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Abstract: Supplying safe, secure, and reliable drinking water is a growing challenge particularly
in regions where catchments have diverse land uses, rapidly growing populations, and are subject
to increasing weather extremes such as in the subtropics. Catchments represent the first barrier in
providing ecosystem services for water quality protection and bulkwater suppliers are therefore
investing in mitigation measures to reduce risk to drinking water quality for consumers. This paper
presents an approach to combine data on erosion processes, pathogenic bacteria and protozoa from
several sources, determine the highest risks from these hazards and identify an optimum portfolio of
intervention activities that provide maximum risk reduction at water treatment plants (WTP) for a
given budget using a simulated annealing optimizer. The approach is demonstrated in a catchment
with six WTPs servicing small rural to urban populations. The catchment is predominantly used for
agriculture. Results show that drinking water risk from protozoa can be reduced for most WTPs for
moderate investment budget, while bacteria risk reduction requires significantly larger budget due
to the greater number of significant source sites relative to protozoa. Total suspended sediment loads
remain a very high risk to most of the WTPs due to the large extent of channel and gully erosion
and landslides. A map of priority areas and associated suite of interventions are produced to guide
on groundwork.

Keywords: decision support system; simulated annealing; optimization; total suspended sediments;
pathogens; bacteria; protozoa; intervention; natural resource management

1. Introduction

Bulk water suppliers and water utilities in Australia need to provide safe, secure
and reliable water supply for consumers. They are regulated to implement the Australian
Drinking Water Guidelines Framework for the management of drinking water quality (the
ADWG Framework) which sets out a comprehensive, integrated approach for managing
water contamination risks across all stages of water supply—from catchment to tap [1,2].
This represents a multi-barrier approach in which the catchment is the first barrier pro-
viding the ecosystem services for water quality [3], hence bulk water suppliers have a
significant role as catchment managers.

In open catchments, land use changes for agriculture, forestry, industry, recreation
and residential dwelling, have led to significant point and diffuse sources of water qual-
ity risks and degradation of ecosystem services the catchment once provided [4,5]. In
southeast Queensland, Australia, where more than 90% of source water supply is from
open catchments, the priority contaminants considered risks to water quality that have a
direct impact on water treatment plants (WTP) capacity are pathogenic microorganisms [6]
and total suspended sediments (TSS) [7]. The ADWG Framework highlights pathogens
as the greatest risk to consumers of drinking water and catchment sources can include
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domestic onsite wastewater systems (OSFs), sewerage treatment plants (STPs), stormwater
and animal waste from broadscale grazing and intensive animal industries [2]. Elevated
levels of TSS can cause treatability issues at WTPs, through reducing the effectiveness of
disinfection, increasing the requirement for chemical dosing [8] and reducing drinking
water production rates.

Riparian rehabilitation projects [9–11] and other interventions to mitigate water quality
risks such as OSF upgrades [12], intensive animal effluent treatment upgrades, hardening
laneways and stream crossings, are essential to improve the first barrier or the ecosystem
service the catchment provides [13]. However, catchment managers have been grappling
with decisions regarding the location, type, and scale of these catchment interventions
(mitigation measures and rehabilitation), particularly when finite resources have to be
allocated across large catchment areas [14,15]. This poses the question: How can catchment
managers or bulk water suppliers optimally allocate resources to effectively improve
drinking water quality?

Many agencies use ‘hotspot’ or ‘threat’ maps to define the distribution, intensity
and frequency of hazardous events to water quality. These maps can be helpful for
identifying the location of risks, but they cannot always provide a robust method to allocate
intervention resources, particularly when multiple objectives need to be considered [15,16].
Instead, the data and other information provided in the maps must be integrated into a
structured, transparent and repeatable framework to develop intervention portfolios to
provide the greatest return for a fixed budget [16].

The solution to providing this framework has been the development of the ‘Decision
Support System’ (DSS). Typically, a DSS operates in a GIS environment and combines
spatial datasets, non-spatial data (quantitative and qualitative) and other information
to assess where contaminants arise, their mobilisation and their relative contribution to
changes in water quality within a source water catchment. By linking the contaminant
to a land use activity or catchment process through data analysis, a DSS can provide
direction on where interventions should be targeted to get the best outcomes for water
quality improvement [17,18]. The DSS and the underlying data must also be detailed
enough to give an acceptable level of (un)certainty in the results [19]. Similarly, the concept
of longitudinal connectivity has to be included in the planning process and has been
successfully applied with DSSs designed for conservation planning [20,21], and for some
catchment-based water quality models such as eWater Source [22].

In order to successfully manage multiple risks to water quality with catchment inter-
ventions, a DSS must be designed to evaluate alternative combinations of interventions
and the trade-offs between them [16]. In many instances, agencies develop ‘hotspot’ or
‘threat’ maps from the outputs of catchment-based water quality models. A review of
existing catchment-based water quality models and platforms was recently undertaken
by Fu et al. [23], noting that main catchment models used across the peer-reviewed liter-
ature were the Soil and Water Assessment Tool [24], Hydrological Simulation Program—
FORTRAN [25], Integrated Catchment Model (INCA) [26] and eWater Source [22]. While
these models can be used to predict changes in water quality based on surrounding land
use or catchment management, they cannot apply catchment interventions and link these
to an optimisation algorithm so that a preferred set of catchment interventions (i.e., in-
vestment scenario) can be selected. Instead, the investment scenario must be developed
a priori so that the input intervention portfolio includes pre-selected interventions. This
means that the set of catchment interventions selected and their location and amount may
not be the optimal for the given budget. Additionally, as running each scenario separately
is very time consuming, this would limit the number of different interventions that can be
used and therefore the number of portfolios generated.

