é
- water

Article

A Synergic Use of Sentinel-1 and Sentinel-2 Imagery for
Complex Wetland Classification Using Generative Adversarial
Network (GAN) Scheme

Ali Jamali 1, Masoud Mahdianpari 2-3-*, Fariba Mohammadimanesh 3, Brian Brisco *(” and Bahram Salehi °

check for

updates
Citation: Jamali, A.; Mahdianpari,
M.; Mohammadimanesh, E,; Brisco, B.;
Salehi, B. A Synergic Use of Sentinel-1
and Sentinel-2 Imagery for Complex
Wetland Classification Using
Generative Adversarial Network
(GAN) Scheme. Water 2021, 13, 3601.
https:/ /doi.org/10.3390/w13243601

Academic Editor: Chang Huang

Received: 1 November 2021
Accepted: 13 December 2021
Published: 15 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Civil Engineering Department, Faculty of Engineering, University of Karabiik, Karabiik 78050, Turkey;
alijamali@karabuk.edu.tr

Department of Electrical and Computer Engineering, Memorial University of Newfoundland,

St. John's, NL A1B 3X5, Canada

3 C-CORE, 1 Morrissey Road, St. John’s, NL A1B 3X5, Canada; fm7550@mun.ca

4 The Canada Centre for Mapping and Earth Observation, Ottawa, ON K1S 5K2, Canada;
brian.brisco@canada.ca

Department of Environmental Resources Engineering, College of Environmental Science and

Forestry (SUNY ESF), State University of New York, Syracuse, NY 13210, USA; bsalehi@esf.edu

*  Correspondence: m.mahdianpari@mun.ca

Abstract: Due to anthropogenic activities and climate change, many natural ecosystems, especially
wetlands, are lost or changing at a rapid pace. For the last decade, there has been increasing
attention towards developing new tools and methods for the mapping and classification of wetlands
using remote sensing. At the same time, advances in artificial intelligence and machine learning,
particularly deep learning models, have provided opportunities to advance wetland classification
methods. However, the developed deep and very deep algorithms require a higher number of
training samples, which is costly, logistically demanding, and time-consuming. As such, in this study,
we propose a Deep Convolutional Neural Network (DCNN) that uses a modified architecture of the
well-known DCNN of the AlexNet and a Generative Adversarial Network (GAN) for the generation
and classification of Sentinel-1 and Sentinel-2 data. Applying to an area of approximately 370 sq. km
in the Avalon Peninsula, Newfoundland, the proposed model with an average accuracy of 92.30%
resulted in F-1 scores of 0.82, 0.85, 0.87, 0.89, and 0.95 for the recognition of swamp, fen, marsh, bog,
and shallow water, respectively. Moreover, the proposed DCNN model improved the F-1 score of
bog, marsh, fen, and swamp wetland classes by 4%, 8%, 11%, and 26%, respectively, compared to the
original CNN network of AlexNet. These results reveal that the proposed model is highly capable of
the generation and classification of Sentinel-1 and Sentinel-2 wetland samples and can be used for
large-extent classification problems.

Keywords: wetland classification; machine learning; CNN; Deep Convolutional Neural Network;
Generative Adversarial Network

1. Introduction

Wetlands have been identified as one of the most valuable ecosystems on Earth for
both fauna and flora in recent decades. Their functions are expected to provide critical
support for at least seven of the United Nations’ 17 core Sustainable Development Goals [1].
Wetlands are regions that are permanently or intermittently inundated with fresh, brackish,
or saltwater, including marine water less than six meters deep at low tide, whether arti-
ficially or naturally [1]. Water storage and purification, coastline protection, carbon and
other nutrient processing, food security, and the support of huge biodiversity of plants
and animals are some of the significant aspects of wetlands, depending on the wetland
type [1,2]. Despite their necessity, wetlands are declining at a rate greater than any other
environment, owing primarily to global climate change, as well as anthropogenic activities
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(e.g., urbanization and industrialization) [2]. Wetlands are widely recognized for providing
a wide range of ecological services. They are subjected to extensive land-use change,
pollution, and agricultural drainage, among other things, which are threatening the extent
and viability of wetlands. The necessity for complete wetland inventories and subsequent
monitoring capabilities to determine status and trends is essential, as it provides the foun-
dation for directing effective evaluation, monitoring, and management of wetlands [3].
As such, large-scale monitoring and classification of distinct wetland types is critical for
preventing further loss and implementing and evaluating preservation policies [4-10].

