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41-200 Sosnowiec, Poland; quoc_bao.pham@us.edu.pl
* Correspondence: zheng.duan@nateko.lu.se

Abstract: Proper irrigation scheduling and agricultural water management require a precise estima-
tion of crop water requirement. In practice, reference evapotranspiration (ETo) is firstly estimated,
and used further to calculate the evapotranspiration of each crop. In this study, two new coupled
models were developed for estimating daily ETo. Two optimization algorithms, the shuffled frog-
leaping algorithm (SFLA) and invasive weed optimization (IWO), were coupled on an adaptive
neuro-fuzzy inference system (ANFIS) to develop and implement the two novel hybrid models
(ANFIS-SFLA and ANFIS-IWO). Additionally, four empirical models with varying complexities,
including Hargreaves–Samani, Romanenko, Priestley–Taylor, and Valiantzas, were used and com-
pared with the developed hybrid models. The performance of all investigated models was evaluated
using the ETo estimates with the FAO-56 recommended method as a benchmark, as well as multi-
ple statistical indicators including root-mean-square error (RMSE), relative RMSE (RRMSE), mean
absolute error (MAE), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE). All
models were tested in Tabriz and Shiraz, Iran as the two studied sites. Evaluation results showed that
the developed coupled models yielded better results than the classic ANFIS, with the ANFIS-SFLA
outperforming the ANFIS-IWO. Among empirical models, generally the Valiantzas model in its
original and calibrated versions presented the best performance. In terms of model complexity (the
number of predictors), the model performance was obviously enhanced by an increasing number
of predictors. The most accurate estimates of the daily ETo for the study sites were achieved via
the hybrid ANFIS-SFLA models using full predictors, with RMSE within 0.15 mm day−1, RRMSE
within 4%, MAE within 0.11 mm day−1, and both a high R2 and NSE of 0.99 in the test phase at the
two studied sites.

Keywords: reference evapotranspiration; adaptive neuro-fuzzy inference system; bio-inspired opti-
mization algorithm; machine learning; hydrological modeling

1. Introduction

Evapotranspiration (ET) is an important component of the hydrologic cycle. An accu-
rate estimation of ET is required for many applications, such as optimal water resources
management, irrigation planning, determination of irrigation intervals, design of irrigation
systems, agricultural water management, and studies related to water balance at each
area [1–6]. Lysimeters are commonly applied to directly measure the ET; however, measur-
ing it with this method is costly and requires considerable time, making it difficult to use
in many areas. Additionally, eddy covariance and Bowen ratio energy balance are other
direct techniques of determining the ET that are not usually applied in practice due to
their complexities and costs [7–9]. Hence, indirect techniques are often used to estimate
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ET. One of these indirect methods is the use of empirical models that can be classified into
several groups, including temperature-based, radiation-based, and mass-transfer-based
models, etc. In all empirical models, reference evapotranspiration (ETo) is estimated. The
reason is that estimating ET for each crop is difficult. Therefore, ETo is firstly estimated
via the indirect methods, and crop coefficients are then used for estimating the ET of
any desired crop. The Food and Agricultural Organization (FAO) has recommended the
Penman–Monteith method (i.e., FAO-56 PM) as a benchmark for obtaining the ETo [10].
The ETo process seems to be a complex and nonlinear phenomenon due to its dependence
on a variety of weather data comprising the air temperature, relative humidity, wind
speed, radiation, etc. [11,12]. In addition to the empirical models, machine learning (ML)
approaches have recently received remarkable attention in modeling the ETo, and have
shown reasonable performances. The ML techniques are capable of capturing hydrological
time series such as ETo by utilizing solely a series of predictors without any knowledge of
their physical processes [13–15].