Optimization algorithms can be used to select the optimal intervention portfolio for
set targets, for example the largest reduction in risk to water quality for a given investment.
A spatial optimization algorithm creates portfolios of interventions and compares the risk
reduction between intervention portfolios to arrive at an optimal or near optimal portfolio.
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This process of generating portfolios and calculating the risk reduction is computationally
demanding when the number of spatial units and interventions is large and when there
are multiple risks to trade off. There are several approaches to optimization which attempt
to deal with a large solution space in order to reduce prolonged run-times.

Genetic algorithms have been successfully applied to optimize the location of best
management practices to control of diffuse pollution sources [27,28], as well as many
other parts of the water supply industry [29,30]. However, genetic algorithms do not
handle multiple intervention options and spatial complexity well [31,32]. An alternative to
complete optimization is multi-criteria analysis where pre-developed scenarios, prepared
through general rules, that represent ‘likely’ optimal solutions are compared [33]. This
approach is simple and supposedly not as resource demanding as implementing a full
optimization process, but it is largely unknown what the cost/benefits are of the scenarios,
how different these results would be to an optimized result and become very inefficient
when considering complex models with multiple interventions [34].

Simulated annealing is an optimization routine that has been applied to resource
allocation [35], conservation planning tools [20,21] and planning catchment erosion mitiga-
tion [15]. Simulated annealing is a probabilistic technique for finding the global optimum
in a search space. The approach is to select a potential solution from the search space, com-
pare it to the previously generated best performing solution and then reject the potential
solution or replace the best performing solution with the potential solution. Subsequent
solutions are based on minor variations of the current best performing solution. To avoid
local minima, the simulated annealing approach initially explores the broader solution
space before focusing on minima [32]. The approach is favoured due to its ability to deal
with multiple intervention options and spatial complexity and also has the ability to reduce
run-times in order to select an optimal set of interventions [31,34].

For DSSs to successfully improve catchment water quality, the DSS framework must
be made relevant for the bulk water suppliers and provide interpretable and meaningful
direction for those responsible for implementing the actions [35,36]. Environmental risk
assessments have been used extensively to understand the relative impacts of multiple
stressors on a selected environmental value. A relative risk framework was used to provide
an estimate of the risk of contaminants from different catchment areas to the iconic Great
Barrier Reef in Australia based on anthropogenic load score, reef condition score and reef
exposure score [37]. Each parameter was given a score between 1 and 5 based on data
ranges and assumed relationships between the value and degree of risk. This application
allowed for the identification of suspended sediment, dissolved inorganic nitrogen and
PS-II herbicides as most likely to pose a threat to the quality of run-off water entering the
GBR ecosystem [37]. Given that data and resource limitations can lead to uncertainty of
the absolute values of modelled contaminant loads [33,38], the strength of the relative risk
assessment is that it can allow for the different sources of contaminants to be compared
against particular land use types [37].

In southeast Queensland, there are over 30 WTPs supplying a population of over 3.4
million with a median growth rate of 2% [39]. Each of the WTPs has a different capability
of treating bacteria, protozoa, virus and TSS. Given that determining precise loads of TSS
and pathogens would be unrealistic for the 1.8 M ha of southeast Queensland water supply,
a relative risk framework has been adopted to facilitate the identification and location
of the sources of priority contaminants considered risks to water quality received at a
specific WTP. Furthermore, the risk framework approach enables comparison between the
contaminants for each WTP, as well as across the water supply region.

The aim of the paper is to outline a new approach for combining model and survey
data on hazardous processes to drinking water quality (TSS, Bacteria, Viral and Protozoa)
in open catchments using a risk framework and demonstrate how spatial optimisation of
mitigation (intervention) measures are applied to reduce the highest risks to WTP intake
based on intervention cost, efficacy and connectivity between the hazard source and WTP.
Herein, the paper describes Seqwater’s Catchment Investment Decision Support System
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(CIDSS) and provides a case study of the Logan-Albert Catchment. Specific objectives of
the case study catchment analysis are: (1) Can drinking water risk from Bacteria, Protozoa
and TSS be reduced in the catchment and at what cost? (2) If so, where should funds be
invested and what type of mitigation measures are required to achieve risk reduction for
a given budget? (3) How does one prioritise the on-ground work program based on the
optimal solution of mitigation measures? (4) What are the hazard treatment challenges
when identifying new drinking water sources in highly developed catchments?

2. Study Area

The CIDSS is being applied to Seqwater’s source catchments in southeast Queensland,
Australia (Figure 1). The region has a subtropical climate with average summer and winter
temperatures of 24 ◦C and 14 ◦C respectively. Annual and seasonal rainfall are variable
with most rainfall occurring in Summer and autumn. As a result, river discharge regimes
have very high hydrological variability [40]. Drinking water is sourced from seven coastal
catchments each with one or more nested off-takes for water treatment located either along
a river reach or within reservoirs. Additionally, there are two ground water bores and a
desalination plant used for drinking water supply.

The combined catchment area for the surface source water is ~1.8 million ha of which
Seqwater owns <5%. Approximately 70% of the source catchments is used for agriculture,
dominated by livestock industries, and only 22% of the source catchments remains as
natural environment. The catchments also include urban, peri-urban and rural residences
where wastewater treatment varies from old OSFs (e.g., septic tanks) to high-capacity STPs
for urban developments. Stormwater generally has low levels of treatment across the
source catchment areas.

The CIDSS has been populated for all 30 WTPs and associated source catchments in
SEQ. However, this paper focuses on a small subset (six WTPs) and their source catchments
to demonstrate the application of the approach. The source water catchment demonstrated
and discussed in this paper is the Logan-Albert catchment, which includes the Logan River
and Canungra Creek (Figure 1C). Mean annual rainfall for mid (Beaudesert) and upper
catchment (Lamington National Park) are 916 mm and 1580 mm respectively. Logan River
currently has four off-take locations to supply WTPs to service communities along the
catchment valley (Table 1). One-fifth of off-take is proposed in the Lower Logan River
to accommodate growing water supply demand and water quality treatment challenges
posed by the catchment. The proposed WTP would see the source catchment area increased
by 996 km2 and include a 102,884 ML reservoir (Wyaralong Dam). Canungra Creek has
a single off-take for WTP to service the township of Canungra. The modelling scenarios
detailed below consider water quality hazards impacting all six WTP (including proposed
new WTP with an off-take at Cedar Grove Weir (CGW)). The catchment area across which
interventions can be applied to reduce water quality risk is 2473 km2 and comprises
predominantly livestock grazing and also public lands for nature conservation in some
headwaters, cropping on floodplains and residential areas (Figure 1C).