Different wetland classification methodologies have been proposed in response to
the various information requirements. The Canadian National Wetland Working Group,
for instance, distinguishes wetlands into five categories: swamps, bogs, fens, marshes,
and shallow water/ponds [8,11]. Despite the fact that the necessity to inventory and
evaluate wetlands is generally understood, the methodology and data resources utilized
differ depending on the area of interest, financial and human resources, and the quality
of information requested [9]. Wetland monitoring with the use of field-based tools (e.g.,
surveying engineering) is informative. However, it is time-consuming, logistically demand-
ing, and expensive to implement over a wide or distant area. As a result of reduced costs
and wider spatial coverage, wetland inventory and monitoring usually rely on remote
sensing data and techniques [12-14]. However, because of their intrinsic dynamism and
natural range of change, wetlands are difficult to accurately classify using remotely sensed
data [13]. Water levels vary substantially from wetland to wetland, year to year, and even
season to season [15], requiring the use of remotely sensed data with a higher temporal
resolution than is normally necessary to map other less dynamic land cover types (i.e.,
traditional land use land cover mapping). Considering their responsiveness to different
properties of wetland vegetation, prior studies indicated success of wetland mapping
by incorporating multi-source remote sensing data obtained from optical and synthetic
aperture radar (SAR) sensors [6,16-19]. Although hyperspectral data provide rich spectral
information necessary for identifying spectrally comparable wetlands (e.g., bog and fen),
this methodology is impracticable due to the high cost of data and difficult and limited
availability [16]. Wetland mapping through multi-spectral remote sensing data is more
feasible than hyperspectral data, due to the great accessibility and availability of these
kinds of data [4,20-22]. The synergistic combination of Sentinel-1 and Sentinel-2 has proven
its superiority over the use of single-source imaging techniques for wetland mapping [23].
Although, due to the intrinsic complexity of wetlands (e.g., similar spectral reflectance in
optical and SAR images for different wetland classes), the satellite data capabilities are
insufficient. As such, it is necessary to use and develop advanced machine learning (ML)
methods for complex wetland monitoring and classification.

The two aspects of conventional ML classification include feature extraction and clas-
sification. Spatial, spectral, and temporal satellite data are translated into feature vectors
in the feature extraction step. Those derived attributes are exploited to train and execute
the ML model in the classifier phase [12,24-26]. This manual feature engineering (infor-
mation extraction) leads to a significant dependency of the success of the ML algorithms
on the quality of the feature selection process. On the other hand, instead of learning
from experimental feature design, deep learning (DL) algorithms learn through represen-
tation. Internal feature representations are learned automatically; hence these methods
are regarded as highly efficient for image classification [27-31]. The major reason for such
efficiency is that, as compared to shallow ML models, DL models can typically notice more
generalized trends. Deep learning approaches a higher performance due to their capability
to include feature extraction in the optimization procedure [5]. It should be highlighted
that while DL models accomplish impressive accuracy, they demand more training data
and advanced computational resources than shallow ML methods. This contrasts with
wetland classification, where data acquisition is costly and time-consuming. This issue can
be addressed by two solutions, including transfer learning [32-34] and Generative Adver-
sarial Network (GAN) [35-40]. These two solutions are described in some detail in the next
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section of this paper. As such, this research addresses the need for increased demand for
training data required for the DL methods by developing a wetland classification model
with the integration of the well-known CNN algorithm of the AlexNet and a GAN network.
This paper proposes a novel technique for remote sensing image classification to increase
the classification accuracy of complex wetlands. To the best of our knowledge, GANs
have not been used for wetland classification. Once developed, the model is applied to
wetland classification using a synergic integration of the Sentinel-1 and Sentinel-2 satellite
observations of Avalon in Newfoundland, Canada.