Numerous studies have been reported in recent years on ETo modeling via ML ap-
proaches. Torres et al. [16] used a multivariate relevance vector machine (MVRVM) and
a multilayer perceptron (MLP) for the daily ETo modeling of an experimental site in cen-
tral Utah, USA. The effectiveness and suitability of the applied models were reported.
The daily ETo of Dar El Beid, Algeria, was modeled by generalized regression neural
networks (GRNN) and radial basis function neural networks (RBFNN) [17]. The GRNN
outperformed the RBFNN and two empirical models used. Kisi and Cengiz [18] applied
a fuzzy genetic (FG) algorithm and an artificial neural network (ANN) in daily ETo fore-
casting for Antalya and Isparta, Turkey. The FG was found to provide higher accuracy
compared to the ANN. An extreme learning machine (ELM) was implemented by Ab-
dullah et al. [19] for predicting the monthly mean ETo in three locations in Iraq. The
ELM demonstrated superior results compared to feed-forward back-propagation (FFBP).
Wen et al. [20] estimated the daily ETo of an extremely arid region in China via an ANN, a
support vector machine (SVM), and three empirical models. The SVM was reported as the
best-performing model. A performance evaluation of gene expression programming (GEP)
and an ANN was conducted by Wang et al. [21] for modeling daily ETo in four locations in
China. The ANN showed superiority over the GEP. Traore et al. [22] applied four types
of ANNs for predicting the ETo at a weather station in Texas, USA, and found that the
MLP performed the best. Mehdizadeh [23] developed hybrid models using antecedent
data of ETo for the daily ETo forecasting of six stations in Iran through hybridizing multi-
variate adaptive regression splines (MARS) and GEP with a nonlinear time series model,
called auto-regressive conditional heteroscedasticity (ARCH). The results illustrated the
higher accuracy of the coupled models compared to the single ones. Mattar [24] assessed
the applicability of GEP for modeling monthly ETo at 32 weather stations in Egypt, and
they found that a better modeling performance of the GEP over the empirical models.
Sanikhani et al. [25] evaluated the accuracy of ML techniques, including the MLP, GRNN,
RBFNN, and two versions of an adaptive neuro-fuzzy inference system (ANFIS); i.e., grid
partitioning (ANFIS-GP) and subtractive clustering (ANFIS-SC), to predict the monthly ETo
of Antalya and Isparta, Turkey. They developed the ML approaches under temperature-
based scenarios, and the accuracy of these ML models was compared to an empirical
equation, namely the Hargreaves–Samani. The GEP and GRNN at Antalya, and the
RBFNN and ANFIS-SC at Isparta, showed superior results. Saggi and Jain [26] used deep
learning (DL) to forecast daily ETo in Punjab, India. It was found that the DL model
performed the best when comparing its performance to random forests (RF), generalized
linear model (GLM), and gradient boosting machine (GBM).

Recently, bio-inspired optimization algorithms have successfully been hybridized
with ML models to improve ETo forecasts. Ozkan et al. [27] proposed a coupled model by
hybridizing an artificial bee colony (ABC) and an ANN (i.e., ANN-ABC) for predicting
the daily ETo at two stations in the USA. The developed hybrid model outperformed
the single ANN. A hybrid ANN–genetic algorithm (i.e., ANN-GA) was implemented by
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Eslamian et al. [28] for estimating the monthly ETo of selected stations in Isfahan, Central
Iran. The monthly ETo estimates of the hybrid ANN-GA were closer to the FAO-56 PM
data, compared to the ANN. Yin et al. [29] investigated the accuracy of a developed hybrid
SVM-GA, as well as single SVM and feed-forward neural networks (FFNNs), in daily
ETo modeling of a semiarid region in China. It was concluded that the hybrid SVM-
GA had a better accuracy than the ANN and SVM. A hybrid model was proposed by
Tao et al. [30] via combining a firefly algorithm (FA) with ANFIS for estimating daily ETo
of three stations located in Burkina Faso. The proposed coupled ANFIS-FA was found
to outperform the classic ANFIS. In another work, Wu et al. [31] integrated bio-inspired
optimization algorithms, including the GA, ant colony optimization (ACO), cuckoo search
algorithm (CSA), and flower pollination algorithm (FPA), with an ELM for forecasting
of the daily ETo at eight locations in China. The ELM coupled with the FPA (i.e., ELM-
FPA) outperformed the other hybrid models that were developed. Other types of coupled
models developed via hybridizing the ML and optimization algorithms have been recently
proposed to improve ETo modeling. For example, interested readers can refer to Ahmadi
et al. [13], Roy et al. [32], Chia et al. [33], Yan et al. [34], Gong et al. [35], Gao et al. [36], and
Dong et al. [37].