Table 1. Logan-Albert catchment water treatment plants (WTPs).

WTP Supplies Sub-Catchment
Area (km2)

Number of
Planning Units

Planning Unit
Area µ(σ)(ha)

TMD Maroon Dam 106 8 1323 (662)
TRA Rathdowny 534 26 2052 (1849)
TKO Kooralbyn 1035 47 2202 (1698)
TBE Beaudesert 1385 61 2270 (1663)

CGW Beaudesert, Water grid 2381 130 1832 (1446)
TCN Canungra 92 4 2298 (1435)
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Figure 1. (A) Study area location on the east coast of Australia in Southeast Queensland. (B) 
Boundaries of the source water catchments with the case study catchment boundary shown in red. 
(C) Land use in the Logan-Albert catchment upstream of the WTP intakes. 
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The Catchment Investment Decision Support System (CIDSS) is a planning support 
tool that can identify hazardous processes and quantify their contribution to TSS and 
pathogen loads within source water received at downstream WTPs. The contribution 
from each of the hazardous processes to the overall TSS and pathogen loads are then as-
sessed as the level of risk, which is based on the WTP treatment capability. A simulated 

Figure 1. (A) Study area location on the east coast of Australia in Southeast Queensland. (B) Bound-
aries of the source water catchments with the case study catchment boundary shown in red. (C) Land
use in the Logan-Albert catchment upstream of the WTP intakes.

3. Materials and Methods
3.1. Catchment Investment Decision Support System

The Catchment Investment Decision Support System (CIDSS) is a planning support
tool that can identify hazardous processes and quantify their contribution to TSS and
pathogen loads within source water received at downstream WTPs. The contribution
from each of the hazardous processes to the overall TSS and pathogen loads are then
assessed as the level of risk, which is based on the WTP treatment capability. A simulated
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annealing optimiser is then used to produce a portfolio of intervention activities (from a list
of 63 different intervention activities with individual efficacies) across a given source water
catchment area and is designed to provide the greatest reduction in drinking water quality
risk for a given budget. The input hazards and solution interventions are specified at
hydro-geomorphic units representing source water subcatchments containing similar land
use and therefore processes generating hazards to water quality. These base spatial units
are referred to as Planning Units and are typically 14 ha to 4000 ha (25th–75th percentile).

3.1.1. Inputs

The inputs to the CIDSS are (1) spatial data for solution visualization, which include
catchment (defined by area contributing to the off-take point for WTP) and Planning
Unit geometries, (2) Planning Unit physical attributes, (3) drinking water hazards, (4)
interventions available, costs and efficacy, (5) upper limits of intervention that can be
applied within each Planning Unit and (6) pathogen attenuation and TSS deposition and
storage (loss) rates along the transport pathway.

Drinking water quality hazards considered in the CIDSS are TSS and pathogenic
bacteria, protozoa and viral particles. These four water quality hazards are aggregated
within the tool from 12 hazardous processes provided as input at the planning unit scale
(Table 2). The derivation of the hazards through the hazardous process is described in the
Supplementary Material S1 and briefly summarised here. The TSS sources are modelled
independently of the CIDSS for diffuse hillslope erosion, landslides, gully erosion, channel
(bank) erosion and point sources from intensive primary industries. The TSS loads are
derived from empirical models and represent long-term annual averages from each source
(erosion process) delivered to the outlet of each Planning Unit.

Table 2. Hazardous processes for each hazard to drinking water quality considered in the Catchment
Investment Decision Support System (CIDSS).

Hazardous Process
Hazard

TSS Bacteria Protozoa Viral

Hillslope erosion X - - -
Landslides X - - -

Gully erosion X - - -
Channel (bank) erosion X - - -

Unsealed roads X - - -
Point source (instream sand and gravel

extraction) X - - -

Livestock grazing - X X -
Intensive livestock industries - X X -
Sewerage Treatment Plants - X X X
On-site Sewerage Facilities - X X X

Stormwater - X X X
Aquatic recreation - X X X

Pathogen sources are generated from livestock grazing, intensive livestock industries,
STPs, OSFs and stormwater runoff from urban and residential areas. Pathogen source data
are derived using the Sanitary Survey methodology [40–43] independent of the CIDSS.

The CIDSS currently includes 10 intervention programs containing 63 intervention
activities that can be implemented in combination. A subset of the interventions applied in
this case study is listed in Table 3. Each of the intervention activities (types) can impact
any of the hazardous processes. The CIDSS allows for additional interventions to be added
through updated input configuration tables.
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Table 3. Intervention programs and available intervention types to mitigate source catchment water quality risks in the
Logan-Albert catchment case study.

Program Intervention Efficacy

Channel erosion

Earthworks/rockwork/fencing—basic and complex 90%
Revegetation and fencing 90% & 1 LRV

Revegetation 60%
Livestock exclusion fencing 75% & 1 LRV

Broadscale Livestock
& Riparian Manag.

Earthworks basic 90%
Revegetation 60%

Livestock exclusion fencing 75% & 1 LRV
Revegetation and fencing 90% & 3 LRV

Fencing and off-stream watering 75% & 3 LRV
Revegetation, fencing and off-stream watering 90% & 3 LRV

Gully erosion

Earthworks/rockwork/fencing—basic and complex 90%
Revegetation with grasses 60%

Livestock exclusion fencing 75%
Revegetation and fencing 90%

Landslides

Earthworks complex 90%
Earthworks simple swales or contours 90%

Earthworks and fencing 90%
Revegetation with woody species 75%

Revegetation and fencing 90%
Livestock exclusion fencing 10%

Point sources
Revegetation with grass filter strips 80%

Revegetation and fencing 90%
Sediment detention dam (small, large, complex) 50, 60 & 75%

Intensive livestock
effluent manag.

