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Abstract: The hydrological model is the primary tool for regional water resources management,
allocation, and prediction. However, these models always suffer from large uncertainties from
multiple sources. Therefore, it is necessary to conduct an uncertainty analysis before performing
hydrological simulation. Sequential Uncertainty Fitting (SUFI-2), Parameter Solution (ParaSol),
Generalized Likelihood Uncertainty Estimation (GLUE), and Particle Swarm Optimization (PSO)
integrated with the SWAT-CUP software were used to calibrate the Soil and Water Assessment Tool
(SWAT) model and quantify the parameter sensitivity and prediction uncertainty of the SWAT in the
Lancang River (LR) Basin, which is located in the southwest of China. This model was calibrated
and validated using the four algorithms both at the daily scale, and the optimal simulation results
derived by the four methods showed that the SWAT model performed well over the Yunjinghong
station with Nash–Sutcliffe efficiency coefficient (NSE) and coefficient of determination (R2) val-
ues greater than 0.8 both in the calibration (1975 to 1989) and validation (1990 to 2004) periods.
Among the four algorithms, the ParaSol algorithm produced the best simulation result at the daily
scale with NSE values of 0.89 and 0.90 for the calibration and validation periods, respectively. Fur-
thermore, the ParaSol algorithm has the greatest proportion of simulations (94%) with an NSE greater
than 0.5. Parameter sensitivity analysis results demonstrated that the four methods all can be used
for parameter sensitivity analysis in streamflow simulation, and they all identified that the base flow
factor for bank storage (ALPHA_BNK) and effective hydraulic conductivity in the main channel
alluvium (CH_K2) were more sensitive. The uncertainty analysis of model parameters showed that
the parameter 95PPU (95% prediction uncertainty) width yielded by the ParaSol algorithm was the
smallest compared with that of the other methods, followed by PSO, SUFI-2, and GLUE. The un-
certainty analysis of the model simulation indicated that the SUFI-2 and PSO methods can achieve
satisfactory results (with P-factor > 0.7 and R-factor < 1.5) at the daily scale; among them, SUFI-
2 (P-factor = 0.93, R-factor = 1.17) performed much better than PSO (P-factor = 0.78, R-factor = 1.14).
In general, by comparing its evaluation criteria (NSE, R2, RE, P-factor, and R-factor) to other methods,
ParaSol stood out as the most efficient tool for model calibration. However, SUFI-2 remains the
most robust method to perform uncertainty analysis considering its uncertainties of model structure,
model inputs, and parameters. This study provides insight into hydrological simulation of the LR
Basin using the appropriate algorithm to calibrate the model and implement the uncertainty analysis.

Keywords: SWAT model; Lancang River Basin; uncertainty analysis; SWAT-CUP; hydrological simulation

1. Introduction

Regional water resources are increasingly impacted by higher living standards, agricul-
tural irrigation, land and water use policies, climate change, construction of hydropower sta-
tions, and other external forces (e.g., industrial uses, domestic and ecological water
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uses) [1–3]. Thus, accurate hydrological forecasting is indispensable for local water re-
source planning, management, and water policy development [4,5]. With the improve-
ments in computer technology and mathematical calculation efficiency, an increasing
number of hydrological models have been developed and applied in various watersheds
such as climate change, water resource management, and flood forecasting studies [6,7].
In general, these models can be divided into lumped (e.g., Hydrologiska Byråns Vattenbal-
ansavdelning model (HBV) [8], Xinanjiang model [9] and Australia Water Balance Model
(AWBM) [10]) and semi-distributed or distributed hydrological models (e.g., Soil and Water
Assessment Tool (SWAT), Distributed Hydrological Soil Vegetation model (DHSVM, [11])
and Variable Infiltration Capacity model (VIC, [12])). Lumped hydrological models often
treat the study area as a homogeneous whole and then use the watershed average precipi-
tation and evapotranspiration as inputs to simulate the streamflow process. Unlike lumped
hydrological models, distributed hydrological models consider the different attributes in
different regions of the study area. These models often need inputs of the topographic data
of the study area, the meteorological data of different sites, soil data, and vegetation data.
These complex inputs and the complex structures of distributed hydrological models
also bring great uncertainty to simulations of the models [13,14]. Among these models,
the SWAT model has proven to be powerful enough to assess the impacts of climate change
and land-use change on regional water resource across multiple watersheds around the
world [15–18].

Unfortunately, these models often suffer from large uncertainties in the application pro-
cess, mainly including the following: (1) model input uncertainty; in the process of model
calibration and uncertainty analysis, it is inevitable to input a large amount of observation
information including precipitation, temperature, relative humidity, and soil database to
obtain better model simulation results; however, these datasets often suffer from mea-
surement errors and systematic errors [19,20]; (2) model structure uncertainty, which is
mainly due to the simplifications and assumptions of natural systems within the model [1];
and (3) uncertainty of model parameters, mainly including parameters that control wa-
tershed attributes and hydrological processes, as these parameters are often difficult to
measure directly. Therefore, during the calibration of model parameters, we often use
empirical methods or reference to other literature to determine the values of the cali-
brated parameters, which may also bring new uncertainties [21]. In addition, correlation
and interaction between parameters can also create uncertainty, which known as equifinal-
ity for different parameters [13]. Among these three sources of uncertainty, the uncertainty
of the parameters is relatively easy to control by selecting the appropriate algorithm [19].
Any unsuitable adjustments and modifications to key parameters that control the hydro-
logical processes may have a large amplification effect on streamflow generation [21,22].
Without a reasonable model uncertainty analysis of the model parameters and structure,
it will be difficult to obtain the credibility of our simulation targets, such as assessing
future water changes under the influence of climate change and human activities [23,24].
Therefore, uncertainty analysis is especially important to improve the performance and
credibility of hydrological simulation [13,19,25].

Numerous published studies have focused on the uncertainty of parameters and
predictions in hydrological simulations [1,19,26,27]. With the development of comput-
ing technology, an increasing number of optimization algorithms have been proposed to
solve or reduce model uncertainty [28]. Among these algorithms, Sequential Uncertainty
Fitting (SUFI-2) [1], Parameter Solution (ParaSol) [29], Generalized Likelihood Uncertainty
Estimation (GLUE) [25], and Particle Swarm Optimization (PSO) [30] are more efficient
and widely used algorithms for uncertainty analysis in hydrological modeling. How-
ever, the identification of key parameters and the quantification of their uncertainties
(parameter uncertainties and streamflow simulation uncertainties) vary with the study
area/location [21]. Therefore, before further hydrological analysis, especially in some
watersheds with complex terrain, it is necessary to conduct parameter sensitivity and
uncertainty analysis. However, at present, there are limited studies that focus on compar-
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isons among different parameter sensitivity analysis methods (i.e., SUFI-2, GLUE, ParaSol,
and PSO) in evaluating the impact of parameter uncertainty on streamflow simulation [21].
Moreover, there are fewer studies related to comparing differences in main hydrological
components using different optimization algorithms [26].