Considering the importance of ETo in the optimal agricultural water management
and planning for available water resources systems, estimating its values in each region
via the suitable approaches is an essential requirement. This study attempted to propose
novel models for daily ETo modeling. In this context, two types of optimization algorithms,
consisting of the shuffled frog-leaping algorithm (SFLA) and invasive weed optimization
(IWO), were coupled on an adaptive neuro-fuzzy inference system (ANFIS) as predictor
tools, which was the novelty of this study. Therefore, the coupled ANFIS-SFLA and ANFIS-
IWO models were proposed. Additionally, four empirical models, including Hargreaves–
Samani, Romanenko, Priestley–Taylor, and Valiantzas, were utilized in both their original
and calibrated forms. The performances of the applied models (i.e., the classic ANFIS, the
hybrid ANFIS-SFLA and ANFIS-IWO, and original and calibrated forms of the empirical
models) were compared with each other by means of multiple error indicators. We focused
on two stations in Iran (i.e., Tabriz and Shiraz) as the study sites. To the best of our
knowledge, this is the first attempt in the literature to develop a hybrid ANFIS-SFLA and
ANFIS-IWO for modeling daily ETo.

2. Materials and Methods
2.1. Study Sites and Data Used

This study considered two sites in Iran, namely Tabriz and Shiraz, as the study
locations. The Tabriz station is located in the northwest of Iran, and its latitude, longitude,
and altitude are 38◦05′ N, 46◦17′ E, and 1361.0 m, respectively. The long-term mean annual
precipitation at this location is 283.6 mm. In addition, the Shiraz station in the south of
Iran is located at a latitude of 29◦32′ N, longitude of 52◦36′ E, and altitude of 1484 m. The
mean annual precipitation of Shiraz is 328.0 mm. The location of the studied sites is shown
in Figure 1.

The meteorological data of the study sites, including the minimum temperature
(Tmin), maximum temperature (Tmax), average temperature (T), relative humidity (RH),
wind speed at 2 m height (U2), solar radiation (Rs), and sunshine duration (SSD) were
gathered from the Iran Meteorological Organization (IMO) on a daily time scale over
a 15-year period (i.e., 2000–2014). Data from the first 11 years (i.e., 2000–2010) and the
last 4 years (i.e., 2011–2014) data were utilized as the training and test datasets, respectively.
The daily statistical parameters of the aforementioned data for both training and test
phases are tabulated in Table 1. Other parameters in Table 1 comprising Rn (net radiation),
Ra (extraterrestrial radiation), saturation vapor pressure deficit (es−ea), and ETo were
computed based on the FAO-56 recommended method by Allen et al. [10]. In this table,
Xmin, Xmax, Xmean, Xst. dev, and Xcv mean the minimum, maximum, mean, standard
deviation, and coefficient of variation of the data used, respectively. As seen, the ETo of
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Tabriz station ranged from 0.39 mm day−1 to 12.87 mm day−1 (training period) and 0.34
mm day−1 to 11.48 mm day−1 (test period); and between 0.65 mm day−1 and 10.07 mm
day−1 (training period) and 0.62 mm day−1 and 8.90 mm day−1 (test period) at the Shiraz
station. The lowest values of Xst. dev. in Table 1 for the studied locations were related to
U2, es−ea, and ETo; while Ra illustrated the minimal Xcv. Figure 2 shows the time series of
daily ETo computed via the FAO-56 PM method for the studied time period (i.e., 2000–2014)
at the study sites.
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Figure 1. Geographical locations of the two studied sites (Tabriz and Shiraz) in Iran.

Table 1. Statistical characteristics of the data used in this study.