Fencing to exclude calves from water course 60% & 1 LRV
Laneways 60% & 1 LRV

Stream crossings 60%
Feedpad—hardening with basic or advanced drainage 10, 20% & 1,2 LRV

Effluent pump upgrade and primary treatment (solids trap) 50% & 1 †,2 ‡ LRV
Secondary treatment 60% & 1 †,2 ‡ LRV

Effluent pump upgrade, primary treatment (solids trap) + irrigation 60% & 2 †,3 ‡ LRV
Effluent pump upgrade, primary treatment (solids trap) + Secondary + irrigation 60% & 3 †,4 ‡ LRV

TSS efficacy in percent, pathogen efficacy in log reduction value (LRV). † is LRV specific to bacteria, ‡ is LRV specific to protozoa. Efficacy
separated by comma indicate different values for the different level (e.g., small, large, complex) of the intervention.

Each intervention has a cost per unit specified as part of the input. These values are
derived from Seqwater’s historical investment programs that are based on commercial con-
tractor rates for implementing the different activities across the region. Each intervention
includes an efficacy for each of the hazardous processes (Table 3). The efficacy is used to
scale the initial hazard load through the application of the intervention. The efficacy for
erosion and sediment control is represented as a percentage reduction scaled by area of
intervention applied. Efficacy values can be specified for different types of intervention.
For example, where intervention requires stock exclusion fencing, complete exclusion will
have a different response to partial exclusion which still allows concentrated stock access
points. For pathogen hazards, intervention efficacy is based on log reduction values (LRV).

3.1.2. Computational Steps

A detailed description of the computational process is presented in the Supplementary
Material S2. The key concepts are described here. The three main computational steps are
data preparation, risk at plant conversion, and optimisation cost function.
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Data Preparation

The data preparation step converts data from its input form to a table that represents
the hazard at the planning unit for each input hazardous process. No transformation of
TSS data is required. For bacteria and protozoa, the input data are consequence scores
(log10 organisms (org)/day and log10 oocysts/day respectively) and likelihood scores (for
connecting to waterways) and provided in the form of site-based tables, which list each
site for each hazardous process within each planning unit. A modified score is calculated
using Equation (1) to provide a score representative of org/day and oocysts/day (in log10
domain) delivered to a watercourse from the source. To sum the scores for each hazardous
process and for each hazard, scores are converted to the natural domain summed and
converted back to the log10 domain.

Modified score = Consequence score − (5-Likelihood) (1)

Risk at Plant Conversion

There are multiple hazardous processes contributing to a single hazard. For exam-
ple, hillslope erosion, gully erosion, instream sources, unsealed roads and landslides all
contribute to the overall TSS load. Similarly, there are multiple hazardous processes con-
tributing to the microbial hazards. The pollutant load generated by hazardous processes at
the planning unit scale (input) is combined to produce a total hazard load at the planning
unit scale.

To determine the risk at WTP posed by the hazards and hazardous processes from
each Planning Unit, first the effective hazard at the plant is calculated by applying an
attenuation factor to allow for distance travelled and dam capture. The second step in the
procedure is to convert from the raw hazard units to a measure of risk at the WTP while
noting each plant has different treatment capabilities.

TSS attenuation is based on a half distance approach (Equation (2)) to account for
sediment loss from overland flow for Disconnected Planning Units and sediment deposition
and long-term storage along channelized flow paths (≥ 3rd-stream order).

TSSat = TSSPU

(
1
2

)D/d
(2)

where TSSat is TSS load after attenuation, TSSPU is TSS load at Planning Unit outlet, D is
distance from Planning Unit outlet to watercourse (≥3rd-stream order) for disconnected
Planning Units and/or watercourse distance from Planning Unit to WTP excluding reser-
voirs for connected Planning Units. d is a parameter defining the distance at which 1/2
the TSS is lost to long-term storage and is set to 0.5 km for overland flow for disconnected
Planning Units and 30 km for connected flow paths. D pertaining to Disconnected distance
and Connected distance are input fields for Planning Unit attributes.

Reservoir trapping efficiency of TSS is a precalculated variable based on inflow to reser-
voir volume relationships [44] and is included as an input field for Planning Unit attributes.
Further details of Trap efficiency calculation are provided in Supplementary Material.

Numerous factors influence pathogen attenuation rates [13]. Temperature and time
are main factors, however there are limited empirical data for die-off rates for subtropical
systems. Here, we use conservative attenuation rates based on temperate studies of 2 log
reduction in large reservoirs (>1 GL), 1 log reduction per 10 km of low discharge channel
and 1 log reduction per 50 km of high discharge channel [45]. Low discharge channel is
defined as having daily flows less than or equal to 3m3 s−1 for more than 70% of days
per year.

Hazard-to-risk conversion is applied to bring all hazards into a common unit for
system evaluation and is done by a lookup table. Each WTP has thresholds of treatment
capability for TSS (turbidity), bacteria, protozoa and viral loads (Table 4). Increasing from
insignificant to catastrophic requires changes to operation and increased treatment cost
until the plant either fails and/or needs to go offline due to not being able to treat the
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source water to a safe standard. Threshold values for pathogen are log scores directly
related to the modified log scores. For TSS loads, turbidity thresholds (NTU) have been
converted to annual load threshold based on (dis)aggregation methods using long-term
(≥10-year gauging station records) and TSS-NTU relationships established from regional
monitoring programs.

Table 4. Example water treatment plant lookup table for treatment capability thresholds.

