difficulties compared to the analysis of mean events, including valid definitions
and formulation of extremes [37,38]. This study focuses on climate extremes based on daily
temperature and precipitation, such as the duration and frequency of extreme wet and
hot days.

Given that CMIP6 climate projections have only recently been released, only limited
research has been conducted to evaluate their simulations in reproducing means and ex-
treme climate conditions [39–47]. These studies mainly compared the CMIP6 simulations
with CMIP5 and found that CMIP6 medians are generally much closer to the observa-
tions [40]. They also found a general improvement in the simulation of climate extremes of
CMIP6 models, and there is some indication that CMIP6 has reduced some of the warm
biases [40,42]. They attributed the difference between the CMIP5 and CMIP6 simulated
precipitation and temperature-based results to the sophistication of CMIP6 models that
included representation of aerosol effects, new cloud fraction scheme, an improved snow-
albedo scheme, model resolution, and parameterization improvements [42,44]. While these
studies provide important information on the performance of CMIP6 models at global
scale, they lack a detailed investigation at a local scale, where most decisions are made and
actual impact assessments are performed.

The purpose of this paper is to evaluateCMIP6 models in reproducing local histori-
cal climate variables, such as means and extremes, over a large geographic region with
diverse geospatial, topographic, and climatic characteristics. The specific objectives are to
(1) evaluate how precisely the simulations of CMIP6 models reproduce the historical mean
daily precipitation and temperature, (2) evaluate how precisely the simulations of CMIP6
models reproduce the tail behaviour of their probability distributions, and (3) investigate
whether a correlation exists between the bias in tails and geospatial regions. We also
applied a hybrid bias correction and statistical downscaling technique to check whether the
performance of GCMs could be improved for the aforementioned objectives. To achieve
these objectives, we focused our analyses in the province of Alberta, Canada, which is char-
acterized by heterogeneous soil, land use, topographic, and climatic characteristics and has
also been exposed to historical extreme precipitation events and droughts. Our study lays
the foundation for future research based on CMIP6 data and enhance our understanding of
climate change impact assessments that explore the probability of climate-related threats.
Note that the presence of annual cycle or season-specific behaviour in the time series are
not considered for the evaluation purposes and are beyond the scope of the study.

2. Study Area and Data
2.1. Study Area

Alberta extends for ~1200 km from north to south (49◦ N–60◦ N) and ~660 km
(110◦ W–120◦ W) across the greatest width with an area spanning 661,000 km2. Elevation
ranges from 152 m in the northeast to 3747 m in the Rocky Mountains along the south-
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western border Figure 1. The province has more than one-third of its total area as
agricultural land in the south, with a landscape varying from glacial mountain lakes,
rolling foothills, and grassland in the south to vast boreal forests in the north [48]. It has
a highly variable climate with mean annual precipitation ranging from ~280 mm in the
south to ~1000 mm at the higher elevations of the Rocky Mountains with the provincial
average of ~500 mm [25]. Mean winter temperatures usually range from −25.1 ◦C to
−9.6 ◦C, while mean summer temperatures vary between 8.7 ◦C and 18.5 ◦C, with the
mean annual temperature ranging from 3.6 ◦C to 4.4 ◦C [48].
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in Canada and its topography.

In this study, we evaluated GCMs’ performances across four contiguous homogeneous
regions (R1, R2, R3, and R4) of Alberta. These selected regions were defined in [49] and were
developed using soft fuzzy clustering algorithms [50]. The regions were validated through
a statistical homogeneity test from Hosking Wallis [51] using daily precipitation and multi-
hour precipitation extremes data from Environment and Climate Change Canada [49].
Regions outside of the Alberta border include BC (British Columbia, west side) and SK
(Saskatchewan, east side) Figure 1.

2.2. Data

We acquired daily precipitation (P), daily minimum (Tmin), and daily maximum
temperature (Tmax) outputs from five GCMs (i.e., BCC-CSM2-MR, CNRM-CM6-1, EC-
Earth3, EC-Earth3-veg, and MRI-ESM2.0) Table 1 from the CMIP6 “historical” experiments.
The GCMs were selected based on the availability of daily outputs as of December 2019.
The historical experiment includes data from 1850–2014.
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A reliable observed climate dataset with high spatio-temporal coverage is key to
successfully evaluate any newly released climate datasets [52]. In this study, a unique
‘hybrid’ observational dataset was used as the comparison benchmark. It was produced
by Faramarzi et al. [53] who employed five climate data sources, including station-based
(https://climate.weather.gc.ca/; accessed on 28 June 2014) and gridded products (National
Centers for Environmental Prediction’s Climate Forecast System Reanalysis-CFSR, Climate
Research Unit Time Series-CRU TS2, CRU TS3.21, and Natural Resources Canada-NRCan)
to reproduce observed streamflow records of 130 hydrometric gauging stations across
Alberta, Canada. However, in their study, none of the individual datasets showed the
best performance as input to determine streamflow. Therefore, following a ‘combination
approach’, they came up with a ‘hybrid dataset’ that was used to force a hydrological
model from1983–2014 that resulted in a climate data set of 2255 sub-basins covering entire
Alberta (Figure 1). The hybrid climate dataset provides daily precipitation, minimum and
maximum temperature. The spatial variation of these climate variables was tested and
found to be similar to the Alberta Environment and Parks reported climate data [54]. These
data have been successfully incorporated in many applications, including flood frequency
analysis [16], crop yield simulations [55–57], surface and subsurface water interactions [58],
and storage changes in wetlands [59]. In this study we employed this hybrid climate
dataset (hereafter referred to as observations dataset) as an observed climate dataset for
the GCM evaluations.