The Lancang River (LR) Basin is located in the southwestern region of China, and it
includes the upper reaches of the Lancang-Mekong River Basin, which is the largest
international river in the Indochina Peninsula [31]. At present, the LR Basin is one of
the most active areas in the world for hydropower development [32–34]. The study of
streamflow simulation and its uncertainty in this basin is of great significance for resolving
water resources disputes and water resources management among the countries along
the river basin [35]. The current related research in this watershed mainly focuses on
streamflow simulation, and there are few published studies on the uncertainty of model
parameters and streamflow simulation. Han et al. [32] used the CREST (Coupled Routing
and Excess Storage) model to quantify the contribution rate of climate change and human
activities to the runoff change in the LR Basin. Their result showed that the contribution
rate of human activities to the reduction of runoff in the basin during the impact period
was about 95%. Tang et al. [18] used the SWAT model to evaluate the simulation accuracy
of remote sensing and reanalysis precipitation products in the LR Basin. As a result,
they found that the SWAT model has good applicability in the LR Basin, but different
precipitation inputs have greater uncertainty.

In general, there are relatively few studies on the uncertainty of model parameters
and streamflow simulation in the LR Basin. Therefore, the objectives of this study are as
follows: (1) evaluate the feasibility of the SWAT model for simulating streamflow over the
Yunjinghong station in the LR Basin; (2) analyze the uncertainty of the parameters and
predictions of the SWAT model by using the SUFI-2, GLUE, ParaSol, and PSO methods;
and (3) evaluate and compare the simulated quantities of different main hydrological
components in different methods.

2. Study Area, Datasets, and Methods
2.1. Study Area

The LR is located in the southwestern region of China (Figure 1) and originated from
the northeast slope of the Tanggula Mountains; it flows approximately 2140 km through
Qinghai Province, Tibet Autonomous Region, and Yunnan Province of China from north
to south, with a total drainage area of approximately 142,000 km2 [32,36]. It has an average
elevation of approximately 3387 m, showing significant topographical characteristics of
high north and low south. In the Qinghai–Tibet Plateau in the northern part of the basin,
its elevation can reach 5871 m, while the lowest elevation in the lower plain area is only
547 m.

The climate of the LR Basin is regulated by the Indian monsoon system and westerlies
monsoon with a mean annual precipitation ≈870 mm based on time series provided by the
China Gauge-based Daily Precipitation Analysis (CGDPA) from 1961 to 2015. The precipi-
tation in the basin has an extremely uneven spatial distribution, the annual precipitation in
the Qinghai–Tibet Plateau in the northern part of the basin is only 400 mm, while it can be
as high as 1800 mm in the southern plain. The monsoon climate causes the precipitation in
the basin to show significant seasonal characteristics, which brings abundant water vapor
and precipitation to the basin from June to September, accounting for ≈70% of the annual
precipitation [31]. Correspondingly, the streamflow of the LR basin is mostly concentrated
in June to October, and other months are the dry seasons [37].

The soil types in the upper reaches of the LR Basin are mainly Gelic Leptosols and
Mollic Leptosols, and the lower reaches are mainly Dystric Cambisols and Ferric Acrisols.
The land-use types in the LR Basin are mainly pasture, forest land, and agricultural land.
Pasture is mainly distributed in high-altitude areas in the upper reaches, while forest and
agricultural land are mainly distributed in the lower reaches of the LR Basin (Figure 1).
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Figure 1. DEM (Digital Elevation Model), main rivers, soil types and land use types of Lancang River Basin (LRB, over Yun-
jinghong station).

2.2. Datasets
2.2.1. Geographical Data

The Digital Elevation Model (DEM) of the Shuttle Radar Topography Mission with a
90 m resolution was used for the SWAT model development (http://srtm.csi.cgiar.org/).
The soil dataset with ≈1 km resolution used in this study is Harmonized World Soil
Database version 1.2 (HWSD v1.2), and it was obtained from the Food and Agriculture
Organization (FAO) of the Untied State [38], which was further reclassified into 16 types
using the ArcGIS tool (Figure 1). The land-use and land-cover change (LUCC) data with
a resolution of ≈1 km was downloaded from the Global Land Cover 2000 (GLC2000)
(http://bioval.jrc.ec.europa.euproducts/glc2000/products.php), and it has been reclas-
sified into five types according to the database provided by SWAT model (Figure 1).
The reclassification of soil and land-use data was conducted to meet the data requirements
of the SWAT model and to reduce the complexity of model calculations.

2.2.2. Meteorological Data

The daily meteorological dataset was obtained from the China Gauge-based Daily
Precipitation Analysis (CGDPA), which was developed by the National Meteorological
Information Center of China Meteorological Administration [39,40]. This dataset was gen-
erated based on ≈2400 gauge observations from 1955 to almost the present over Mainland
China using the optimal interpolation method [39]. A CGDPA series of datasets can provide

http://srtm.csi.cgiar.org/
http://bioval.jrc.ec.europa.euproducts/glc2000/products.php
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daily precipitation, maximum and minimum temperature, relative humidity, and wind
speed with a spatial resolution of 0.25, which are also required input data for streamflow
simulation of a SWAT model. Previous studies have successfully applied CGDPA products
to hydrometeorological research in many regions of China [18,41,42]. In this study, we en-
tered each grid point of the CGDPA product with the period from 1973 to 2004 as a virtual
station into the SWAT model.

The daily streamflow data of the Yunjinghong hydrometric station (Figure 1) from
1973 to 2004 were obtained from The Ministry of Water Resources of the People’s Republic
of China and the local water management department.

2.3. SWAT Model

SWAT is a process based, semi-distributed hydrologic model which was developed by
The Agricultural Research Service of the United States Department of Agriculture (USDA-
ARS) to assess the impact of water resource management policies and non-point source
pollution [43,44], and it has been widely used for flood forecasting [15], flood risk manage-
ment, water resources assessment [17], and climate change impact on water resources [6,45]
all over the world. In addition to its proven ability to simulate streamflow and assess
other water quantity and quality problems, the SWAT model has already been chosen by
The Mekong River Commission as part of its hydrological modeling tools since 2010 [46].
More detailed information about the SWAT model can be found in other literature.