2. Methods
2.1. Study Area and Satellite Data

The research region is the Avalon area of Newfoundland, Canada, which is located in
the most eastern part of the province (Figure 1). The Avalon Peninsula is about 9220 square
kilometers in size, with pleasant to warm summers and mild winters. The Avalon Peninsula
is home to the city of St. John's, which has a population of approximately 226,000 people.
Wetland ecosystems and other natural environments can be observed in the area. The
Avalon study area contains all of the Canadian Wetland Classification System (CWCS)
wetland classes, including bog, fen, marsh, swamp, and shallow water, with peatlands (i.e.,
bog and fen) being the most prominent. The ground truth samples were gathered by a
group of wetland scientists knowledgeable about the research area during the summers
of 2015 to 2017. Potential wetland locations were discovered using Google Earth and
RapidEye imagery prior to training data collection. During the field data collection, global
positioning system (GPS) coordinates, notes, and images were used as a reference for the
better delineation of wetland polygons. It should be noted that we selected the Avalon site
as our study area because we are familiar with its spatial distribution of wetlands and have
several precise ground truth data of this region.

01 2 3 4 Skm
- . c)

Figure 1. The study area of the Avalon located in Newfoundland, Canada, (a) location of Newfoundland in the world
map (bottom left image), (b) location of the Avalon study area with respect to the Newfoundland (top left image), and

(c) Sentinel-2 true-color map of the study area (right image).

Table 1 shows the total pixels of training and testing data. In the Python programming
language, a stratified random sampling technique was utilized to partition ground truth
data into 70 percent training and 30 percent testing for reference data.
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Table 1. Training and testing pixel of wetland samples in the study area of Avalon, Canada.

Class Number of Training Pixels Number of Testing Pixels

Bog 3500 1500

Fen 2055 881
Marsh 1445 619
Swamp 1236 530
Shallow Water 2080 891
Urban 5235 2244
Deep Water 6928 2969
Upland 5139 2203

The optical imagery used in this study is Sentinel-2A level-1C, which was captured
on 5 June 2020. In addition to the optical image bands, various spectral indices were added
to improve classification accuracy, as recommended by prior wetland studies [16,41]. A
dual-polarized (VV/VH) level-1 ground range detected (GRD) Sentinel-1 image with the
ascending orbit captured on 6 June 2020 was utilized for the SAR imaging. Moreover,
two dual-polarized (HH/HV) images with the descending orbit captured on 4 June 2020,
were employed. Various polarimetric features were obtained in addition to the normalized
backscattering coefficients retrieved from the SAR images. See Table 2 for details of the
image features used in the analyses for both the optical and SAR data.

Table 2. Spectral bands, indices, the normalized backscattering coefficients, and polarimetric features
extracted from optical and SAR imagery utilized in this research (NDVI: Normalized Difference
Vegetation Index, EVI: Enhanced Vegetation Index, DVI: Difference Vegetation Index [42], RENDVI:
Red Edge Normalized Difference Vegetation Index, NDWI: Normalized Difference Water Index).