Risk Descriptor TSS
(t/Year)

Viral (log10
Particles/Day)

Bacteria (log10
Organisms/Day)

Protozoa (log10
Oocysts/Day)

1 Insignificant <343 <4 <4 <3.5
2 Minor 343 < 521 4 < 5 4 < 5 3.5 < 4.5
3 Moderate 521 < 906 5 < 6 5 < 6 4.5 < 5.5
4 Major 906 < 2070 6 < 8 6 < 8 5.5 < 7.5
5 Catastrophic >2070 >8 >8 >7.5

In order to create a single objective function to control the optimisation, the four
risk values (TSS, protozoa, bacteria, viral) are combined to a single overall risk value.
The CIDSS creates the overall risk by applying a user specified weighting for the relative
contribution of each of the four hazard risks (default to even weighting across hazards).
The weighting approach requires the modeler to a priori determine the relative importance
of each hazard for the WTP operation. The weighting also allows the consideration of
hazards independently by scaling other hazards to zero.

Optimisation Function

The basic principle of the optimisation is to determine the overall reduction in risk
from the initial base case and to compare that to the cost of producing the risk reduction.

The CIDSS uses a third-party simulated annealing computation library called Siman-
neal (see https://pypi.org/project/simanneal/). The simulated annealing process in-
volves:

1. Randomly move or alter the state.
2. Assess the energy of the new state using an objective function.
3. Compare the energy to the previous state and decide whether to accept the new

solution or reject it based on the current temperature.
4. Repeat until you have converged on an acceptable answer.

For a new scenario to be accepted, it must meet one of two requirements:

a. The scenario causes a decrease in state energy (i.e., an improvement in the objective
function), or

b. The scenario increases the state energy (i.e., a slightly worse solution) but is within the
bounds of the temperature. The temperature exponentially decreases as the algorithm
progresses. In this way, we avoid getting trapped by local minima early in the process
but start to hone a viable solution by the end.

The parameters required to control the simulated annealing process are:

• Tmax—the maximum starting temperature.
• Tmin—the ending temperature.
• Steps—the number of iterations in the simulation.
• Max_saturated_Steps—the maximum number of iterations to consider from a point

determined to be close to a solution.

The key element of the simulated annealing approach is the logarithmic decline in
‘temperature’ and consequently the increased likelihood of accepting an improved scenario
(lower energy) as the number of steps grows. The basic cooling formulas are:

Tfactor = − math.log(Tmax/Tmin) (3)

https://pypi.org/project/simanneal/
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T = Tmax × math.exp(Tfactor × step/Steps) (4)

The energy is the cost function and the comparison as to whether to keep or reject a
portfolio configuration of interventions is based on the change in energy (dE) divided by
the temperature at that iteration step. The energy for a given iteration is the combination
of the reduction in risk from the base risk and the deviation of intervention cost from the
target budget:

Energy = ([interventionCost − budget])/([riskAfterIntervention − baseRisk]) (5)

dE = energy for this portfolio − energy for previous best-case portfolio (6)

In order to determine whether to accept a new portfolio, the energy must be lower
than the previous best case and the exponent (base 10) of the −dE/Temperature must be
greater than a random value between 0−1. The random value is selected from an even
distribution. The temperature value decreased logarithmically across the iteration (creating
a smaller math.exp(−dE/T) value for a given dE as the optimization progresses. However,
to ensure the method is not a simple hill climb strategy, this is compared to a random
upper bound. As the optimization progresses there is a decreasing chance of rejecting an
improved portfolio, and the optimization will approach a hill climb strategy.

Reject if dE > 0.0 and math.exp(−dE/T) < random.random (7)

The basic cost function of the CIDSS is to provide maximum risk reduction per dollar
(cf = $/risk_reduction). However, there is an additional requirement that intervention
portfolios should achieve a target budget. This is to allow for the common use case of ‘what
is the best collection of interventions for $x?’. If the optimisation focused purely on the risk
reduction/$, then a likely and common outcome may be to do nothing or do a very small
level of activity. In order to maintain an approach of maximum risk reduction per dollar for
a given budget, the CIDSS applies budget ‘cost penalty’ to the portfolio. If the cost of the
intervention portfolio is close to the target budget, then the cost penalty is low, however as
the intervention portfolio cost deviates from the target budget an increasingly high penalty
is applied. This high cost penalty will result in the scenario being rejected for one that is
closer to the target budget. The implemented cost penalty approach is to affect the overall
‘energy’ (which in turn affects if the portfolio configuration is accepted or rejected).

Each iteration of the function applies the intervention, reducing the hazards load. Cal-
culating a new set of raw hazards, their attenuation and risk after the applied intervention,
then passing that data to the cost function, calculates the total portfolio cost to verify if the
portfolio of interventions remains within the scenario budget assigned.

3.1.3. Interpreting Results

At the completion of the optimization process, the final portfolio of interventions is
stored, as is the hazard load as well as the attenuated hazard load (both before and after
interventions are applied). The associated total risk at the WTP is also stored. In order to
visualise the relative spatial distribution of the initial risk and the risk after the portfolio
of interventions has been applied, the CIDSS disaggregates the risk at WTP to provide a
relative contribution to risk for each contributing planning unit.

3.2. Scenario Case Study

The Logan-Albert case study presented here demonstrates a nested design, whereby
many planning units are upstream of more than one WTP. The CIDSS optimization process
attempts to develop optimal portfolios of interventions to best achieve risk reduction
across multiple downstream WTPs with varying treatment capacities. The case study
area has four operational WTPs set along the Logan River and a proposed future WTP
(CGW) located downstream to cater for growing demand and climate change resilience
(Figure 1C). A sixth WTP is in the adjacent Canungra Creek subcatchment of the Albert
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River. The collective catchment is divided into 135 Planning Units for assessing source
water quality risk and possible combinations of 36 interventions, which are applicable
in these catchments, are available for this scenario (Table 3). The example scenario has
been designed to mitigate suspended sediment sources from catchment erosion processes
and pathogen sources (point and non-point) from livestock industries. While pathogens
from STPs, OSFs, stormwater and recreation sites are included to determine total risk to
WTPs, this case study scenario excludes budget and interventions being applied to human
pathogen sources and therefore only focuses on livestock pathogen sources and TSS. As
only livestock pathogen sources and TSS considered in this scenario, the CIDSS hazard
weightings are split evenly between TSS, bacteria and protozoa, while viral particles are
given a zero weighting because livestock are not considered a viral source in the region.