The SWAT Version 2012 model coupled with the ArcGIS10.2 user interface was used
to set up and parameterize in this study, and it was set up for the LRB over Yunjinghong
station with the meteorological datasets mentioned above from 1973 to 2004. The LRB
had been divided into 172 sub-basins (Figure 1) based on the DEM and gradient data,
and further into 625 Hydrologic Response Units (HRUs) according to the information of soil,
LUCC, water resources management, and topographical characteristics [1]. The categories
of gradient data used were 0–5%, 5–10%, 10–15%, and >15% in the definition of each HRU.
Five elevation bands were set in in this study to adjust the precipitation and temperature
based on the sub-basin elevation changes [47]. The soil and LULC data were reclassified
into 14 and six types, respectively based on the database provided by the SWAT model itself.

2.4. Uncertainty Analysis Methods

The uncertainty analysis methods (SUFI-2, GLUE, ParaSol, and PSO) used in this
study are included in the SWAT-CUP (SWAT Calibration and Uncertainty Programs)
platform [13]. A brief introduction to these uncertainty analysis methods is provided
in this section, and more detailed information on these methods can be found in other
literature [14,21].

2.4.1. SUFI-2

The Sequential Uncertainty Fitting procedure version 2 (SUFI-2) was developed by
Abbaspour et al. [14], which is based on a Bayesian framework [5,48]. In the SUFI-2 method,
the uncertainties of the parameters mainly include three aspects: the uncertainty of the
input data sets, the model structure, and the measured data. The degree of uncertainty is
primarily measured by the P-factor, which is usually expressed as 95 PPU (indicating the
cumulative distribution of the simulated variable at the 2.5% and 97.5% levels, that is,
95% prediction uncertainty), and it represents the percentage of observed data enveloped
by the 95PPU band [16]. The 95PPU uses the Latin hypercube sampling (LHS) method [49]
to select the simulated value of the variable between 2.5% and 97.5%, and this value also
excludes the worst 5% of cases. LHS is a stratified sampling technique, which requires
approximate random sampling from the multi-parameter distribution to ensure that the
sample structure is similar to the overall structure, thereby improving the accuracy of
the estimation [50]. In addition, another measure to quantify the strength of uncertainty
analysis is the R-factor, which is the ratio of the 95PPU width to the standard deviation.
The main purpose of SUFI is to measure the uncertainty of the measured data and minimize
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the parameter interval. In general, SUFI first assumes a relatively large set of parameter in-
tervals, so that the measured data are bracketed by the 95PPU, thereby narrowing the
parameter range, and reducing the uncertainty interval. Finally, the three different objective
functions (e.g., Nash–Sutcliffe efficiency coefficient (NSE), deterministic coefficient (R2),
relative error (RE)) can be used for further simulation and study.

2.4.2. ParaSol

The Parameter Solution (ParaSol) algorithm was developed based on the Shuffled
Complex Evolution (SCE-UA) method [29], which reduces the objective functions (OFs)
and the global optimization criterion (GOC) by integrating the OFs into GOC to implement
model calibration and uncertainty analysis. The SCE-UA algorithm is a global optimization
method that minimizes one specific objective function with a maximum of 16 calibrated
parameters [29]. This method combines the direct search principle of the simplex method
with the controlled random search proposed by Nelder and Mead [51], which is a system-
atic evolution of parameter sets in searching for global improvement, complex shuffling,
and competitive evolution [52]. In the process of SCE-UA execution, an initial population
is first randomly generated within a reasonable range of p parameters to be adjusted;
then, this initial group is divided into several complexes that consist of 2p + 1 points.
Then, each complex evolves independently using the simplex algorithm based on the value
of the objective function. To share information among each complex, these complexes are
periodically reorganized to form new complexes. After the calibration of ParaSol, all the
simulation results are divided into “good” and “not good” simulations according to a crite-
rion value specified by a model user. ParaSol has been widely used for model calibration
and uncertainty analysis and is generally found to be efficient and robust [21,53].

2.4.3. GLUE

Generalized Likelihood Uncertainty Estimation (GLUE) is a Monte Carlo simulation
process based on the concept of multi-finality for some parameter sets that was devel-
oped by Beven and Binley [25]. This method takes the likelihood value of the alternative
parameter value as the relative fitting ability of the parameter set to the measured data.
The GLUE method is easy to implement, and it assumes that there is no unique optimal
parameter set in the case of large over-parameterized hydrological models. The subjective
likelihood measure is used to generate a posterior probability function and estimate the
weights associated with each different calibrated parameter set, which are then used to
estimate the predictive uncertainty of the output variables [19]. In addition, similar to
the ParaSol method, the GLUE algorithm also divided the simulation results into “good”
or “not good” by comparing the NSE with the threshold value set by the user [19,21],
and the uncertainty analysis can also be performed using the P-factor and R-factor. Cur-
rently, the GLUE method has increasingly been used for the calibration of hydrological
models and parameter uncertainty analysis [53,54].

2.4.4. PSO

The Particle Swarm Optimization algorithm (PSO) is a group-based optimization
method first proposed by Kennedy and Eberhart in 1995 [30]. This method has been
widely used in various industries because it is easy to implement and does not require
gradient information [55]. It can also be used to solve a variety of optimization problems,
including most problems that can be solved using genetic algorithms, and it can also
solve some applications including neural network training and functional minimization.
Initially, based on the value of the objective function, certain particles are identified as the
best particles. Then, all the particles are accelerated in the direction of the particle, which is
the direction of their own best solution they have previously found. Sometimes, parti-
cles go beyond the target and search beyond the current optimal particle search space,
in which case all particles have a chance to find better particles so that the other particles
will change direction and face the new “best” particles [55]. Since most features have
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a certain degree of continuity, a good solution may be surrounded by an equally good
or better solution. By approaching the current best solution from different directions
in the search space, these neighboring solutions are highly likely to be discovered by
certain particles. Since PSO was created, it has been increasingly applied to the parameteri-
zation of hydrological models, the uncertainty analysis of hydrological model parameters,
and reservoir scheduling [55–57].

Before the uncertainty analysis, we first used the above four methods to identify the
key parameters of the model’s streamflow simulation in the Lancang River basin and
conducted a global sensitivity analysis of the parameters. In the procedure of the global
sensitivity analysis, parameter sensitivities were described as a multiple regression system
that was subsequently used to obtain the statistical value of the parameter sensitivity.
A t-test (Student’s t-distribution) was used to calculate the relative significance of each
calibrated parameter, and the t-Stat, which means a parameter divided by its standard error,
was used to evaluate the parameter sensitivity. The P-value was another indicator used to
evaluate the uncertainty, and this value measures the null hypothesis of the t-test that the
coefficient has no effect (equal to zero). In general, a parameter with a large t-Stat value
and a small P-value suggests that it has a higher sensitivity [5,52].