Normalized Backscattering

Data Coefficients/Spectral Bands

Polarimetric Features/Spectral Indices

ol + Ry
oYy + Py
median 3 by 3(0%,)
Sentinel-1 oy, Oy oy oYy median 3 by 3(0?,,)
median 3 by 3((7VH)
median 3 by 3(cY,)
median 3 by 3(c¥ + o¥y)

_ (NIR-R)
NDVI= (NIR+R)

EVI=25% — NIR-R

(NTR+(24%R))+1
Sentinel-2 B2, B3, B4, B5, B6, B7, B8, BSA, DVI = (NIR — R)

B11, B12 RENDVI — (NIR-EE)

)

(NTR+RE)

NDW] — (NIR-SWIR)
)

(NIR+SWIR

Using the SNAP software’s sen2cor tool [43], the optical image of Sentinel-2 is atmo-
spherically and radiometrically calibrated. SNAP was used to retrieve geocoded backscatter
intensity images from three Sentinel-1 images. Then, the orbital metadata were updated,
followed by radiometric calibration of Sentinel-1 imagery. Following that, unitless backscat-
tering intensity images were converted into normalized backscatter coefficients ¢° in dB
values. Then, a Lee Sigma filter with a window size of 7 by 7 was used to decrease the inher-
ent speckle noises in the SAR imagery. Finally, using the range-Doppler terrain correction
approach, the imagery was geometrically rectified.
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2.2. Methods
2.2.1. Generative Adversarial Network

As stated in the introduction, producing new ground truth data in remote sensing,
specifically wetland mapping, is time-consuming, labor-intensive, and expensive. On the
other hand, deep learning approaches have been successfully implemented and deployed in
several domains of remote sensing, such as object detection [44,45] and classification [46,47].
However, they require a huge quantity of training data that contrasts with the current
situation in complex wetland mapping. This problem can be solved by utilizing GAN’s
innovative architecture, which was proposed by Goodfellow et al. and revolutionized the
deep learning field [48]. There are two networks of generator and discriminator in the
GAN design, as shown in Figure 2.

Ranc.iom Real Data
Noise
Generator

Discriminat
Fake I seriminator [——— Real/Fake
Samples

Figure 2. The discriminator and generator networks of a Generative Adversarial Network.

The generator network produces new synthetic samples using a random noise vector,
as shown in Figure 2, while the discriminator aims to differentiate between the fake and
real data. As a result, the GAN system is trained while the generator builds more realistic
fake data, and the discriminator network attempts to discern between real and false (i.e.,
generated) data.

2.2.2. AlexNet

AlexNet was proposed by Krizhevsky [49] in a recognition duty competition called Im-
ageNet as a classical and better-performing network structure of CNNs. AlexNet includes
various contributions and inventions, such as introducing the activation function-ReLU
and revolutionary dropout approaches, which helped avoid the over-fitting issue. The
aim was to increase AlexNet’s validation accuracy while also increasing its generalization
capability. AlexNet’s idea introduced a new window for emerging artificial intelligence
technologies and provided a large space for engineering scientific research. The architecture
of AlexNet is shown in Figure 3.

It should be noted that to reduce the complexity of the original AlexNet architecture,
in our developed CNN model we replaced all kernel sizes to 1 by 1. We did not change the
kernel size of the first (11 by 11 kernel size) and the last (3 by 3) convolutional layer.
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Figure 3. The architecture of the AlexNet deep CNN (FC = fully connected layer, Conv = convolu-
tional layer, Max pool = max pooling layer).

2.2.3. Proposed Generative Adversarial Network Model

Sample generation for non-wetlands (e.g., urban areas) does not involve specialist
knowledge, whereas sample creation for wetland classes demands biologists” expertise
and field data collecting. This is because, unlike non-wetlands, wetlands do not have strict
boundaries, and several of them may contain equivalent vegetation species and patterns.
As a result, we suggest a method that focuses primarily on creating new samples for the
wetlands. The primary purpose is to generate samples for classes that have a lower number
of ground truth data. We propose a model for the generation of Sentinel-1 and Sentinel-2
image samples for the classification of wetlands and non-wetlands in the pilot site of the
Avalon (Figure 4), based on the GAMO [50] and 3D-HyperGAMO [51] models.