Due to the different grid projections of the CMIP6 GCMs (Table 1, Figure 1) and to
be consistent with hybrid observation datasets at 2255 sub-basins, a reference grid with
a horizontal resolution of ~6km following Werner et al. [60] was used. This resulted in a
reference grid of 242 longitudes× 181 latitudes covering the entire province (48◦ N to 60◦ N
and 123◦ W to 107◦ W). All model simulated data were interpolated to this grid using thin-
plate spline interpolation algorithm [61] before performing any analysis. Thin-plate spline
is not scale-invariant because three covariates (latitude, longitude and a climate normal)
appear in a nonlinear way in the interpolation and it has been successfully applied to other
studies in the northwestern North America [62] and Canada [63]. Taking the centroid of
each sub-basin as the station location of the hybrid climate dataset, we applied the nearest
neighbor algorithm in the ArcGIS to locate the closest grid point of GCMs to the centroid of
sub-basin for the evaluation purposes.

Table 1. Description of CMIP6 GCMs selected for the study.

GCM Host Institute Resolution Variant References

BCC-CSM2-MR Beijing Climate Center, China
Meteorological Administration, China 250 km r1i1p1f1 [64]

CNRM-CM6-1 Centre National de Recherches
Météorologiques (CNRM), France 100 km r1i1p1f2 [65]

EC-Earth3
European Earth System Model

27 research institutes from
10 European countries

100 km r4i1p1f1 http://www.ec-earth.org/ *

EC-Earth3-veg
European Earth System Model

27 research institutes from
10 European countries

100 km r1i1p1f1 http://www.ec-earth.org/ *

MRI-ESM2.0 Meteorological Research Institute (MRI),
Japan 100 km r1i1p1f1 [66]

* Accessed on 15 November 2019.

3. Methods

A concise overview of the methods adopted for this study is illustrated in Figure 2,
while a detailed description of various components is provided below.

https://climate.weather.gc.ca/
http://www.ec-earth.org/
http://www.ec-earth.org/
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raw data.

3.1. Evaluation of Mean Climate Characteristics

Mean characteristics (i.e., mean annual precipitation and temperature) of daily climate
derived from GCM simulations are compared to corresponding observed characteristics
to assess performance errors. The metrics chosen to evaluate Tmax and Tmin were as
follows [67].

Slope of the Regression Line times the Coefficient of Determination (bR2)

bR2 =
{
|b|.R2 i f b ≤ 1; |b|−1R2 i f b > 1

}
(1)

where R2 is the coefficient of determination between the observed and simulated values,
and b is the slope of the regression line [53,68]. The range of R2 (0–1) describes how much
of the observed dispersion is explained by the model prediction and a model can have
good R2 value (close to 1) but still over or under prediction. Therefore, the gradient b
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provides additional information and is weighting the R2 values to reflect the model results
in a more comprehensive way [68].

Nash-Sutcliffe Efficiency (NSE)

NSE = 1− ∑N
i=1(Si −Oi)

2

∑N
i=1
(
Oi −O

)2 (2)

where Oi and Si are the ith observed and simulated variable, respectively. O is the mean of
observed data for the variable being estimated and N is the total number of observations.
NSE is a normalized statistic that determines the relative magnitude of the residual variance
(‘noise’) compared to the observed variance (‘information’) [69,70]. NSE values range from
−∞ to 1, with NSE = 1 being a match between observed and simulated variable. Any NSE
value greater or equal to zero indicates that the simulated value estimated the constituent
of concern better than the mean observed value. Similar quantitative statistical metrics
have been used in the literature to evaluate GCMs performance in simulating hydro-
meteorological variables [71–73].

The two sample Kolmogorov–Smirnov (KS) test [74] was incorporated to assess how
well the distribution of GCMs simulated daily precipitation matched the observations. The
KS test is a nonparametric test of the equality of continuous one-dimensional probability
distributions and the KS test statistic (D) quantifies the distance between empirical distribu-
tion functions of two samples. The closer this D is to zero, the more likely the two samples
are drawn from the same distribution. In this study, the null hypothesis, two samples
are drawn from identical population, is examined with the 99% level of confidence. The
performance metrics for temperature and KS test for precipitation were applied on each of
the selected grids in the study area.

3.2. Evaluation of Extreme Characteristics

Precipitation and temperature extremes are defined as independent daily events
exceeding an extreme threshold. We use the peak over threshold (POT) approach to sample
independent events from each individual time series such that it provides a comprehensive
description of extreme events by retaining both the magnitude and the timing of each
event [31,75]. Independent events are then used to fit a Generalized Pareto Distribution
(GPD) to analyze the probability of extreme events. However, selecting the optimum
threshold that allows retention of the largest sample of excesses above the threshold and
assures their independence are two of the major challenges against employing the POT
approach [76,77]. At least 1.65 peaks per year are recommended to be selected by the
POT method [78].