In order to evaluate the performance of the hydrologic model, Nash–Sutcliffe ef-
ficiency coefficient (NSE) [58], coefficient of determination (R2) and relative error (RE)
were used. In the process of evaluating the uncertainty of the model, we applied two
indictors including P-factor and R-factor [21]. Equations and their perfect values are listed
in Table 1.

Table 1. List of the statistical metrics for assessing model performance and uncertainty.

Statistic Metrics Equation Perfect Value

Nash–Sutcliffe efficiency coefficient (NSE) NSE = 1 − ∑n
i=1(Qoi−Qsi)

2

∑n
i=1(Qoi−Qo)

2
1

Coefficient of determination (R2) R2 =
[∑2

i=1(Qoi−Qo)×(Qsi−Qs)]
2

∑n
i=1(Qoi−Qo)

2×∑n
i=1(Qsi−Qs)

2
1

Relative error (RE) RE = ∑n
i=1(Qsi−Qoi)

∑n
i=1 Qoi

× 100% 0

P-factor P = nin
n × 100% 1

R-factor R =
wq
σq

0

(Notation: n represents total number of variables; Qoi , Qsi , Qo , and Qs represents the observed, simulated, mean of
observed streamflow, and mean of simulated streamflow, respectively; nin represents the number of observed
variables bracketed by the 95PPU; wq is the mean width of the 95PPU, and σq is the standard deviation of the
observed variable.)

3. Results
3.1. Global Sensitivity Analysis

Before calibrating the SWAT model, nine parameters (Table 2) that control different
hydrological cycles were selected based on previous publications [23,47,54] to implement
the global sensitivity analysis by using the SUFI-2, ParaSol, GLUE, and PSO methods.
In the parameter selection process, we mainly refer to the results in the research area
that has similar characteristics of runoff generation and convergence with the LR Basin.
It should be pointed out that we performed 2000, 3000, 5000, and 3000 simulations in SUFI-2,
ParaSol, GLUE, and PSO, respectively, according to the recommendations of previous stud-
ies [16,53]. The sensitivity ranking of the nine parameters and the corresponding p-value
and absolute value of t-Stat values are shown in Figure 2. As can be seen from Figure 2,
the four algorithms all recognized that parameter ALPHA_BNK (Baseflow alpha factor
for bank storage) had the highest sensitivity in the streamflow simulation of the LR basin,
followed by CH_K2, which was the effective hydraulic conductivity in the main channel al-
luvium. In other published studies related to parameter sensitivity, the ALPHA_BNK and
CH_K2 were also found to have high sensitivity in streamflow simulations in the same
or similar research areas [18,59]. The third sensitivity parameters identified by the four
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methods of SUFI-2, ParaSol, GLUE, and PSO were SFTMP, GW_REVAP, SOL_BD, and AL-
PHA_BF, respectively, and the other six parameters showed relatively lower sensitivity for
streamflow simulation. At the same time, we can see that SFTMP was also highly sensitive,
indicating that snowmelt streamflow plays an important role in the LR basin [60]. Table 2
shows the physical meaning and initial range of values of the nine selected parameters as
well as the optimal simulation values obtained by the four methods. It can be seen from
Table 2 that the optimal parameter combination values obtained by different methods were
quite different from each other. In general, through the above analysis results, the SUFI-2,
ParaSol, GLUE, and PSO all can be used for parameter sensitivity analysis of streamflow
simulation in the LR basin, and they can identify the key parameters (ALPHA_BNK and
CH_K2) of streamflow simulation in this area.

Table 2. Description and initial ranges of nine selected calibrated parameters and their final optimal values for SUFI-2,
ParaSol, GLUE, and PSO methods.

Parameters Description Range
Optimal Value

SUFI-2 ParaSol GLUE PSO

V_ALPHA_BNK Base flow factor for bank storage 0–1 0.47 0.98 0.98 0.86

V_CH_K2 Effective hydraulic conductivity in
main channel alluvium 0–500 19.1 154.6 479.5 140.6

V_SFTMP Snowfall temperature (◦C) −5–5 −3.4 2.1 4.0 0.98
V_GW_REVAP Groundwater “revap” coefficient 0.02–0.2 0.05 0.07 0.06 0.05

R_CN2 SCS runoff curve number −0.2–0.2 −0.14 −0.19 0.05 −0.14
V_SOL_BD Moist bulk density 0.9–2.5 1.64 1.56 1.38 1.71

V__ALPHA_BF Baseflow alpha factor (days) 0–1 0.75 0.61 0.02 0.01
R_SOL_K Saturated hydraulic conductivity −0.8–0.8 0.32 0.17 0.48 0.74

V_SMTMP Snowmelt base temperature (◦C) −5–5 −0.29 2.84 −3.59 −0.46

(Notation: “V_” and “R_” means a replacement and a relative change based on the initial parameter values, respectively).

3.2. Simulation Results

Using daily precipitation, maximum temperature, minimum temperature, wind
speed, and relative humidity from 1973 to 2004, we compared the optimal simulation
results derived from SUFI-2, ParaSol, GLUE, and PSO with the daily observed streamflow.
In order to reduce the influence of the initial values of the model parameters on the sim-
ulation results, 1973 and 1974 were used as the warm-up period, 1975 to 1989 were used
as the calibration period, and 1990 to 2004 were used for validation. Figure 3 shows the
comparison of the observed streamflow and the best simulation for the Yunjinghong station
at daily scale, and the optimal model evaluation metrics derived from the four algorithms
are listed in Table 3. As can be seen from Figure 3, the simulated streamflow by using
these four methods could all capture the daily streamflow process, but the parameter sets
derived from the four methods were not in exact accordance with each other (Table 2),
which meant that these four different algorithms could search for different combinations of
parameters with similarly good simulations. As shown in Table 3, the model evaluation
metrics of the four methods were all excellent in the calibration, validation, and the whole
periods (NSE and R2 were both above 0.8, and RE was below 10%). According to the
recommended standards in Moriasi et al. [61], the performance of the models obtained by
the four methods has reached “very good performance”. In general, from the performance
of different methods, the NSE and R2 values calibrated by ParaSol were the largest, fol-
lowed by SUFI-2, GLUE, and PSO in the calibration and validation periods at a daily scale.
From the perspective of RE, the simulated streamflow in both the calibration and valida-
tion periods was slightly overestimated compared with the observed streamflow (with a
positive RE value), but these REs were all below 10%. In summary, compared with the
other three methods, ParaSol had its own unique advantages in searching for the optimal
parameter set to yield the best simulated streamflow.
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Figure 2. Rankings of the parameter sensitivities and the values of the absolute value of t-Stat and
p-value yielded by Sequential Uncertainty Fitting procedure version 2 (SUFI-2) (a), Parameter Solu-
tion (ParaSol) (b), Generalized Likelihood Uncertainty Estimation (GLUE) (c) and Particle Swarm
Optimization (PSO) (d) (Notation: ‘V_’ and ‘R_’ represent a replacement and a relative change to the
initial parameter values, respectively).