It should also be emphasized that, as with both GAMO and 3D-HyperGAMO, we
employed a conditional map unit to produce samples from a random noise vector for the
fake wetland data generation, but only for classes with fewer training data. The conditional
map unit’s output was then flattened to create a conditional feature vector with a length
of 196. After that, according to the labeled data, the product of the conditional map unit
was attached to the patch generator [50,51] (Table 3). It is worth mentioning that we used
LeakyRelu (see Equation (1)) as our activation function and 2-dimensional transposed
convolutional layers in the structure of the conditional map unit. In our classification model,
as seen in Figure 4, real Sentinel-1 and Sentinel-2 image sample patches are extracted from
the features of the optical and SAR images. On the other hand, the generator network
generates fake/synthetic samples of Sentinel-1 and Sentinel-2 images from a random
noise vector that were sent to the discriminator network. It is worth mentioning that the
conditional map unit sends the number of required synthetic samples. As there are seven
minor classes (classes with a lower number of training data than the major class with
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the highest number of training samples), the generator network only creates synthetic
samples for those seven minor classes. On the other hand, the discriminator network
tries to distinguish the real samples (i.e., features extracted from Sentinel-1 and Sentinel-2
data) from fake ones created by the generator network. This procedure was repeated
until the generator created more realistic synthetic patch samples that the discriminator
network could hardly recognize any difference between the real and fake sample patches
of Sentinel-1 and Sentinel-2 images. Then, to train the classifier, synthetic and real data
were sent to the AlexNet network (i.e., AlexNet classifier).

x,if x>0
negative slope, otherwise

LeakyRelu(x) = { 1)

Predicted Wetland Map

vl

¥

AlexNet classifier

Sentinel 1/2 Features

Labels . patch ,—-,?_
] 7 y Generator i/

! Fake data generation

Conditional mapunit  Flatten Labels Real/Fake

Figure 4. The architecture of the proposed GAN AlexNet.

Noise

Table 3. The architecture of the conditional map unit (Conv2DTranspose = 2-dimensional transposed
convolutional layers).

Layer Filters/Kernel Size Batch Normalization  Activation Function
Dense 256 X 7 x 7 Yes LeakyRelu
Reshape 256,7,7 - -
Conv2DTranspose 128,5,5 Yes LeakyRelu
Conv2DTranspose 1,5,5 Yes LeakyRelu

As mentioned before, we used a light version of AlexNet architecture (reduced kernel
sizes) for the discriminator network and classifier. We used 100, 64, and 0.0002 as the
noise dimension, batch size, and learning rate, respectively, for training our proposed deep
neural network.
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2.2.4. Accuracy Assessment

Wetland classification results were evaluated based on the average accuracy, precision,
recall, and F1-score statistical metrics (Equations (2)—(5)).

True positive

Precision = 2
reciston (True positive + False positive) @
Recall = Tr.ue positive - (©)]

(True positive 4 False negative)
Precision * Recall
F1 = score =2 4 cision + Recall @
", Recall;
Average Accuracy = Liz1 20T ®)

n
where 7 is the number of classes.

3. Results
3.1. Statistical Comparison of Developed Models

Based on the achieved results, the proposed model, by generating several synthetic
samples for the minor classes, could reach a relatively high level of average accuracy
(i.e., 92.30%). In addition, the developed DCNN model achieved a high level of accuracy
in terms of F-1 scores with values of 0.82, 0.85, 0.87, 0.89, and 0.95 for the recognition
of swamp, fen, marsh, bog, and shallow water, respectively, using extracted features of
Sentinel-1 and Sentinel-2 images. As seen in Table 4, the inclusion of samples from the
Sentinel-1 image increased the F-1 scores by 2%, 3%, 5%, 7%, and 10% for the classification
of shallow water, bog, marsh, swamp, and fen wetlands. Moreover, using the features of
the Sentinel-1 image improved the average accuracy of the proposed DCNN method by
approximately 4.4%. The highest F-1, recall, and precision values were obtained for the
recognition of the bog and shallow water compared to the other wetland classes of the
fen, marsh, and swamp. The reason can be partly explained by their higher numbers of
real training data than that of the fen, marsh, and swamp wetland classes (Table 4). On
the other hand, the proposed DCNN model outperformed the original DCNN network of
AlexNet by 7.26% in terms of average accuracy. In addition, the F-1 score of bog, marsh,
fen, and swamp wetland classes was improved by 4%, 8%, 11%, and 26%, respectively,
compared to the original AlexNet classifier.