Defining the threshold value above which peaks are sampled from a data series is not
trivial. The success of fitting a probability distribution on the peaks is primarily dependent
on the compromise between the variance and the bias-too large a threshold will include
very few values to model the tail of the distribution correctly (large variance due to only
very extreme observations), whereas too low a threshold will result in selecting non-extreme
values and a high bias in the analysis [77]. Here, we employed the Likelihood Ratio Test
(LRT) to select the optimum threshold as it has shown to outperform other methods [79].
We employed an algorithm developed in R [80], a language and environment for statistical
computing, to automate the LRT threshold selection method following the procedure
outlined by Beirlant et al. [81] and Zoglat et al. [79]. In the LRT approach, let ui and uk
(ui < uk) be two threshold candidates and Xui (Xuk) the vector of observations exceeding
ui (uk). When ui an acceptable threshold, uk is also acceptable. The test accepts the lowest
one when two thresholds are admissible. It is worth noting that while graphical methods
are good candidates for the choice of threshold, they become unmanageable when the
number of time series is large, and they depend on visual investigations that are highly
subjective [16]. In this study, the initial ui was chosen as the 90th percentile (P90) for the
dataset under consideration.
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Furthermore, to ensure that the extracted peaks are independent, a careful declus-
tering was carried out. A few statistical tools have been developed to filter clustered
realizations to yield datasets of independent events, including the most widely-adopted
method, ‘declustering’ [31]. The extremal index is chosen to ensure the independence
of exceedances [82,83]. Ideally, an extremal index of 1 indicates perfectly independent
data while 0 indicates clustered data. The R package ‘POT’ was used for declustering and
estimating the extremal index [84].

Three extreme indices, namely consecutive wet days (CWD), summer days (SD), and
warm nights (WN), were defined based on the extracted peaks over the threshold Table 2.
For each index, the duration and frequency were calculated separately. Duration is defined
as the continuous sequence of days where the value of the climate variable (precipitation
or temperature) exceeded the selected threshold before declustering. At each grid point,
the durations of all extreme events over the entire period are averaged to represent one
value. Frequency is determined by counting the total number of independent events over
the entire period for each grid point.

Table 2. Definitions of the extreme indices.

Sl Number Index Definition

1 Consecutive wet days (CWD) Days with daily precipitation greater than the threshold *
2 Summer days (SD) Days with daily maximum temperature greater than the threshold
3 Warm nights (WN) Days with daily minimum temperature greater than the threshold

* Initially the threshold is chosen as P90.

The behaviour of precipitation and temperature extremes in these data products is
described by modeling the tails of their fitted distribution. The evaluation of the heaviness
of the tails is done by comparing the tail index (i.e., the shape parameter) of the fitted Gener-
alized Pareto Distribution (GPD) distribution, which governs the magnitude and frequency
of extreme events. A light-tailed distribution generates less frequent and milder extremes
compared to a heavy-tailed distribution. The tail index was therefore calculated and com-
pared between observations and GCM simulations in order to evaluate the performance of
CMIP6 models in capturing the precipitation and temperature extremes. To identify the tail
behaviour of extremes, the Generalized Pareto Distribution (GPD) was adopted to model
the independent and identically distributed (IID) excesses over an optimum threshold u.
The cumulative distribution function (CDF) for the GPD is [85]:

G(x) = Pr(X− u < x|X > u) =

1−
(

1 + ξ(x−u)
σ

)− 1
ξ , ξ 6= 0

1− e(−
x−u

σ ), ξ = 0
(3)

where x, is the extreme climate variables (in mm for precipitation and ◦C for temperature),
u is the location parameter, σ is the scale parameter, and ξ is the shape parameter. The
shape parameter (tail index) determines the qualitative behaviour of the GPD, where a
ξ = 0 refers to the exponential distribution, for ξ > 0 the corresponding distribution has a
heavy upper tail that behaves like a power function with exponent −1/ξ and for ξ = 1 the
distribution is uniform. Having determined the optimum threshold, the parameters of the
GPD were estimated using the Maximum Likelihood Estimator (MLE) [86].

3.3. GCM Downscaling

Statistical downscaling provides an efficient and effective means of producing reliable
climate variables from a large ensemble of GCMs [60,87]. The ‘ClimDown’ R package [88]
was used to downscale the GCM outputs to the specified spatial resolution. The package
uses multiple techniques including Climate Imprint (CI) [89,90], Quantile Delta Mapping
(QDM) [91], Constructed Analogues (CA) [92], and Bias Correction/Constructed Analogues
with Quantile mapping reordering (BCCAQ) [60].
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Climate Imprint (CI) works together with Quantile Delta Mapping (QDM). It starts
by calculating daily climate anomalies for the GCM dataset at the observation dataset’s
period. These daily GCM anomalies are interpolated to the observation dataset’s grid and
constitute the ‘CI’. The high-resolution gridded observations are then grouped into months
and a climatology is calculated for each month. The observed climatology is then added
to the GCM-based CI. The QDM was performed on a point-by-point basis in the finer
grid system. It uses the observations and the CI result as input and performs a quantile
perturbation/quantile mapping bias correction. CA works independently by spatially
aggregating the high-resolution gridded observation dataset up to the GCM scale and then
proceeds to bias correct the GCM based on those observations. Then, it searches for the
top 30 closest time steps in the gridded observations and makes an “analogue” [92]. This
method can also generate estimates of extreme events during downscaling.