Stations Parameters
Training Test

Xmin Xmax Xmean Xst. dev. Xcv Xmin Xmax Xmean Xst. dev. Xcv

Tabriz Tmin, ◦C −16.80 27.60 8.10 9.38 1.16 −18.00 28.20 7.69 9.67 1.26

Tmax, ◦C −7.90 41.00 19.50 11.18 0.57 −6.80 41.00 19.29 11.49 0.60

T, ◦C −11.85 34.30 13.80 10.19 0.74 −11.80 34.10 13.49 10.47 0.78

RH, % 10.00 95.00 49.57 16.51 0.33 15.00 91.50 51.41 16.93 0.33

SSD, h 0.00 13.50 7.85 3.80 0.48 0.00 13.50 7.87 3.85 0.49

U2, m s−1 0.00 8.31 2.60 1.17 0.45 0.00 8.02 2.77 1.28 0.46

Rs, MJ m−2 day−1 0.43 33.78 15.18 7.38 0.49 1.09 32.19 18.00 8.40 0.47

Rn, MJ m−2 day−1 0.74 15.86 7.92 4.55 0.57 1.24 16.36 8.06 4.53 0.56

Ra, MJ m−2 day−1 14.71 41.82 28.93 9.66 0.33 14.71 41.82 28.93 9.66 0.33

es−ea, KPa 0.03 4.38 1.15 0.91 0.79 0.05 4.42 1.12 0.93 0.83

ETo, mm day−1 0.39 12.87 3.88 2.64 0.68 0.34 11.48 3.97 2.81 0.71
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Table 1. Cont.

Stations Parameters
Training Test

Xmin Xmax Xmean Xst. dev. Xcv Xmin Xmax Xmean Xst. dev. Xcv

Shiraz Tmin, ◦C −7.40 27.20 10.76 7.89 0.73 −8.10 26.40 9.94 7.84 0.79

Tmax, ◦C 3.40 42.60 26.64 9.46 0.35 3.40 41.80 26.27 9.64 0.37

T, ◦C −1.00 33.60 18.70 8.50 0.45 −0.80 33.50 18.10 8.55 0.47

RH, % 12.00 98.50 40.06 16.42 0.41 10.50 96.50 40.21 17.06 0.42

SSD, h 0.00 12.90 9.33 2.94 0.31 0.00 12.80 9.22 2.86 0.31

U2, m s−1 0.00 10.25 1.45 0.85 0.59 0.00 4.49 1.36 0.71 0.52

Rs, MJ m−2 day−1 1.99 31.28 20.21 6.54 0.32 4.94 29.55 20.31 6.16 0.30

Rn, MJ m−2 day−1 3.10 15.53 9.22 3.65 0.40 3.15 14.92 9.10 3.52 0.39

Ra, MJ m−2 day−1 19.98 41.13 31.63 7.56 0.24 19.98 41.13 31.63 7.56 0.24

es−ea, KPa 0.02 4.32 1.70 1.06 0.63 0.03 4.25 1.66 1.08 0.65

ETo, mm day−1 0.65 10.07 4.12 2.13 0.52 0.62 8.90 3.96 2.03 0.51Water 2021, 13, x FOR PEER REVIEW 5 of 23 
 

 

 

 
Figure 2. Time series of daily ETo estimated with FAO-56 PM method at the two studied sites during 2000–2014. 

Table 1. Statistical characteristics of the data used in this study. 

Stations Parameters 
Training     Test     

Xmin Xmax Xmean Xst. dev. Xcv Xmin Xmax Xmean Xst. dev. Xcv 

Tabriz Tmin, °C −16.80 27.60 8.10 9.38 1.16 −18.00 28.20 7.69 9.67 1.26 
 Tmax, °C −7.90 41.00 19.50 11.18 0.57 −6.80 41.00 19.29 11.49 0.60 
 T, °C −11.85 34.30 13.80 10.19 0.74 −11.80 34.10 13.49 10.47 0.78 
 RH, % 10.00 95.00 49.57 16.51 0.33 15.00 91.50 51.41 16.93 0.33 
 SSD, h 0.00 13.50 7.85 3.80 0.48 0.00 13.50 7.87 3.85 0.49 
 U2, m s−1 0.00 8.31 2.60 1.17 0.45 0.00 8.02 2.77 1.28 0.46 
 Rs, MJ m−2 day−1 0.43 33.78 15.18 7.38 0.49 1.09 32.19 18.00 8.40 0.47 
 Rn, MJ m−2 day−1 0.74 15.86 7.92 4.55 0.57 1.24 16.36 8.06 4.53 0.56 
 Ra, MJ m−2 day−1 14.71 41.82 28.93 9.66 0.33 14.71 41.82 28.93 9.66 0.33 
 es-ea, KPa 0.03 4.38 1.15 0.91 0.79 0.05 4.42 1.12 0.93 0.83 