Table 3. Model evaluation metrics in the streamflow simulation during the calibration (1975 to 1989),
validation (1990 to 2004), and the whole periods (1975 to 2004) at daily scale.

Calibration
Method Period

Daily

NSE R2 RE (%)

SUFI-2
Calibration 0.88 0.89 6.5
Validation 0.89 0.89 6.1

All 0.89 0.89 6.3

ParaSol
Calibration 0.89 0.92 8.9
Validation 0.9 0.91 8.8

All 0.9 0.92 8.8

GLUE
Calibration 0.86 0.88 3.4
Validation 0.88 0.89 4.2

All 0.87 0.89 3.8

PSO
Calibration 0.84 0.86 4.7
Validation 0.84 0.84 4.3

All 0.86 0.84 4.5

(Notation: NSE, R2 and RE means Nash–Sutcliffe efficiency coefficient, coefficient of determination, and rela-
tive error, respectively).
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Figure 3. Comparison of best simulation results using the SUFI-2 (a), ParaSol (b), GLUE (c), and PSO (d) methods compared
against the observed streamflow in the calibration (1975 to 1989) and validation (1990 to 2004) periods. The blue histogram
shows the average daily precipitation in the Lancang River (LR) Basin.

3.3. Uncertainty Analysis in Streamflow Simulation

The model simulation uncertainty (95PPU) and metric values to evaluate the predic-
tion uncertainty at daily scale derived from SUFI-2, ParaSol, GLUE, and PSO are shown
in Figure 4 and Table 4. We can clearly see from Figure 4 that the 95PPU obtained by the
SUFI-2 method was significantly greater than the other three methods over the calibration
(P-factor = 0.92), validation (P-factor = 0.94), and whole periods (P-factor = 0.93), indicating
that SUFI-2 had a significant advantage in the uncertainty analysis of streamflow simu-
lation. For the other three methods, the thickness of 95PPU of PSO (P-factor = 0.78) was
greater than that of GLUE (P-factor = 0.66). While the 95PPU of ParaSol was the smallest
(P-factor = 0.51), this also indicated that although ParaSol had certain advantages in finding
the optimal simulation parameter set (Figure 3 and Table 3), it was insufficient to apply it
to the uncertainty analysis of runoff simulation. In general, the scope of the uncertainty
evaluation indicators proposed by Abbaspour [52], that is, P > 0.7 and R < 1.5, are treated as
acceptable performance in terms of streamflow prediction uncertainty. The SUFI-2 and PSO
methods can be used for uncertainty analysis in the LR basin at daily scale. Among them,
the SUFI-2 method was better than PSO, because its P-factor value was much larger than
that of PSO.
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Figure 4. Comparison of the daily simulated streamflow with 95PPU against the observed streamflow by using SUFI-2 (a),
ParaSol (b), GLUE (c) and PSO (d) methods.

Table 4. Metrics of the four uncertainty analysis methods over the calibration (1975 to 1989) and
validation (1990 to 2004) periods at daily scale.

Method Period P-Factor R-Factor

SUFI2
Calibration 0.92 1.21
Validation 0.94 1.14

All 0.93 1.17

ParaSol
Calibration 0.51 0.78
Validation 0.51 0.75

All 0.51 0.76

GLUE
Calibration 0.65 1.11
Validation 0.67 1.06

All 0.66 1.08

PSO
Calibration 0.78 1.18
Validation 0.78 1.12

All 0.78 1.14

To further evaluate the ability of these four algorithms for the uncertainty analysis in
streamflow simulation, according to the hydrological simulation evaluation index classifica-
tion recommended by Moriasi et al. [61] (0.75 < NSE ≤ 1, 0.65 < NSE ≤ 0.75 and 0.5 < NSE
≤ 0.65 respectively represent the simulation results “satisfactory”, “good”, and “excellent”),
we counted the frequency (%) and number of all simulation results of the four methods
falling within different NSE value intervals (Figure 5 and Table 5). It can be seen from
Figure 5 and Table 5 that out of 3000 simulations of the ParaSol algorithm, 2363 simulations
(accounting for 79%) were excellent. This was because the SCE-UA algorithm used in
ParaSol would adjust the evolution direction of the parameter combination according to
the objective function value in real time, which led this algorithm to have the most simula-
tions with NSE greater than 0.75. As for the GLUE algorithm, it had 2067 times (41%) of
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simulation results that perform poorly (NSE < 0.5), and only 615 times (12%) of simulation
results with NSE greater than 0.75. This was mainly since the GLUE algorithm consid-
ered the uncertainties of multiple sources of hydrological simulation (hydrological model,
meteorological input, etc.), resulting in a relatively large parameter combination interval.
Meanwhile, PSO only had 352 times (11.7%) simulation results with NSE greater than 0.75,
which was the worst performance among the four methods. This was mainly determined
by the structure of the algorithm, because this algorithm was a random search algorithm
that simulates the predation behavior of birds, which made the algorithm easy to fall
into local optimal solutions [30]. The SUFI-2 algorithm also showed excellent streamflow
simulation capabilities. In the 2000 simulations, a total of 573 simulations (29%) had an NSE
greater than 0.75, and a total of 1313 simulations (33%) were “satisfactory”. In summary,
the ParaSol algorithm presented a good performance in streamflow simulation, with more
simulation results showing “excellent” (NSE > 0.75), followed by SUFI-2, PSO, and GLUE.

Figure 5. Frequency distribution of different Nash–Sutcliffe efficiency coefficient (NSE) values using
the SUFI-2, ParaSol, GLUE, and PSO methods in the whole period (1975 to 2004).

Table 5. Frequency of runoff simulation results obtained by four methods in different NSE intervals.