The ClimDown package uses an overall algorithm called BCCAQ to combine the
results from CI-QDM and CA [60,91]. It reorders data for each fine-scale grid point within
a month effectively breaking the overly smooth representation of sub-grid-scale spatial
variability inherited from CI-QDM, thereby resulting in a more accurate representation of
event-scale spatial gradients. This also prevents the downscaled outputs from drifting too
far from the climate model’s long-term trend.

4. Results and Discussion

To ensure that the P, Tmax, and Tmin extremes are IID, the excesses have been
declustered. We monitored the extremal index for each sub-basins and confirmed the
assumption of independence for both the precipitation and temperature peaks time series.
Table 3 shows the total number of excesses for the study area and the number of peaks
confirmed the assumption that excesses should be a minimum of 1.65 multiplied by the
number of years.

Table 3. The number of peaks for the daily P, Tmax, and Tmin extremes from observed and GCM
simulated data before and after declustering for the period of 1983–2014.

Time Series P Tmax Tmin

Number of Peaks Number of Peaks Number of Peaks

Before After Before After Before After

Observed 361 266 821 285 567 241
BCC-CSM2-MR 957 641 815 222 515 207
CNRM-CM6-1 736 467 811 189 553 205

EC-Earth3 823 519 813 206 535 200
EC-Earth3-veg 820 521 800 203 530 203
MRI-ESM2.0 927 574 896 247 600 217

4.1. Evaluation of Precipitation Mean Characteristics

Figure 3 shows the spatial distribution of relative difference (percentage change
from observations) of mean annual precipitation for five GCMs. The BCC-CSM2-MR,
EC-Earth3, and EC-Earth3-veg underestimate the mean annual precipitation in central
to northern Alberta and overestimate in southern Alberta. The MRI-ESM2 also overes-
timates in the southern Alberta while showing a varied pattern in central to northern
Alberta. The CNRM-CM6-1 greatly underestimates precipitation for the entire study area
except in the Canadian Rockies. The behaviour of all GCMs is fairly similar to simulated
precipitation in the mountainous region (south-western), where all models highly over-
estimate. The spatial pattern and magnitude of observed precipitation shows that this
region receives high amounts of precipitation compared to other regions of the province
Figure 3. However, the orographic effect and limited number of observation stations in the
complex terrain of the Canadian Rockies may play an important role to such big difference.
Wong et al. [93] compared several gridded precipitation products over Canada and found
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that precipitation amounts are overestimated in the Canadian Rockies. Li et al. [94] and
Kuo et al. [95] found similar precipitation biases over the Canadian Rockies as simulated
by the Weather Research and Forecasting model (WRF).
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Figure 3. Observed mean annual precipitation (in mm) and mean annual daily temperature (maxi-
mum and minimum in ◦C) for the 1983–2014 period are shown in the first column in the left. Relative
difference for precipitation (%) and only difference for temperature (◦C) between the GCM simulated
and observed data for the same period is shown in right four columns. A positive relative difference
and delta temperature indicate an overestimation by GCMs.

The KS statistic (D) in Figure 4 supports our findings in Figure 3. Minimum D values
are found in northern Alberta followed by central and southern Alberta for all models
except the CNRM-CM6-1, which shows large D values across the province. Overall,
GCMs have comparatively larger D in the Canadian Rockies. Based on multiple statistical
metrics, Cheng et al. [71] also found poor performance of CMIP5 GCMs over the Canadian
Rockies portion of the Athabasca River Basin in Alberta. The MRI-ESM2.0 has higher
D values in southern Alberta where the magnitudes of overestimation are also higher
Figure 3. The KS test for mean annual precipitation shows no statistically significant results
for BCC-CSM2-MR, CNRM-CM6-1 and MRI-ESM2.0 for all 2255 sub-basins. The EC-
Earth3 and EC-Earth3-veg produce significant results only for two and seven sub-basins,
respectively. For evaluating precipitation time series, the number of significant results is in
line with expectation, if we assume that precipitation values are spatially and temporally
independent [96].