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

ET
o

(m
m

 d
ay

−1
)

Time (day) starting from 1 January 2000 
Tabriz

Training Test

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

ET
o

(m
m

 d
ay

−1
)

Time (day) starting from 1 January 2000 
Shiraz

Training Test

Figure 2. Time series of daily ETo estimated with FAO-56 PM method at the two studied sites during 2000–2014.
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2.2. Empirical Models Used

Different empirical models, including ones based on temperature, mass transfer, radi-
ation, and various meteorological parameters, were proposed for estimating the ETo time
series. As noted, the FAO-56 PM is accepted as a reliable method to estimate ETo. Hence,
ETo estimated by FAO-56 PM was utilized as a benchmark to evaluate the performance of
other empirical models applied, the classic ANFIS and the two developed hybrid models
(ANFIS-SFLA and ANFIS-IWO). Additionally, four other empirical models with varying
complexities (different numbers of input variables) were selected and used. They were
the Hargreaves–Samani (temperature-based), Romanenko (mass-transfer-based), Priestley–
Taylor (radiation-based), and Valinatzas (based on various meteorological parameters)
models. The mathematical equations of these models in their original forms are presented
in Table 2.

Table 2. The original forms of empirical models applied in this study.

Empirical Models Equations Reference

FAO-56 PM ETo =
0.408(Rn−G)+900γ

U2
(T+273) (es−ea)

∆+γ(1+0.34U2)
Allen et al. [10]

Hargreaves–Samani ETo = 1
λ 0.0023Ra(T + 17.8)(Tmax − Tmin)

0.5 Hargreaves and Samani [38]

Romanenko ETo = 0.00006(T + 25)2(100− RH) Romanenko [39]

Priestley–Taylor ETo = 1.26 ∆
∆+γ

Rn−G
λ

Priestley and Taylor [40]

Valiantzas ETo = 0.0393Rs
√
|T + 9.5| − 0.19R0.6

s ϕ0.15 + 0.048(T + 20)
(

1− RH
100

)
U0.7

2
Valiantzas [41,42]

ETo: daily reference evapotranspiration (mm day−1); Rn: net radiation (MJ m−2 day−1); G: soil heat flux (MJ m−2 day−1); γ: psychometric
constant (KPa ◦C−1); U2: average daily wind speed at 2 m height (m s−1); T: average daily air temperature (◦C); es and ea: saturation and
actual vapor pressures (KPa); es−ea: saturation vapor pressure deficit (KPa); ∆: slope of the saturation vapor pressure curve (KPa ◦C−1);
Ra: extraterrestrial radiation (MJ m−2 day−1); λ: latent heat of evaporation (MJ Kg−1); ϕ: latitude (rad).

2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS model was introduced by Jang in 1993 for first time [43]. This model is
similar to a multilayered artificial neural network, except that it also uses fuzzy logic in
addition to learning artificial neural network algorithms [44]. An ANFIS model consists
of five layers: the data entry layer, fuzzy rules weight calculation layer, obtained weight
normalization layer, rule calculation layer, summation layer, and network output layer.
The distinguishing feature of ANFIS is the provision of a hybrid learning algorithm for the
postdiffusion slope method and the least-squares method to modify the parameters [45].
In this research, the hybrid method was considered as the training model of the ANFIS
model. Figure 3 shows a scheme of the ANFIS model used.
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2.4. Shuffled Frog-Leaping Algorithm (SFLA)

The SFLA is a bio-inspired optimization algorithm that is based on the social be-
havior of frogs, and it belongs to the category of memetic algorithms [46]. The SAFLA
is a metaheuristic optimization algorithm, and this metaheuristic algorithm is a swarm
intelligence-based approach that is used for solving complexities of large optimization
issues. The main idea behind this algorithm is to apply a local search method within the
structure of the genetic algorithm to improve the aqueous work of the resonance process
during the search. The metaheuristic algorithm first encodes the sum of the initial solutions,
then it calculates the desirability of each answer based on a fitness function and generates
new ones [47].