4. Results and Discussion
4.1. Current State of Source Catchment Water Quality

The Logan-Albert catchment has very high loads of TSS, protozoa and bacteria.
Figure 2 illustrates the modelled range of TSS loads at the Planning Unit scale with many
Planning Units yielding in excess of 1000 t/year and Planning Units in Cannon Creek ex-
ceeding 10,000 t/year. Due to the nested WTP intake locations, a Planning Unit can deliver
different TSS (and pathogen) loads to nested WTP due to different transport distances,
hence deposition. For example, Figure 2B shows TSS loads delivered from Planning Units
to CGW in contrast to the total yield from the Planning Unit (Figure 2A) and compared
with TSS loads delivered to TBE (Figure 2C).

The dominant contributing hazardous processes to TSS risk at WTPs are landslides,
channel and gully erosion (Figure 3). A study conducted in Knapps Creek subcatchment,
which is 34.5 km upstream of the TBE (Figure 2A), predicted gully and channel erosion that
contributes 5950 t/year to the watercourse [46,47] compared to 6211 t/y modelled for the
CIDSS. The predicted load for this study is higher, but this can be attributed to additional
gully presence in the catchment following the impact of Ex-Tropical Cyclone Debbie in
2017. A radionuclide and geochemistry study following a 2008 flood event also reported
very high channel bank and gully erosion within the Logan-Albert catchment, particularly
from the Knapps and Cannon Creek subcatchments, which had very high delivery rates to
the Lower Logan [48], hence delivery to WTP intake locations. No studies have explicitly
considered the landslides occurring in the Cannon Creek subcatchment that contribute the
highest attenuated loads. The CIDSS attenuated sediment loads from Knapps and Cannon
Creek were also amongst the highest in the catchment and therefore are in agreeance with
past studies.
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WTP is offline. The effects of climate change on the magnitude and frequency of extreme 
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egy, and there are numerous examples of the consequences of impact of treatment failure 
on the population [50]. Therefore, by targeting the livestock sources compared with hu-
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with interventions. 
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derive risk reduction cost curves for budgets between $2,000,000 and $40,000,000. Based 
on the range of budgets considered in the simulations, risk reduction is achievable for a 
number of the WTPs (Figure 4). However, not all hazards have risk reduced at the WTPs. 
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and intensive livestock are not a source of viral load. There are no data presented for Unsealed roads in this case study.
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of TSS. Intensive livestock is the largest source of bacteria and protozoa. The triplet bars for pathogens represent each
hazard—bacteria (top), protozoa (middle) and virus (lower). The values in parentheses represent the weightings applied to
each hazard in the optimization.

The hazardous processes contributing to the highest bacteria and protozoa risk are
intensive livestock industries and cattle grazing in the catchment (Figure 3). CIDSS results
for the current state (before intervention) show bacteria and protozoa loads are very-high
risk, which implies the pathogen loads can exceed treatment plant capability to provide
safe and reliable drinking water. That is, there is a potential shortfall between WTP
capability to remove pathogen load compared to what is delivered to the WTP via the
watercourses. A necessary but less than ideal WTP management strategy is to take the
WTP off-line during the peak in contaminants typically associated with significant rainfall
and runoff events. This strategy is dependent on being able to (1) effectively identify
peaks in pathogen load and (2) have enough treated water available to meet demand
while the WTP is offline. The effects of climate change on the magnitude and frequency
of extreme weather events, hence on pathogen loading [49], may limit the effectiveness of
this strategy, and there are numerous examples of the consequences of impact of treatment
failure on the population [50]. Therefore, by targeting the livestock sources compared with
human waste sources, this case study scenario is targeting the highest pathogen risk source
with interventions.

4.2. Potential for Source Water Risk Reduction

A total of 35 simulations of the scenario were run to explore the solution space and
derive risk reduction cost curves for budgets between $2,000,000 and $40,000,000. Based
on the range of budgets considered in the simulations, risk reduction is achievable for a
number of the WTPs (Figure 4). However, not all hazards have risk reduced at the WTPs.
TSS cannot be reduced at CGW, TBE, TCN, and TKO below risk level 5 for budgets explored
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in the simulations and the range of interventions currently considered. Similarly, bacteria
cannot be reduced at TBE, TRA, and TKO below risk level 5. While risk level reduction
may be achievable for these hazards, the magnitude of investment required is not viable in
the short to medium (5–10 year) term.
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By considering the pareto front for the weighted mean risk reduction between hazards
(TSS, bacteria and protozoa), the largest rate of change in mean risk relative to cost is
evident for budgets up to $5,000,000 (Figure 5). While smaller budgets also have high rates
of risk change, at individual WTPs, few hazards actually change risk levels (i.e., from risk
level 5 to 4 or from 4 to 3). However, a pareto optimal solution for a $5,000,000 budget is
on the inflection point of the pareto front curve and results in risk level change.
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4.3. Selected Scenario

The pareto optimal solution (Figure 5 red circle) is selected for the basis of planning
catchment program of works. Based on the selected scenario and its portfolio of interven-
tions, a reduction in risk level can be achieved at CGW and TMD while WTPs TKO, TRA,
TBE, and TCN receive within-level risk reduction. That is, loads from hazardous processes
are reduced but there are either too many sites requiring intervention and/or the loads are
too high relative to the threshold required to change risk level.