NSE Interval SUFI-2 ParaSol GLUE PSO

NSE < 0.5 687 175 2067 1297
0.5 < NSE ≤ 0.65 308 177 1086 654
0.65 < NSE ≤ 0.75 432 285 1232 697

0.75 < NSE ≤ 1 573 2363 615 352
Number of simulations 2000 3000 5000 3000

3.4. Uncertainty Analysis in Model Parameters

The distribution of different parameters yielded by SUFI-2 (a), ParaSol (b), GLUE (c),
PSO (d) (the top six parameters in sensitivity ranking) and their corresponding NSE value
scatter plots are shown in Figure 6. It can be seen from Figure 6 that the different combina-
tions of the six parameters had a significant impact on the NSE value. The values of the
most sensitive parameter ALPHA_BNK and NSE showed a class-exponential distribution
in statistical significance, and its correlation with NSE was significant, especially in the
interval of −0.5 < NSE < 0.5, but there was no obvious correlation in the interval of NSE
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greater than 0.5. In general, with the increase of ALPHA_BNK, NSE showed an increas-
ing trend. As for the CH_K2 parameter with the second sensitivity ranking, when it was in
the interval of 0–100, the NSE had the larger value, and when the value was greater than
100, the NSE showed a decreasing trend. The correlation between the parameter SOL_BD
and the NSE value was generally very weak. For the GW_REVAP parameter, the values
yielded by the SUFI-2 and ParaSol methods had a small negative correlation with the NSE;
with the increase of the parameter, the NSE gradually decreases. The correlation coefficients
presented by the four methods of parameter CN2 were similar to those of GW_REVAP.
Within the parameter range we set, some parameter combinations had obtained poor
simulation results (NSE was around −1.5), but at the same time, the ParaSol method
obtained the best simulation results (NSE = 0.90, R2 = 0.92), and the optimal simulation
results obtained by the other three methods were also relatively good. The combination
of these parameters with poor simulation results may lead to a relatively large value of
95PPU. At the same time, in the parameter combination with a large NSE, the common
phenomenon of “equifinality for different parameters” in hydrological simulation could
be found; that is, different parameter combinations have achieved similar and identical
objective function values.

Figure 6. Scatter plots of the parameter combinations obtained by SUFI-2 (a), ParaSol (b), GLUE (c), PSO (d), and the
NSE values. (The red line is calculated based on the weighted average of all parameter distributions).

Table 6 shows the correlation matrix between the parameter combinations calculated
by SUFI-2, ParaSol, GLUE, and PSO. It can be seen from Table 6 that the correlations
between the different parameter combinations produced by the four methods were obvi-
ously different. In general, the correlation between the parameter combinations generated
by the ParaSol algorithm was relatively obvious, CH_K2 and CN2 (0.36), CH_K2 and
GW_REVAP (0.34), CH_K2 and SOL_BD (0.29), CN2 and GW_REVAP (0.26), ALPHA_BNK
and SFTMP (0.24), ALPHA_BNK and SOL_K (0.21) all showed positive. CN2 and AL-



Water 2021, 13, 341 14 of 21

PHA_BNK, SOL_BD and SMTMP, SMTMP and CN2 were negatively correlated, and their
correlation coefficients were −0.47, −0.32, and −0.31, respectively. The correlation between
the different parameters produced by the PSO algorithm was weaker than that produced by
the ParaSol algorithm. The combination of parameters generated by the SUFI-2 algorithm
and the GLUE algorithm had less correlation with each other, which made it more reason-
able for the two algorithms to analyze the sensitivity of hydrological model parameters
and the hydrological simulations. Conversely, this also caused the optimal simulation
results obtained by these two algorithms to be slightly worse than the results obtained by
the ParaSol algorithm.

Table 6. Parameter combination correlation coefficient matrix generated by SUFI-2, ParaSol, GLUE,
and PSO (Notation: p1, p2, p3, p4, p5, p6, p7, p8, and p9 represent ALPHA_BNK, CH_K2, SOL_BD,
GW_REVAP, SFTMP, CN2, SOL_K, SMTMP, and ALPHA_BF, respectively).

SUFI-2 p1 p2 p3 p4 p5 p6 p7 p8 p9

p1 1 −0.02 −0.01 −0.01 0.02 −0.02 0.01 0.00 −0.01
p2 1 0.01 −0.03 −0.02 0.02 0.00 0.02 −0.02
p3 1 0.00 0.00 0.03 0.01 0.00 −0.02
p4 1 −0.02 0.02 −0.03 0.01 −0.05
p5 1 0.03 0.02 −0.01 −0.02
p6 1 0.01 0.02 −0.02
p7 1 −0.02 −0.01
p8 1 −0.04
p9 1

ParaSol p1 p2 p3 p4 p5 p6 p7 p8 p9

p1 1 −0.26 −0.09 −0.09 0.24 −0.47 0.21 0.20 0.04
p2 1 0.29 0.34 −0.21 0.36 −0.10 −0.26 −0.12
p3 1 0.24 −0.15 0.09 −0.13 −0.32 0.04
p4 1 −0.08 0.26 0.04 −0.21 −0.08
p5 1 −0.19 0.08 0.17 0.06
p6 1 −0.15 −0.31 −0.12
p7 1 0.25 −0.05
p8 1 0.08
p9 1

GLUE p1 p2 p3 p4 p5 p6 p7 p8 p9

p1 1 0.00 0.00 −0.01 0.00 −0.01 0.01 0.00 0.01
p2 1 0.01 −0.01 0.02 −0.01 0.01 0.02 −0.02
p3 1 −0.01 0.02 0.00 0.02 −0.01 −0.01
p4 1 −0.01 −0.02 −0.02 0.01 −0.01
p5 1 −0.03 0.00 −0.02 0.02
p6 1 0.01 −0.02 −0.01
p7 1 0.02 0.01
p8 1 0.02
p9 1

PSO p1 p2 p3 p4 p5 p6 p7 p8 p9

p1 1 0.22 −0.04 0.14 −0.21 0.17 −0.15 0.19 0.22
p2 1 −0.03 0.08 −0.15 0.20 −0.15 0.14 0.22
p3 1 −0.03 0.03 −0.06 0.02 −0.03 −0.02
p4 1 −0.11 0.15 −0.08 0.09 0.14
p5 1 −0.13 0.12 −0.10 −0.18
p6 1 −0.11 0.13 0.20
p7 1 −0.07 −0.14
p8 1 0.20
p9 1