The function of this algorithm is to convert the original set into a number of smaller
sets and then rearrange them with the competitive complex evolution (CCE) technique,
and again by merging the ordered subsets of the original set that it makes one step more
orderly and does it over and over to obtain the most optimal answers [48]. In the SFLA
algorithm, the algorithm that performs this sorting on the subsets is called FLA, which is
the CCE optimized and refined algorithm. In CCE, sorting into a complexity is done by
subpopulations of the main population, but in FLA, this is done first on one memeplex and
then on all memeplexes to always obtain the best answer out of all possible answers [46].

2.5. Invasive Weed Optimization (IWO)

The IWO is a type of sensible and evolutionary optimization algorithm that was
first introduced by Mehrabian and Lucas [49], and was inspired via the procedure of
proliferation, survival, and adaptability of weeds. Consistent with the IWO definition, a
weed is a plant that produces and grows in unwanted places, and is a serious pest for other
plants and forestalls their growth. This set of rules, whilst easy, is very effective and fast
in finding the optimal factors and operates based on the basic and natural traits of weeds
along with seed production, growth, and survival conflict in a colony.

First, a limited initial population is randomly generated and scattered in the problem-
solving space. When determining the amount of initial population and reproduction, in
IWO optimization method, every member of the population produces seeds according to
its capabilities [50]. The product varies linearly from the smallest possible number of seeds
to the largest number, and the weeds produce more seeds with better adaptation so that
the mean is zero and the standard deviation varies at different stages, ensuring that the
randomly distributed seeds are very close to their parent plant. In competitive Elimination,
in the invasive weed algorithm, after several repetition steps, the number of clonal seeds
reaches its maximum due to reproduction, and then a mechanism is used to remove weak
seeds. Whilst the maximum number of seeds allowed is produced, every seed can produce
new seeds, in keeping with the method noted in the previous steps, that can be scattered
inside the space in question. When all the seeds are distributed within the location, every
seed is given a rating, and inside the last level, the seeds with a lower rating are removed
so that the seed population remains at the maximum. These steps are repeated until the
seeds converge step by step to the optimal seed [49].

2.6. Hybrid Models (ANFIS-SFLA and ANFIS-IWO)

The main objective of the current study was application of the new hybrid models used
for hydrological goals, the ANFIS-SFLA and ANFIS-IWO hybrid models, by comparison
with the ordinary ANFIS to acquire an accurate and capable approach for simulating
ETo at the study areas. The efficiency of the SFLA and IWO algorithms based on the
ordinary ANFIS was defined by the optimized weight in the ANFIS by the shuffled frog-
leaping and invasive weed optimization algorithms. When a mathematical function reaches
a certain fitness between ANFIS weights and the SFAL and IWO, then hybrid models
(i.e., ANFIS-SFLA and ANFIS-IWO) stop, or when iterations reach the maximum number,
then model stops. This approach allows the models reach to their maximum capabilities,
and then the new hybrid model can have advantages of both the ANFIS and optimization
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algorithms for estimation [48]. Previous studies have proven that such coupled optimized
techniques can provide better results in hydrological modeling [50–52]. Table 3 provides
the optimal parameters related to the machine learning models used. Figure 4 demonstrates
a schematic flowchart of the modeling process of current study.
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Table 3. Parameter settings for ANFIS, IWO, and SFLA.