The change between the current state (before intervention) and future state after
the application of the intervention portfolio for CGW WTP is shown in Figure 3. The
selected intervention portfolio reduces protozoa risk from level 5 to 4, which is due to
a 2-log reduction in protozoa loads that can be achieved from interventions applied to
intensive livestock industries (Figure 6). A 2-log reduction was also achieved for bacteria
from intensive livestock industries, however bacteria loads are more than 2-log above
the proposed CGW treatment capability threshold. In addition, bacteria from livestock
grazing sources are a very high risk and only 0.4 log reduction is achieved. The reason for
a small log reduction is due to the large number of grazing properties where livestock have
access to watercourses. All high-risk grazing properties, which can be viewed in the CIDSS,
will require interventions to better manage stock around watercourses before significant
bacteria risk reduction can be achieved.

TSS sources to CGW were reduced by 3446 t/year primarily from interventions
applied to channel erosion (Figure 6), despite landslides contributing the highest loads to
CGW. An explanation for the intervention portfolio addressing channel erosion sources
rather than the high landslide sources is due to the proximity of channel erosion to CGW
combined with the higher longitudinal connectivity of channel erosion sources to the CGW
relative to the landslide sources. However, similar to bacteria, TSS risk remained at level 5
due to annual loads being an order of magnitude higher than the threshold value required
to change risk levels.
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Figure 6. Reduction in (A) TSS and (B) pathogen loads to Cedar Grove Weir based on the selected solution portfolio of
interventions. Intervention log reduction values for bacteria and protozoa are the same.

The intervention costs for each of the WTP subcatchments show 58% of the overall
budget is allocated to Planning Units downstream of TBE to reduce risk to a future CGW if
its treatment capability for each of the hazards is similar to TEB WTP (Table 5). Channel
erosion and riparian management include interventions for managing cattle grazing and
therefore pathogen risk as well as TSS risk account for 44% of the intervention solution
while 46% of the intervention solution is allocated for the management of effluent from
intensive livestock agriculture such as dairy (Table 6).

Table 5. Proportion of budget allocation to each subcatchment where ‘Source catchment’ represents
total contributing area, and ‘Excluding nested WTP’ represents the proportion of catchment only
contributing to the referenced WTP.

WTP Source Catchment Excluding Nested WTP

TCN 1% 1%
TMD <1% <1%
TRA 8% 7%
TKO 22% 14%
TBE 41% 19%

CGW 99% 58%

Table 6. Proportion of the scenario budget allocated to the different intervention programs.

Program Percent of Budget Cost

Channel erosion and riparian management
interventions 44%

Gully interventions 9%
Landslide interventions 1%

Intensive livestock interventions 46%

4.4. Prioritisation of CIDSS Solution

The selected scenario included intervention works to be applied across 111 Planning
Units to achieve the identified risk reduction. The first step to prioritize on ground imple-
mentation of the optimized intervention portfolio is ranking the size of load reduction for
each Planning Unit after accounting for load attenuation. For example, headwater inter-
ventions may reduce TSS load within the Planning Unit by 100 t/year, however this may
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only account for a reduction of 20 t/year at a downstream WTP. Mid or lower catchment
interventions may reduce Planning Unit TSS load by 60 t/year, which may represent a
50 t/year reduction at the WTP. Thus, the second example with the mid to lower catchment
Planning Unit would be ranked above the headwater Planning Unit. Additionally, because
the attenuated load will vary between the nested WTPs, the prioritization is applied based
on attenuation/deposition to the most downstream WTP. Thus, initial works programs can
start targeting sites where the largest reductions in hazardous processes can be achieved.
Figure 7 illustrates Planning Unit prioritisation for TSS load reduction. Here, the top 10
ranked Planning Units are located in close proximity to WTP intakes for CGW, TBE, TRA
and TCN. Similarly, Planning Unit prioritisation mapping for protozoa and bacteria are
produced to guide planning of the on-ground works to achieve the largest log reductions
for these hazards in the early phase of the program rollout.

Water 2021, 13, 531 18 of 23 
 

 

 
Figure 7. Prioritised Planning Units based on net TSS reduction at CGW. Planning Units without a rank (no colour shad-
ing) have no interventions applied in the scenario solution. 

4.5. Consequence of Increasing Water Supply in Open Catchments 
The proposed new water treatment plant CGW increases source catchment area by 

996 km2 and includes a reservoir with a storage capacity of 102,884 ML. As such, CGW 
allows for longer travels distance and time, hence higher attenuation of hazards from the 
nested WTP catchments. The reservoir also serves to attenuate pathogens and trap sedi-
ment from a tributary. However, the additional source catchment area incorporates nu-
merous erosion, bacteria and protozoa hazards in the lower catchment, which results in 
58% of the intervention budget for the entire catchment needing to be spent mitigating the 
water quality risks from the new source catchment area (Table 5). Based on the scenario 
solution, a reduction in risk for protozoa is achieved while TSS (even with a reduction of 
3660 t/year) and bacteria still present a very high risk to plant. The proposed new CGW 
WTP may need to be designed to treat higher loads of TSS and bacteria than the existing 
TBE WTP (upon which the future CGW capability was based for the scenario) to ensure 
the provision of safe drinking water based on both land use challenges and future climate 
changes [50]. 
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Notably, there are a large number of Planning Units requiring intervention for TSS and
pathogen risk and the selected scenario budget for this case study yielded only modest risk
reductions. This is indicative that the hazardous processes in the Logan-Albert catchment
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are chronic. There are no ‘low hanging fruit’ Planning Units where targeted interventions
to a few Planning Units would result in significant risk reduction.