Table 4. Results of the developed machine learning of the proposed model in terms of precision, Fl-score, and recall
(S1 = Sentinel-1, S2 = Sentinel-2).

Model Bog Fen Marsh Swamp  Shallow Water Urban Deep Water Upland AA (%)
GAN-AlexNet-S5152 92.30
Precision 0.91 0.81 0.81 0.86 0.95 0.98 1 0.98
Recall 0.88 0.82 0.90 0.89 0.95 1 1 0.95
F-1 score 0.89 0.82 0.85 0.87 0.95 0.99 1 0.97
GAN-AlexNet-S2 87.92
Precision 0.83 0.79 0.79 0.90 0.89 0.99 1 0.96
Recall 0.89 0.67 0.81 0.72 0.97 1 1 0.98
F-1 score 0.86 0.72 0.80 0.80 0.93 1 1 0.97
AlexNet 85.04
Precision 0.93 0.58 0.97 0.63 0.91 0.98 1 0.96
Recall 0.78 0.90 0.63 0.59 0.99 1 1 0.91
F-1 score 0.85 0.71 0.77 0.61 0.95 0.99 1 0.93

Based on the confusion matrices shown in Table 5, the proposed model was highly
capable of differentiating the complex wetlands. The highest level of confusion was for
the fen class. Several patches of fen were incorrectly classified as bog, marsh, and swamp
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classes. This is because wetlands have a lot of resemblance in terms of vegetation types,
specifically bog and fen wetlands. As a result, their spectral reflectance in optical imaging
will be comparable. For instance, in terms of tree dominance, marsh and upland forest
are quite similar. This type of confusion is common in wetland classifications. From
Table 5, it is clear that the confusion between wetland classes noticeably decreased by
adding the extracted features of the Sentinel-1 image to the proposed DCNN model. For
instance, the high level of confusion between upland and swamp wetland classes was
substantially decreased by the proposed model that used both Sentinel-1 and Sentinel-2
features compared to the model that only utilized Sentinel-2 training samples. In addition,
the generation of synthetic samples by the GAN network of the proposed DCNN algorithm
substantially decreased the confusion between wetland classes, specifically marsh and fen
wetlands, compared to the original AlexNet classifier (see Table 5).

Table 5. The confusion matrices of the proposed DCNN model and the AlexNet classifier (S1 = Sentinel-1, S2 = Sentinel-2).

Model Bog Fen Marsh Swamp Shallow Water  Urban Deep Water Upland
GAN-AlexNet-5152
Bog 1317 153 7 19 1 0 0 3
Fen 113 724 20 23 0 0 0 1
Marsh 3 10 557 7 35 1 0 6
Swamp 15 3 18 470 0 0 0 24
Shallow water 1 0 46 0 844 0 0 0
Urban 0 0 0 0 2243 0 0 1
Deep Water 0 0 0 1 4 0 2964 0
Upland 3 0 43 25 0 34 0 2098
GAN-AlexNet-52
Bog 1342 130 19 5 3 0 0 1
Fen 230 589 45 10 1 0 0 6
Marsh 3 10 503 6 80 1 0 16
Swamp 35 12 35 384 2 0 0 62
Shallow water 4 20 0 864 0 1 2
Urban 0 3 3 2 0 2234 0 2
Deep Water 0 0 0 0 23 0 2946 0
Upland 6 3 14 19 0 11 1 2149
AlexNet
Bog 1166 323 3 3 5 0 0 0
Fen 74 794 1 3 0 0 0 9
Marsh 12 74 393 34 78 2 0 26
Swamp 0 161 4 312 0 0 0 53
Shallow water 3 0 4 0 882 0 2 0
Urban 0 0 0 0 0 2243 0 1
Deep Water 0 0 0 0 4 0 2965 0
Upland 0 10 0 146 0 36 0 2011