4.2. Evaluation of Maximum and Minimum Temperature Mean Characteristics

The observed average annual Tmax and Tmin and their differences (simulation mi-
nus observation) corresponding to five GCMs are presented in Figure 3 for the period
1983–2014. The spatial pattern of biases is somewhat similar for all GCMs. The change
is larger ± 5 ◦C in the south and south-western domain for all GCMs except the MRI-
ESM2.0, which also shows overestimation (warm bias) in the central to the northern part
of the province. In the BC part, all GCMs underestimate (cold bias) Tmax and Tmin. In
the mountainous regions, every GCM overestimate both variables. Overall, most of the
models underestimate temperature in southern Alberta and overestimate in the north.
Similar temperature biases were reported over the complex topographic regions in other
studies [95,97]. Sillmann et al. [37] also reported such limitations in high terrain regions
while evaluating climate extremes indices in a CMIP5 multi-model ensemble. This bias
could be partly attributed to the poor representation of complex topographic features and
the land surface interactions in the parameterization scheme of the GCM [95]. The primary
horizontal resolutions between models could introduce large differences in elevation of
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mountainous terrains, which can make the reproduction of precipitation and temperature
difficult [94]. The overestimation of temperature in the mountainous regions might also be
attributed to the absence of altitude effects in the interpolation algorithm (Section 2.2) as
the temperature varies with elevation [98].

Figure 4. The spatial pattern of verification metrics between GCM simulation and observed data for
the period of 1983–2014. Here, the KS test is used for P and the bR2 and NSE are used for both Tmax
and Tmin. Red and blue colour indicate poor and good performance of individual GCMs, respectively.

The spatial evaluation metrics of mean annual daily temperature for the five GCMs
are presented in Figure 4. The GCMs usually obtain higher skill scores for Tmax compared
to Tmin. Similar results were found in a study by Cheng et al. [71], where they evaluated
the performance of six CMIP5 GCMs over the Athabasca River Basin in Alberta. Figure 4
reveals a mostly north–south gradient for Tmax and Tmin. Results based on bR2 and NSE
show clear spatial patterns of improved simulation in the northern area of the province
followed by middle, southern and south-western parts. The low bR2 and negative NSE
values in the south-western region (mountainous) of the province reflect the poor model
performance. The bR2 ranges from 0.19 to 0.70 and 0.09 to 0.69 for Tmax and Tmin,
respectively. Likewise, the NSE metric tends to show a similar pattern as bR2 with values
ranging from −0.52 to 0.70 and −0.91 to 0.67 for Tmax and Tmin, respectively. Overall,
the CNRM-CM6-1, EC-Earth3, and EC-Earth3-veg models perform better in simulating
temperature compared to MRI-ESM2.0 and BCC-CSM2-MR. Wyser et al. [39] discussed the
impact of forcing datasets (e.g., greenhouse gas concentrations, insolation, stratospheric
ozone concentrations, optical properties of stratospheric aerosols, and landuse changes) for
climate model simulations and pointed GHG concentrations as a major contributor to the
warming. The variation in results from GCMs is probably strongly model-dependent due
to variations in considering these forcing datasets.
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4.3. Evaluation of Precipitation Extreme Characteristics

The GCM simulations are also evaluated in terms of reproducing the observed dura-
tion and frequency of CWD. The duration based on observed data Figure 5 ranges from
one to two days and the spatial distribution is uniform over the study area, with a few
exceptions in the southern areas where the durations are longer. GCMs reproduce the
duration of CWD very well. All GCMs slightly overestimate the duration with a maxi-
mum one day except for the BCC-CSM2-MR, which underestimate the duration in most
sub-basins (Figure 5).
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Figure 5. Spatial distribution of mean annual duration and frequency of CWD, SD, and WN for
the 1983–2014 period for 2255 sub-basins. The first column in the left represents the magnitude
of duration and frequency based on observed data and rest four columns indicate the difference
between GCM simulations and observation (delta changes). A positive delta mean frequency and
duration indicate an overestimation by GCMs.

The mean annual frequencies of CWD compared with observed data are maximum in
the northern area followed by the central and southern areas of the province Figure 5. The
results show that the frequency estimated from the different GCMs is in good agreement
with the observations, except that the BCC-CSM2-MR model overestimates the frequency in
most of the sub-basins. The overestimation could be attributed to two aspects of insufficient
resolution in the model including a) the resolution is too coarse to represent the landmass
at all and b) the model does not resolve the topographically driven high precipitation
regimes [99]. For most GCMs, the maximum underestimation of occurrence frequency
is found in the south-western mountainous areas, and this underestimation could also
be related to the improper representation of uneven topography in the climate model as
explained previously.
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The temporal distribution of the duration and frequency of CWD are plotted in
Figure 6 through kernel density plots that display the distribution of these two characteris-
tics over a continuous interval or time period for the entire province. The peaks of the plot
indicate where values are concentrated over the interval. Results are similar to the spatial
plots where all models partially coincide at the base of the kernel density curves for the
duration and differ slightly at the peaks except for the BCC-CSM2-MR, which agrees at
the base but underestimates the peak Figure 6. Likewise, the frequency Figure 6 shows
that the graphical patterns of individual models are opposite compared to the pattern for
the duration.
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4.4. Evaluation of Maximum and Minimum Temperature Extremes Characteristics