Table 7 shows the 95PPU value of the parameter combination obtained by the four
methods of SUFI-2, ParaSol, GLUE, and PSO. It can be seen from Table 7 that within given
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initial parameter ranges, among the parameter sets obtained by the two methods of SUFI-2
and GLUE, the 95PPU of these two parameter sets was relatively close, and it was larger
than that derived from ParaSol and PSO. Among them, the parameter ranges generated by
ParaSol were the smallest. This was because in the process of optimizing model parameters
for the ParaSol algorithm, it constantly updates the parameter combination according to
the optimal value of the objective function. Therefore, the ParaSol algorithm could achieve
better streamflow simulation results (Table 3). The parameter ranges generated by the PSO
algorithm were larger than those generated by ParaSol. This was due to the limitation of
the algorithm itself, in the case of convergence, because all particles “fly” in the direction
of the optimal solution (the objective function value was the largest). This will cause the
updated parameter group to tend to be the same, which will slow down the convergence
speed in the later stage and cannot continue to optimize. This was also one of the main
reasons why the streamflow simulation result of the PSO algorithm was slightly worse than
those of the other algorithms. As for the SUIF-2 and GLUE algorithms, because these two
methods consider the uncertainties of hydrological models and other aspects in the process
of optimizing streamflow simulation parameters, the range of parameters generated by the
two methods was relatively large. In general, SUFI-2 and GLUE have greater advantages in
the uncertainty analysis of model parameters, while the PSO and ParaSol algorithms have
certain limitations, although the ParaSol algorithm can obtain larger NSE and R2 values.

Table 7. Comparison of initial ranges and 95PPU of parameter groups obtained by SUFI-2, ParaSol,
GLUE, and PSO.

Parameter Initial Ranges
95PPU

SUFI−2 ParaSol GLUE PSO

V_ALPHA_BNK (0,1) (0.03,0.97) (0.30,1) (0.02,0.98) (0.01,0.94)
V_CH_K2 (0,500) (12.6,487.4) (11.8,470.4) (12.89,487.5) (2.1,469.9)

V_SOL_BD (0.9,2.5) (0.94,2.46) (0.92,2.46) (0.94,2.46) (0.98,2.42)
V_GW_REVAP (0.02,0.2) (0.02,0.2) (0.02,0.18) (0.02,0.196) (0.03,0.19)

V_SFTMP (−5,5) (−4.75,4.75) (−3.6,4.98) (−4.75,4.73) (−4.5,4.98)
R_CN2 (−0.2,0.2) (−0.19,0.19) (−0.2,0.13) (−0.19,0.19) (−0.19,0.18)

R_SOL_K (−0.8,0.8) (−0.76,0.76) (−0.57,0.8) (−0.76,0.76) (−0.72,0.76)
V_SMTMP (−5,5) (−4.75,4.75) (−4.50,5) (−4.75,4.77) (−4.78,4.26)

V_ALPHA_BF (0,1) (0.03,0.97) (0.04,0.96) (0.02,0.98) (0.02,0.94)

3.5. Water Balance Components Analysis

In the process of hydrological model calibration, the model often adjusts the other
variables to make the variables we want to calibrate close to the measured variable. Table 8
shows the average contributions to the water balance for the main hydrological components
at the Yunjinghong station using the SUFI-2, ParaSol, GLUE, and PSO algorithms with the
optimal parameter sets (Table 2). From 1975 to 2004, the average annual precipitation was
872.2 mm, as predicted by CGDPA. It was worth noting that the actual evapotranspiration
(ET) values predicted by the four methods were not much different from each other, sug-
gesting that the actual evapotranspiration calculated using these four different algorithms
had the least uncertainty. In addition to the ET variable, the other main hydrological
components differ greatly among the different algorithms. For the surface runoff (SURQ),
CN2 controlled the SURQ of the watershed, and the CN2 value that was derived from the
GLUE algorithm was much larger than that of the other three algorithms (Table 2) to the
results showed a large surface runoff for GLUE, followed by ParaSol, PSO, and SUFI-2.
ALPHA_BNK, SOL_K, and SOL_BD mainly affected the base flow and groundwater runoff
(GWQ) of the river. The GWQ calculated by SUFI-2 was larger than that derived from
the other three methods. The GWQ calculated by ParaSol and GLUE was quite different,
but the values for their most sensitive parameter, ALPHA_BNK, were relatively close
(Table 2), which meant that the parameters did not affect streamflow generation separately,
and the joint effects between different parameters would affect the quantities of different
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hydrological components in the basin. For snowmelt runoff (SM), the calculation result of
GLUE was significantly greater than those of the other three methods. This was mainly
controlled by two snowmelt parameters (SFTMP and SMTMP). The SFTMP calculated by
GLUE was 4.0 ◦C, which was significantly larger than the other three methods, and it meant
that more precipitation exists in the form of snowfall, while SMTMP was the smallest,
indicating more snow has been melted. Figure 7 shows the multi-year average variation in
different hydrological components derived from the SUFI-2, ParaSol, GLUE, and PSO meth-
ods from 1975 to 2004. From 1975 to 2004, the actual evapotranspiration (ET) calculated by
the four algorithms accounts for less than half of the precipitation. In addition to the actual
evapotranspiration (ET), the calculation results of the four methods all showed that lateral
flow (LAT) accounts for the largest proportion of streamflow formation in the basin.

Table 8. Average contributions of different hydrometeorological components to the water balance.

Hydrometeorological Elements
Uncertainty Analysis Method

SUFI-2 ParaSol GLUE PSO

Precipitation (mm) 872.2 872.2 872.2 872.2
Surface runoff (mm) 55.6 47.9 134.0 26.9
Lateral flow (mm) 214.6 273.0 165.3 285.1
Snow melt (mm) 10.7 50.4 79.2 40.1

Groundwater (mm) 129.9 60.5 98.3 90.6
Evapotranspiration (mm) 433.5 443.6 433.9 441.4

Total water yield (mm) 400.0 381.5 397.5 402.7

Figure 7. Multi-year average variation in different hydrological components derived from the
SUFI-2, ParaSol, GLUE, and PSO methods from 1975 to 2004. (Notation: TWY = Total Water Yield,
ET = evapotranspiration, GWQ = Groundwater Runoff, SM = Snow Melt, LAT = Lateral Runoff,
SURQ = Surface Runoff).