3.2. Spatial Distribution of Wetlands in the Avalon

Wetland maps, the spatial distribution of bog, fen, marsh, swamp, and shallow water
wetlands, as well as their area extents, are presented in this section (see Figures 5-7). Based
on the achieved classification maps, the best visual result was obtained by the proposed
DCNN model using extracted Sentinel-1 and Sentinel-2 data features. For instance, the
map produced by the AlexNet network over-classified the uplands and under-classified
swamp wetlands.
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(c) (d)

Figure 5. Wetland classified maps using (a) Sentinel-2 true color of the study area, (b) the proposed model using Sentinel-1

and Sentinel-2 features, (c) the proposed model using only Sentinel-2 data, and (d) the original AlexNet CNN network.

Based on the obtained results of the proposed DCNN model (using extracted features
of Sentinel-1 and Sentinel-2 images), marsh, swamp, bog, fen, and shallow water wetland
classes had an area of approximately 65.78, 50.81, 23.30, 16, and 14.44 km? in the study area
(see Figure 7).
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EN =N = | Swamp I shallow water
| Marsh [ Bog

Figure 6. Spatial distribution of bog, fen, marsh, swamp, and shallow water wetland overlaid on the
Sentinel-2 true-color image of the pilot site of the Avalon.

Spatial extent of wetlands

70
60
50
40
30
20
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0

H Bog Fen Marsh Swamp H Shallow water

km2

Figure 7. Spatial extents of wetland classes of bog, fen, marsh, swamp, and shallow water of the
study area of the Avalon (in km?).

4. Discussion

To better understand the contribution of each extracted feature of Sentinel-1 and
Sentinel-2 images, the variable importance of the several samples was measured. We
ran the random forest classifier [52] 10 times for the spectral analysis and measured the
minimum, maximum, and average values as presented in Figure 8. As expected, optical
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bands and indices were more effective for classifying wetland and non-wetland classes than
the SAR features. Based on the Gini index for the prediction of the test data, the Normalised
Difference Vegetation Index (NDVI) was the most influential variable, while the U‘O/V was
the least effective variable. As reported by previous studies, NDVI is highly efficient
for the classification of vegetated lands, specifically wetlands [16]. The NDVI index is
considered one of the most used and well-known vegetation indices for the characterization
of vegetation phenology. In addition, the NDVI index decreases noise, including cloud
shadows, sun illumination differences, atmospheric attenuation, and topographic variation.
Moreover, the NDVI index is reported as an ideal index for the discrimination of wetland
and non-wetland classes, and the obtained results agree with the previous research [6].
Notably, the medians of the normalized backscattering coefficients were more effective for
the wetland and non-wetland classification. The reason should be due to the decrease in
noise in the median of the normalized backscattering coefficients. Based on the spectral
analysis, the median 3 by 3(c9,,;) was the most effective extracted feature from SAR imagery.
The reason is that the 0V, observations are highly efficient for vegetated land recognition,
due to their cross-polarized structure that is sensitive to vegetation canopies. The obtained
results are in line with the study by [23], where the ¢, observations had high importance
for the classification of low-, medium-, and high-vegetated areas.

0.1
0.09
0.08 |
0.07 | |
0.06

0.05 |
0.04
003 II'|| bde,. .,
0.02 v
0.01

Feature Importance
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Figure 8. The variable importance of different bands, SAR backscattering coefficients, spectral indices,
and polarimetric features on the final classification accuracy by the CRF classifier based on the Gini
importance index.