The maximum duration (three to four days) of SD and WN is observed in the north-
ernmost and south-western mountainous parts of the province Figure 5. However, the
duration of SD progressively decrease from the mountainous area to the grassland region
of southern Alberta. The duration of WN is as high as three days in the south-eastern
region of Alberta. In rest of the province, the duration ranges from two to three days for
both SD and WN. The provincial average duration of SD and WN are 2.7 and 2.5 days,
respectively. In Figure 5, the difference of duration indicates that GCMs have a relatively
low skill (overestimation) in reproducing the mean duration of SD. The results show that
individual model performance varies substantially. The CNRM-CM6-1 model shows very
poor performance while the MR-ESM2.0 is comparatively better compared to any other
models. Only the MR-ESM2.0 model shows an underestimation of the mean duration of
SD in the mountainous region. However, GCMs show better skill in reproducing the mean
duration of WN across the province. The BCC-CSM2-MR, CNRM-CM6-1, and MRI-ESM2.0
underestimate mean duration in the Rockies. Overall, the variation in the estimation of the
mean duration of WN is within ± 1 day.

We find an inverse relationship between duration and frequency of SD and WN.
A sub-basin with a high duration of SD and WN has a low frequency of SD and WN and
vice-versa. The spatial pattern of the frequency distribution of SD and WN are also similar
to that of mean duration. Results in Figure 5 reveal the minimum frequency of SD and WN
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in the northern and mountainous regions of the province. Overall, the average number
of SD and WN is 13 and 14 across the province, respectively. Based on the overall results,
the underestimation of delta mean frequency ranges from 3 to 4 and 0.5 to 1.6, respectively
for SD and WN. Nie et al. [44] pointed out the new cloud-fraction scheme updated in
the CMIP6 version that might help to improve the simulation of temperature extremes
by giving surface radiant fluxes in the low- and mid-latitudes. In their study, they found
that the BCC-CSM2-MR model can simulate the warm and cold temperature extremes
reasonably well.

Density curves of duration and frequency of SD and WN are shown in Figure 6. The
GCM simulated distributions of SD are highly deviated from the observed distributions.
All GCMs overestimate the duration and underestimate their frequency. For both char-
acteristics, individual models’ distributions are substantially different from each other.
However, duration and frequency distribution curves of WN are similar to the observed
distribution. GCMs can partially reproduce the density curves although they overestimate
duration and underestimate the frequency of WN.

4.5. Tail Behaviour of Precipitation and Temperature Extremes

The tail behaviour of P, Tmax, and Tmin extremes is shown in Figure 7. The observed
tail index of P extremes is mostly positive across the province, indicating a heavy-tailed
distribution. Results reveal high values of tail index in the southern part of Alberta and
BC portion of the study area. The north-eastern part of the province showed thin tails. All
GCMs reveal similar spatial patterns of difference, whether over- or underestimation of the
tail index for the precipitation extremes with values ranging around ± 0.25, as illustrated
in Figure 6. GCMs highly overestimate the tail index. Such over- or underestimation of
tail behaviour is also found for CMIP5-GCMs over the Euro-Mediterranean region [100].
The tail behaviour is known to be sensitive to the convective parameterization (CP) within
GCMs, which aims to represent the effects of convection on the grid-scale but does not
capture the dynamics of individual storms [101]. However, the CP is a major source of
errors in climate simulations [94] and therefore, the bias in the tail index estimation is
inherent to the climate model performances.
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Figure 7. Spatial distribution of the tail index (shape parameter) of P, Tmax, and Tmin extremes for
the 1983–2014 period for 2255 sub-basins. The first column in the left represents the magnitude of
tail index based on observed data and the rest four columns indicate the difference (delta change)
between GCM simulations and observation. A positive shape indicates an overestimation by GCMs.

The observed tail index of both Tmax and Tmin extremes are negative for most of
the sub-basins, indicating a short-tailed distribution Figure 7. The spatial distribution of
tail index is somewhat different for both temperature extremes. Positive values of Tmax
extremes are located in the south and north-eastern part of the study area. In addition to
these locations, the tail index of Tmin extremes is positive in the foothills of the Rockies.
Otherwise, a relatively thin tail (negative) is observed in the entire province. A thin-tailed
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probability distribution corresponds to the upper tail declining to zero exponentially or
faster [102]. GCM simulations are quite biased in reproducing the tail behaviour of extremes.
For Tmax extremes, models overestimate in the mountainous area and northernmost
Alberta. In terms of bias estimation, the spatial distribution of tail index of Tmax extremes
is analogous to the CNRM-CM6-1 and MR-ESM2. For the Tmin extremes, a comparable
spatial pattern existed for the delta tail index for all GCMs. Similar to the results of Tmax
extremes, the magnitude of bias (overestimation) based on Tmin extremes is higher for
most of the sub-basins.

The temporal distribution of density curves of the tail index for P extremes Figure 8
shows that all GCMs slightly overestimate the index with comparable height except the
CNRM-CM6-1, which has similar base as the observations with a short peak. For Tmax
extremes, GCMs reproduce the tail index very well at the base; however, they overestimate
the peak, which is higher than the observed tail index (Figure 8). GCMs show biases
(overestimation) both at the base and peak for the Tmin extremes (Figure 8) and their
temporal distributions are similar. The three-parameter distributions (e.g., GPD) are less
parsimonious than the two-parameter distributions and have large parametric uncertainty
in estimating the tail index. However, there are ways (e.g., regionalization) to improve the
accuracy of this parameter estimation by maintaining spatial homogeneity [49]. Regional-
ization increases the robustness in estimation by increasing the sample size by substituting
space for time [51], which can be followed in future studies.
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4.6. Regional Variation of GCM Performances

In this section, we discuss GCMs’ performances in reproducing the extremes of P,
Tmax, and Tmin in the four identified regions within Alberta Figure 1.