ANFIS IWO SFLA

Epoch 1000 Maximum number of iterations 500 Maximum number of iterations 500
Initial step size 0.01 Number of initial population 25 Population size 40

Step size decrease 0.9 Maximum number of plant population 35 Number of memeplexes 5
Step size increase 1.1 Minimum number of seeds 1 Number of offspring 3

Error goal 0 Maximum number of seeds 15 Memeplex size 10

2.7. Evaluation of the Model Performance

The present study proposed two novel hybrid models for modeling the daily ETo via
the combination of ANFIS with SFLA and IWO. So, the hybrid ANFIS-SFLA and ANFIS-
IWO models were developed. In addition, four empirical models, including Hargreaves–
Samani, Romanenko, Priestly–Taylor, and Valiantzas, were utilized. The modeling accura-
cies of classic ANFIS, the hybrid ANFIS-SFLA, and ANFIS-IWO, as well as the original
and calibrated forms of the empirical models, were compared with each other utilizing five
evaluation metrics, including the root-mean-square error (RMSE), relative RMSE (RRMSE),
mean absolute error (MAE), coefficient of determination (R2), and Nash–Sutcliffe efficiency
(NSE). The mentioned metrics can be defined as follows:

RMSE =

√√√√∑N
i=1

(
ETi,F

o − ETi,m
o

)2

N
(1)
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RRMSE =

√
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o −ETi,m
o

)2

N

ETi,F
o

× 100% (2)
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NSE = 1−
∑N

i=1

(
ETi,F

o − ETi,m
o

)2

∑N
i=1

(
ETi,F

o − ETi,F
o

)2 (5)

where ETi,F
o , ETi,m

o , ETi,F
o , ETi,m

o , and N represent the daily FAO-56 PM ETo; the modeled
daily ETo through the classic ANFIS, the hybrid ANFIS-SFLA and ANFIS-IWO models,
and the empirical models; the average of the daily FAO-56 PM ETo values; the average of
the modeled daily ETo; and total number of observational values, respectively.

Among the aforementioned error statistics, the RRMSE and NSE can illustrate the
accuracy of any modeling approach as below:

For the RRMSE:
Excellent (RRMSE < 10%); good (10% < RRMSE < 20%); fair (20% < RRMSE < 30%),

and poor (RRMSE > 30%) [53].
For the NSE:
Very good (0.75 < NSE ≤ 1.0); good (0.65 < NSE ≤ 0.75); satisfactory

(0.50 < NSE ≤ 0.65); acceptable (0.40 < NSE ≤ 0.50), and unsatisfactory
(NSE ≤ 0.40) [54].

3. Results and Discussion

Firstly, the classic ANFIS was implemented at the study sites based on the input
combinations defined in Table 4. As seen in the table, seven various scenarios (i.e., M1–M7)
were taken into consideration in the modeling procedure. The RMSE, RRMSE, MAE, R2,
and NSE statistical parameters obtained by the classic ANFIS at Tabriz and Shiraz stations
are respectively presented in the first sections of Tables 5 and 6 for both training and test
periods. It can obviously be seen that the M1-based ANFIS model with minimal inputs (i.e.,
temperature components) presented the worst performance at both of the study stations.
Generally, the accuracy of classic ANFIS was enhanced by increasing the number of input
predictors; however, there was a negligible difference between the performances of the
M1 and M2 models at the studied regions. On the other hand, the inclusion of the wind
speed (U2) in the M2 model (i.e., M3 model) led to further improvement of the performance
of the classic ANFIS. This outcome confirmed the results of previous works [55,56] in that,
although wind speed solely showed the lowest accuracy in ETo modeling, considering this
parameter along with the other meteorological parameters improved the ETo modeling
performance. In addition, slight discrepancies were observed when comparing the accuracy
of the M3–M6 models of the classic ANFIS. The M7 models developed at the study locations
outperformed the M1–M6 models. This model utilized full inputs for modeling the ETo.
The difference between the M6 and M7 models was that two radiation components (i.e., Rn
and Ra) were considered in the M7 model. The Ra was calculated by means of the Julian
day and latitude of the location. Moreover, minimum temperature, maximum temperature,
and sunshine duration ratio were required to compute the Rn. The required parameters for
calculating the Ra and Rn were generally available at all locations. Therefore, we concluded
that considering them could be of use in enhancing the accuracy of modeling techniques in
estimating the ETo.