As reported by previous research [22,23], the synergic use of Sentinel-1 and Sentinel-2
data is superior to using a single source optical imagery for complex vegetation classi-
fication. Moreover, our results presented the effectiveness and contribution of features
of Sentinel-1 for complex wetland classification. Moreover, from several samples, the
normalized spectral and backscattering intensity values of wetland classes of bog, fen,
marsh, swamp, and shallow water were extracted (see Figure 9). It is clear that the optical
features are more distinguishable for the wetland classification. Although, the inclusion of
the Sentinel-1 feature noticeably improves the per-class accuracies of wetlands as reported
by the previous studies [22,23] and the results achieved in this research.

In terms of computation cost, it took approximately 60 min to train the proposed
DCNN model to reach a high average accuracy level (i.e., 92.30%). It is worth highlighting
that the original CNN network of the AlexNet has around 60 million parameters. As a
result, the proposed network requires a large number of training data. In our proposed
CNN model, we reduced the kernel sizes to 1 by 1 while adopting the original AlexNet
architecture to reduce the computation cost. As shown in Table 1, the highest number of
training data is for deep water regions with a number of 6928 samples. Thus, the generator
network of the GAN model produces new fake samples for the other wetland and non-
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wetland classes to reach a value of 6928 training data. Considering that we still had a low
number of training samples and the complexities of the wetlands, the proposed model
achieved accurate results for the generation and classification of the wetlands, specifically
for the bog and shallow water with F-1 scores of 0.89 and 0.95, respectively. Based on the
achieved results and considering the intrinsic complexity of wetlands, such as their similar
spectral reflectance in optical images for different wetland classes, the generation of the
synthetic data with the GAN network did not increase the rate of errors. Conversely, a deep
CNN network such as the AlexNet with a limited number of training data could achieve a
high level of average accuracy (i.e., 92.30%), while the deep CNN model was capable of
correctly differentiating the complex wetland classes. As such, the GAN model was efficient
for producing high-quality training samples for the optical and SAR images of Sentinel-1
and -2. As such, the results achieved in this research open new opportunities for creating
high-quality wetland ground truth data using advanced computer science algorithms,
such as GAN networks. Combining this capability with big data and cloud computing
capabilities will allow the production of better wetland maps to facilitate monitoring
applications. It should also be noted that we used an Intel processor (i.e., i7-10750H central
processing unit (CPU) of 2.60 GHz), a graphical processing unit (GPU) of NVIDIA GeForce
RTX 2070, and a 16 GB random access memory (RAM) operating on 64-bit Windows 11
in our experiments. We used the Python TensorFlow library for the implementation of

our methods.

Full overview of Normalized band intensities for Optical and SAR data in the Avalon
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Figure 9. Overview of normalized band intensities of several samples of bog, fen, marsh, swamp,
and shallow water wetlands for Sentinel-1 and Sentinel-2 data in the pilot site of the Avalon.

5. Conclusions

Advances in machine learning algorithms, specifically the development of deep learn-
ing algorithms, have opened new windows for the remote sensing research community.
One problem of the current DL methods, in the context of remote sensing image classifica-
tion, is that they require a high number of samples used in the training phase. Producing
ground truth data used for training and testing the algorithms are costly, logistically de-
manding, and time-consuming. To overcome such problems, we developed a model that
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generates Sentinel-1 and Sentinel-2 synthetic training samples using a GAN model and a
modified architecture of the well-known DCNN of the AlexNet. In our model, we used
a conditional unit map that only allows for the generation of the samples for the classes
with a low number of training data. As such, we tackle the issue of imbalanced data in
wetland classification, where there are much higher ground truth data for the non-wetlands
compared to the wetlands. Based on the results, the developed model obtained a high
level of accuracy in terms of F-1 scores, with values of 0.82, 0.85, 0.87, 0.89, and 0.95 for the
classification of swamp, fen, marsh, bog, and shallow water, respectively. Moreover, the
proposed DCNN model improved the F-1 score of bog, marsh, fen, and swamp wetland
classes by 4%, 8%, 11%, and 26%, respectively, compared to the original AlexNet DCNN
classifier. This model has a high potential for large area classification applications, where
the availability of ground sample data is a more serious problem.
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