4.6.1. Extreme Characteristics

The regional distributions of density curves (Figure 9) show fluctuation in densities
of mean duration and frequency of CWD, SD, and WN. The shape of the distribution
varies across regions. The western mountainous region (R1) has flat shaped density curves
with reduced peaks for both duration and frequency. R2, which consists of grassland
with low annual precipitation and high temperature [103], has the highest peak for both
duration and frequency. Different components of the biosphere control the regional climate
feedback processes that may govern the variability of GCM simulations across regions.
Consequently, we observe variation in results across regions as simulated by a single GCM.
The inter-model variability in reproducing duration of CWD is less than that of frequency.
For SD, all GCM simulations are very different from the observed distribution of duration
and frequency of SD. For WN, GCMs slightly overestimate the duration and underestimate
the frequency in all regions.
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4.6.2. Tail Behaviour of Extremes

The tail behaviour of P extremes in Figure 10 shows that the majority of GCMs
produce the tails index quite well in all regions, except the BCC-CSM2-MR which has
a slight overestimation. In R4, the observed tail behaviour of P extremes is somewhat
complex with multiple peaks, and the behaviour is not reproduced by any GCM. However,
the performance of GCMs is better for the Tmax and Tmin extremes where simulated peaks
of density curves are higher than that of observed density curve.
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Figure 10. Kernel density curves of the tail index (shape parameter) of P, Tmax, and Tmin extremes
corresponding to four climate regions in Alberta for the 1983–2014 period.

4.7. Evaluation of Mean and Extreme Characteristics of Downscaled Simulations

The KS statistic (D) is calculated using the downscaled (DS) and non-downscaled
(NDS) data against the observations (Figure 11). The reduced magnitude of D clearly
indicates the overall improved precipitation prediction skills of GCM simulations across
the province. The D value is decreased from 0.02–0.50 (NDS) to 0.01–0.11 (DS). NDS GCMs
obviously show poor performance (Figure 3) compared with DS GCMs in simulating pre-
cipitation. However, in contrast to the precipitation, bias correction and downscaling the
temperature ensemble time series led to a poorer prediction skill for the GCMs (Figure 11).
This observation indicates that the GCMs (NDS) that participated in CMIP6 are reasonably
good at simulating daily maximum and minimum temperatures. Based on bR2 and NSE
metrics, the bias correction and downscaling of Tmax only improve BCC-CSM2-MR and
MRI-ESM2.0 GCMs prediction skills. The other GCMs either underperform or perform sim-
ilar to NDS GCMs. For Tmin, only the MRI-ESM2.0 GCM shows better performance after
bias correction and downscaling. For the BCC-CSM2-MR GCM, the two metrics (bR2 and
NSE) show different results for many sub-basins. The other three GCMs (CNRM-CM6-1,
EC-Earth3, EC-Earth3-veg) show better skill in their non-downscaled simulations.

The DS GCM simulations are further assessed using three extremes indices (CWD,
SD, and WN). We extracted two characteristics (i.e., duration and frequency) of each
index using DS simulations and estimated the difference between DS and observations
for each sub-basin. The delta duration and frequency of CWD (Figure 12) show the close
representation of DS simulations to observations, indicating better skills of DS GCMs.
Likewise, the difference of duration and frequency based on SD and WN between the
DS GCM simulations and observations is reduced across the province. Similar to the
mean characteristics, DS GCMs show better skill in reproducing extreme precipitation
characteristics compared with the temperature extremes.
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Figure 13 shows the spatial distribution of the delta tail index of P, Tmax, and Tmin
extremes for DS GCM simulations. There is no clear indication that DS GCMs perform
better than the NDS GCMs (Figure 6). The spatial pattern of the delta tail index shows that
the magnitude of differences decrease in most of the sub-basins. There are some opposite
signals also found for all extremes, and more specifically, overestimation by DS GCM
and underestimation by NDS GCM. For example, the DS CNRM-CM6-1 overestimates
(Figure 13) while this GCM underestimates the tail index under NDS condition (Figure 7).

Note that the bias correction and downscaling generally involves processes that bring
the climate model simulations close to the observations; however, the bias-corrected and
downscaled simulations always carry the climate change signal from the host model [99].
Therefore, results based on DS simulations do not substantially increase the confidence as
shown in the Figures 11–13. However, results show that the bias correction and downscaling
approach reasonably reproduced mean and extremes (especially for precipitation). These
results are not surprising as Li et al. [94] and Kuo et al. [95] used dynamical downscaling
approach to downscale historical climate over western Canada and found similar results,
although dynamical downscaling showed better ability over statistical downscaling [99].
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5. Summary and Conclusions

This study analyzed the performance of five CMIP6 GCMs in their ability to simulate
the observed spatio-temporal behaviour of climate means and extremes across 2255 sub-
basins in Alberta, Canada. Daily simulations of P, Tmax, and Tmin were evaluated against
a hybrid observational data set that best represents the climatic and hydroclimatic condi-
tions of the province. Despite similar spatial resolutions, model performances varied in
their ability to simulate the means and extremes of precipitation and temperatures. From
the various analyses presented and discussed in this study, we summarize and conclude
the following main outcomes.