The CIDSS prioritized results present a significant refinement from previous studies
in the region seeking to determine hazard sources and management options. Radionuclide
and provenance studies had limited ability to attribute land use to the exact erosion process
(e.g., channel bank, gully or landslide) and their specific location, and therefore such
studies could not determine a fit-for-purpose intervention portfolio. Where radionuclide
studies in the region have indicated that channel and gully erosion are the dominant
erosion processes [46], subsequent assessment of channel condition has indicated 6350 km
of watercourse require riparian revegetation to reduce channel erosion by 50% [10]. If
considering both channel banks, then this equates to 12,700 km of riparian interventions and
therefore little directional guide for catchment managers as to where to start. The prioritized
Planning Units maps, when considered with conditional information on locations of
previous intervention works, landowner willingness, site accessibility and practicality,
provide a planning guide for implementing catchment interventions to contain the existing
highest risk hazardous processes in a cost-effective process.

4.5. Consequence of Increasing Water Supply in Open Catchments

The proposed new water treatment plant CGW increases source catchment area by
996 km2 and includes a reservoir with a storage capacity of 102,884 ML. As such, CGW
allows for longer travels distance and time, hence higher attenuation of hazards from
the nested WTP catchments. The reservoir also serves to attenuate pathogens and trap
sediment from a tributary. However, the additional source catchment area incorporates
numerous erosion, bacteria and protozoa hazards in the lower catchment, which results in
58% of the intervention budget for the entire catchment needing to be spent mitigating the
water quality risks from the new source catchment area (Table 5). Based on the scenario
solution, a reduction in risk for protozoa is achieved while TSS (even with a reduction of
3660 t/year) and bacteria still present a very high risk to plant. The proposed new CGW
WTP may need to be designed to treat higher loads of TSS and bacteria than the existing
TBE WTP (upon which the future CGW capability was based for the scenario) to ensure
the provision of safe drinking water based on both land use challenges and future climate
changes [50].

4.6. Sensitivity Analysis, Uncertainty and Future Directions

The purpose of the CIDSS is to generate portfolios of interventions to provide a
cost-effective return on investment. The CIDSS relies on a large range of input data and
parameterization in order to apply the optimization process. Whilst the input data and
parameterisation are the best available, they are not perfect. In order to assess the potential
impact of parameterization (optimization settings, intervention efficacy, intervention cost,
WTP risk thresholds, trap scaling), the CIDSS has a Monte Carlo runner. The Monte Carlo
runner allows a scenario to be explored by setting upper and lower ranges and number
of intervals for all parameters. The Monte Carlo runner repeats the scenario for every
combination of potential parameter values to provide a distribution of results. The Monte
Carlo runner provides guidance as to the most sensitive parameters (and focuses future
data collection and refinement) and also demonstrates how sensitive or otherwise the
selection of an intervention portfolio is to potential errors in the parameter values.

To demonstrate the Monte Carlo runner, global parameters and WTP catchment
specific parameters were varied to evaluate scenario solution sensitivity. Increasing the
simulated annealing parameter max_steps by an order of magnitude (1000 to 10,000)
narrowed the range in the solution set in terms of change in mean risk and the budget used
for the intervention solution. However, there was no overall improvement of the pareto
optimal solution with only a single replicate scenario producing a slightly higher mean
risk change (Figure 8). Similarly, increasing the increment (step = 0.2) size of intervention
amount iteratively tried produced a solution set with the budget used very close to the
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budget available ($5M), but still yielded a solution range in mean risk change similar to the
base parameter set. The increase in step size most likely enabled the optimizer to get closer
to the global solution faster than with smaller step size and therefore enable more iterations
of different intervention configurations close to the global optimum to minimize the cost
penalty in the objective function. The scenario solution set was not improved (sensitive) to
the remaining simulated annealing parameters S_Max_Steps (=500), Tmax (=250,000,000)
and Tmin (=2.5).
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Global intervention parameter values representing intervention efficacy and cost only
influenced solution results where catchment risk/load was close to a threshold value
for a particular hazard and therefore the solution result was not considered sensitive to
intervention cost and efficacy values applied. Similarly, the solution had low sensitivity
to risk at plant thresholds except for the TSS threshold for TMD. For example, Figure 9
shows no change in TSS risk for CGW whereas TMD varies from TSS risk 1 to 5 if TSS risk
at plant threshold is decreased. This is because the TMD risk threshold is already very low
(20 t/year), there is a narrow range between risk 1 to 5 in terms of TSS annual load, and
the current modelled TSS load delivered to TMD (20.2 t/year) is just over the threshold. If
the TSS threshold is lowered, then saving additional TSS becomes proportionally harder
given the near background TSS loads from the catchment. Assessing the sensitivity of the
risk at WTP thresholds helps determine solution sensitivity to the modelled hazard input
data, which contain considerable uncertainty. Transforming the data into Risk has reduced
solution sensitivity to modelled input values [37], however work is continuing to reduce
input hazard data uncertainty via expanded water quality monitoring of TSS and pathogen
concentrations across the hydrograph to better understand the rate and quantity of these
hazards transported through the catchment. Additionally, ongoing catchment mapping
research is also being used to identify the location and extent of landslide, channel and
gully erosion, and combined with experimental field monitoring at specific sites to estimate
rates of erosion before and after interventions have been implemented.
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selected portfolio of interventions.

5. Conclusions

A CIDSS has been developed to support bulk water suppliers to supply safe drinking
water by using a risk framework to identify and compare water quality hazards relative
to WTP location in the catchment and WTP treatment capability. The CIDSS supports the
development of catchment management plans to improve the first barrier in providing safe
drinking water by identifying a near-global optimum solution set of interventions to reduce
the highest risks relative to WTP treatment capability for the lowest cost using a simulated
annealing optimizer. For the Logan-Albert catchment scenario with nested WTPs, a pareto
optimal solution based on a budget of $5,000,000 was shown to reduce overall catchment
mean risk. In the catchment dominated by agricultural land use, protozoa risk can be
reduced at most of the nested WTPs based on the selected solution, however TSS loads
and bacteria remain a treatment challenge. This study also illustrates how the CIDSS can
be used to determine new WTP capability requirements by determining hazard loads and
therefore potential risk at any point within the modelled catchment area.
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