4. Discussion

To obtain better simulation results, it is important to identify the sensitivities of the key
parameters before calibrating a model. In this study, global sensitivity analysis was imple-
mented to identify the nine most sensitive parameters from the streamflow simulation with
25 selected parameters. As shown in Table 1, ALPHA_BNK and CH_K2 were identified as
more sensitive than the other seven parameters. These two parameters were also found to
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be more sensitive in other published studies [59]. It should be pointed out that CN2 was
found to have low sensitivity in this study, and some published studies showed that its
sensitivity was high [21,53], because CN2 mainly controls the surface runoff process of the
watershed, and in this study area, the contribution of surface runoff to the entire runoff
was relatively small. The model performance calibrated by using the four algorithms is
shown in Table 3. In terms of the model evaluation indicators, the ParaSol method had
slightly higher NSE and R2 values as well as a small RE value than the other three methods
in the calibration, validation, and the whole periods at daily scale, suggesting that this
method had its own advantages in searching for the global optimal solution. This finding
was consistent with the findings of other published papers [21,27]. This is mainly because
ParaSol combines the advantages of deterministic search, random search, and biological
competitive evolution, and it can adjust the evolution direction of the parameter combina-
tion according to the objective function value in real time and then seek the global optimal
solution [21,27,29]. Therefore, we recommend that the ParaSol algorithm can be used pref-
erentially to search for the optimal combination of parameters in the streamflow simulation
over the Yunjinghong station compared with the other three methods. From Figure 3,
we can also clearly see that the optimal simulation results obtained by ParaSol, GLUE,
and PSO show different degrees of underestimation in the dry season (from March to May),
which is also the reason for the large relative error (RE) of the simulation. The reason
for this phenomenon may be the influence of the SWAT model’s own snowmelt module,
which uses only a simple degree-day factor model to estimate the snowmelt process [44].
Another reason may be the impact of water transfer in the dry season of the main stream
reservoir of the LR Basin. Of course, due to the complex topographic features of the
study area, CGDPA meteorological data may also bring certain uncertainty to the stream-
flow simulation results [41].

For the model prediction uncertainty analysis, our study showed that SUFI-2 and
PSO were better methods with relatively larger P-factors and smaller R-factors. For the
uncertainty of the model parameters, our study showed that most calibrated parameters
derived by ParaSol had narrower widths (95PPU) compared with the initial ranges, which
suggested that ParaSol was less robust in implementing the uncertainty analysis for stream-
flow prediction. For the SUFI-2, GLUE, and PSO algorithms, the wider 95PPU of the
parameters may be because these three methods considered multiple uncertainties, such as
that of the parameters, model structure, and correlation between parameters, which may
lead to relatively larger parameter uncertainties than those of the ParaSol method. We also
compared the numbers of simulations of the four methods that were relatively good (with
NSE greater than 0.5) (Figure 5 and Table 5). The ParaSol algorithm had 2825 (94%) simula-
tion results with NSE coefficients greater than 0.5 in the whole period (1975 to 2004) and
performed much better than the other three algorithms, while the PSO method had the
least number (1703, 57%) of simulations with an NSE greater than 0.5; these results meant
that ParaSol, which based on the SCE-UA algorithm, was very efficient in searching for the
parameter set closest to the optimal value of the objective function (refer to the NSE coeffi-
cient) [21,27]. As pointed out by Yang et al. [54], the PSO algorithm easily falls into a local
optimal solution when dealing with the optimal solution of discrete problems, which may
lead to the poor performance of PSO in the uncertainty analysis of streamflow simulations.

We also compared the amounts of the different main hydrological components that
were derived from the four algorithms with each optimal parameter set. We found that the
actual evapotranspiration (ET) calculated by the four different algorithms was basically
the same, while the other hydrological components differed greatly in the different methods
(Table 8 and Figure 7), these findings suggested that although we obtained good simulation
results for the streamflow, these simulation results also had large uncertainties for the
components of the entire hydrological cycle [16,26]. The possible reason is that we mainly
calibrate the model by fitting the simulated streamflow and the observed ones. In order
to get better simulation results, the total water yield derived from the four methods is
basically the same (Table 8). Based on the principle of water balance, the amount of actual
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evapotranspiration is not much different from each other. Due to lacking more measured
data from the study area, we can adjust the model parameters by using remote sensing soil
moisture and evapotranspiration to reduce the uncertainty of the model simulations in a
follow-up study.

5. Conclusions

In this study, we evaluated the streamflow simulation capabilities and uncertainties
of four uncertainty analysis algorithms (i.e., SUFI-2, ParaSol, GLUE, and PSO) through a
semi-distributed hydrological model, the SWAT model, for a case study in the Lancang
River (LR) Basin over the Yunjinghong station. The main conclusions are as follows:

(1) The global sensitivity analysis of the nine selected parameters indicated that all
four methods could be used for parameter sensitivity analysis in the LR Basin, and all
could identify the key parameters with higher sensitivity (ALPHA_BNK and CH_K2).
Meanwhile, the sensitivity of the other seven parameters to streamflow simulation was
relatively low. This result will have reference significance for the calibration of the hydro-
logical model parameters of the basins, which has similar runoff generation and confluence
characteristics with the LR Basin.

(2) The simulation results using the four algorithms showed that the streamflow
process can be well simulated using the CGDPA meteorological product and the SWAT
model in the LR Basin at the daily scale. Among the four methods, ParaSol had the best
performance with NSE and R2 values of 0.89 and 0.92 for the calibration period, and 0.90
and 0.91 for the validation period, respectively, followed by SUFI-2, GLUE, and PSO.
These results indicated that compared with the other three methods, ParaSol had specific
advantages in seeking the optimal combination of parameters.

(3) The results of the uncertainty analysis showed that the SUFI-2 and PSO can
achieve better results, and the performance of SUFI-2 was much better than PSO in terms
of P-factor (0.93 vs. 0.78) and R-factor (1.17 vs. 1.14) values. For the uncertainty of
the parameters, the ParaSol method had the smallest 95PPU thickness compared with the
other three methods. For acceptable simulation times (NSE > 0.5), the ParaSol method had
the most proportion simulation times, followed by SUFI-2, GLUE, and PSO.

(4) It could be seen from the analysis results of the main hydrological components
of different methods that the actual evapotranspiration (ET) calculated by the four meth-
ods was relatively close, while the other hydrological components (such as Groundwa-
ter Runoff, Surface Runoff, Snow Melt, and Lateral Runoff) have large differences among
the different methods.

Although some conclusions of this study can provide important references for hydro-
logical simulation of basins with similar runoff and confluence characteristics to the LR
Basin, this study still has certain limitations. In this study, we only consider the uncertainty
of the average streamflow in the hydrological simulation, and we did not consider the
impact of parameter uncertainty on the high and low flows, which are also of great signifi-
cance to water resources management in the basin. On the other hand, this study did not
consider the uncertainty of other hydrometeorological elements (such as soil moisture, etc.)
related to the hydrological cycle. In addition, in a follow-up study, the high-resolution
remote sensing soil moisture and evapotranspiration data can be used to calibrate the
other main hydrological components of the water cycle, thus reducing the uncertainty of
the simulation.
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