1. The average bias in mean annual precipitation is reasonably low for all sub-basins,
except for the CNRM-CM6-1 GCM. The EC-Earth3 and EC-Earth3-veg simulate the
annual mean P quite well followed by the MRI-ESM2.0 and BCC-CSM2-MR. However,
the performance of CNRM-CM6-1 is very poor with substantial underestimation. For
temperature, the MRI-ESM2.0 shows the worst performance. The EC-Earth3 and
EC-Earth3-veg show better skill followed by the BCC-CSM2-MR and CNRM-CM6-1.
Overall, models show better performance in simulating Tmax than Tmin. For both
precipitation and temperature, models reproduced the observations better in the
north and follow a gradient toward the south with poorest performance in the moun-
tainous area.

2. Minimum positive performance errors (overestimation) are found for the mean annual
duration of CWD followed by WN and SD. The BCC-CSM2-MR performed poorly
with respect to the duration of CWD, as did the CNRM-CM6-1 regarding the duration
of both SD and WN (compared to other GCMs for the entire domain of study). The
temporal distributions of duration by model simulations are reasonably superim-
posed to that of observations in the case of CWD; however, they are slightly and
completely overestimated by GCMs for the duration of WN and SD, respectively. In
general, there is an inverse relationship between the duration and frequency of occur-
rence of extreme indices. GCMs consistently underestimated the frequency whereas
they overestimated the duration. Nevertheless, the performance of the individual
models to simulate frequency is rather similar to that of duration. For all extreme
indices, a pattern of over- or underestimating the duration/frequency observed in the
southwestern side of the province where the Canadian Rockies are located. There-
fore, it would be interesting to investigate the bias–topography relationship during
subsequent verification studies across mountainous regions of North America.

3. The observed tail index (shape parameter of the Generalized Pareto Distribution)
indicated a heavy tail for P extremes and light tail for Tmax and Tmin extremes.
The tail index reasonably follows the spatial distribution of observations. However,
a little difference in the tail of distribution significantly affects the long return periods
indicating the importance of good tail representation. In this aspect, GCMs still may
not incorporate the convective parameterization scheme at the existing grid spacing.
The individual model performance is quite similar for all extremes having the poorest
performance (highest magnitude of errors) by the BCC-CSM2-MR for P, MRI-ESM2.0
for Tmax, and both BCC-CSM2-MR and MRI-ESM2.0 for Tmin extremes.

4. The downscaled GCMs showed better skill in simulating mean annual precipitation
compared to the non-downscaled GCMs. The performance of DS GCM simulations
was not satisfactory for Tmax and Tmin. The DS technique improved Tmax sim-
ulations by the BCC-CSM2-MR and MRI-ESM2.0. Only the MRI-ESM2.0 showed
better performances in Tmin after downscaling. However, GCMs showed good skills
when reproducing the characteristics (duration and frequency of occurrence) of CWD,
SD, and WN based on DS simulations (as compared to NDS simulations). Overall,
the bias correction and downscaling approach worked well for reproducing extreme
characteristics, and more specifically, improved CWD’s characteristics over those
associated with SD and WN. After downscaling, there is no clear indication of having
an improved tail index of GPD based on precipitation and temperature extremes.
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The downscaled simulations do not significantly increase our confidence to simulate
climate variables, specifically the Tmax and Tmin time series.

It is obvious that results from each GCM would be different in terms of spatial and
temporal scale. The physical reasons behind any over- or underestimation by individual
GCMs would require more in-depth and perhaps process-based analyses. We considered
the best available hybrid observation dataset to evaluate the performance of five CMIP6
GCMs to simulate the means and extremes of several climatic variables. However, their per-
formances can also be evaluated through using different reanalysis and global and regional
gridded climate products to draw more robust conclusions. Poor model performances in
the mountainous region may arise due to the lack of high-quality observed data in that
region. Several factors affect the GCMs’ performance including the choice and quality of
observed hybrid dataset and performance metrics. Application of quantitative statistical
metrics (bR2 and NSE) may compromise the presence of uncorrelated day-to-day variations,
which account for a large portion of total variability. In such cases, validation statistics
like distribution of time series and autocorrelation functions, that do not depend on direct
correlation between time series, can be applied simultaneously to further check the GCM’s
performances in reproducing observed behaviour of climate means and extremes. Despite
these limitations and based on our statistical analysis of precipitation and temperature data,
our study provides useful information about GCMs performances in simulating means
and extremes of daily P, Tmax, and Tmin across Alberta. Such information clearly lays the
foundation for future climate impact analysis using CMIP6 GCMs.
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