Water 2021, 13, 3489 10 of 21

Table 4. Inputs applied for developing the classical ANFIS and the two hybrid models (ANFIS-SFLA
and ANFIS-IWO). Symbols are explained in Section 2.1 and in the footnote of Table 2.

Model No. Inputs Output

M1 Tmin, Tmax, T ETo
M2 Tmin, Tmax, T, SSD ETo
M3 Tmin, Tmax, T, SSD, U2 ETo
M4 Tmin, Tmax, T, SSD, U2, RH ETo
M5 Tmin, Tmax, T, SSD, U2, RH, es−ea ETo
M6 Tmin, Tmax, T, SSD, U2, RH, es−ea, Rs ETo
M7 Tmin, Tmax, T, SSD, U2, RH, es−ea, Rs, Rn, Ra ETo

Table 5. The statistical indicators obtained for the classical ANFIS and the proposed hybrid ANFIS-SFLA and ANFIS-IWO
models in estimating daily ETo vs. the standard daily ETo calculated with the FAO-56 PM method in the training and test
phases (Tabriz station).

Models Model
No.

Training Test

RMSE
(mm day−1)

RRMSE
(%)

MAE
(mm day−1) R2 NSE RMSE

(mm day−1)
RRMSE

(%)
MAE

(mm day−1) R2 NSE

ANFIS M1 0.90 23.22 0.71 0.88 0.88 0.93 23.63 0.72 0.90 0.88
M2 0.81 21.07 0.64 0.90 0.90 0.86 21.85 0.67 0.92 0.90
M3 0.59 15.25 0.48 0.95 0.95 0.60 15.10 0.48 0.95 0.95
M4 0.57 14.83 0.47 0.95 0.95 0.58 14.73 0.48 0.96 0.95
M5 0.58 15.01 0.49 0.96 0.95 0.55 14.06 0.46 0.97 0.96
M6 0.51 13.14 0.42 0.97 0.96 0.40 10.27 0.31 0.98 0.97
M7 0.42 10.87 0.33 0.98 0.97 0.44 11.26 0.35 0.99 0.97

ANFIS-SFLA M1 0.86 22.28 0.68 0.89 0.89 0.86 21.81 0.67 0.91 0.90
M2 0.75 19.42 0.58 0.91 0.91 0.77 19.47 0.59 0.93 0.92
M3 0.46 11.91 0.37 0.96 0.96 0.46 11.62 0.36 0.97 0.97
M4 0.39 10.14 0.30 0.97 0.97 0.39 9.99 0.30 0.98 0.98
M5 0.40 10.38 0.32 0.97 0.97 0.37 9.46 0.30 0.98 0.98
M6 0.32 8.33 0.25 0.98 0.98 0.33 8.54 0.26 0.98 0.98
M7 0.14 3.78 0.10 0.99 0.99 0.15 3.96 0.11 0.99 0.99

ANFIS-IWO M1 0.85 21.94 0.66 0.89 0.89 0.84 21.26 0.65 0.91 0.90
M2 0.77 19.88 0.60 0.91 0.91 0.81 20.42 0.63 0.92 0.91
M3 0.52 13.44 0.42 0.96 0.96 0.56 14.12 0.44 0.96 0.96
M4 0.48 12.40 0.40 0.96 0.96 0.47 12.05 0.40 0.97 0.97
M5 0.50 13.00 0.40 0.96 0.96 0.48 12.31 0.39 0.97 0.97
M6 0.38 10.00 0.30 0.97 0.97 0.39 9.80 0.29 0.98 0.98
M7 0.28 7.26 0.19 0.98 0.98 0.28 7.18 0.19 0.99 0.99

Note: bold values denote the error criteria for the best-performing model in the training and test phases.

Novel hybrid models were then developed and proposed to improve the performance
of the classic ANFIS. For this, two optimization algorithms, including the SFLA and IWO,
were coupled on the classic ANFIS. The statistical results of the novel hybrid models at
Tabriz and Shiraz stations are shown in the second and third sections of Tables 5 and 6,
respectively. The results obtained for the classic ANFIS were also observed in the hy-
brid ANFIS-SFLA and ANFIS-IWO models. The same results were obtained: the worst
performance by M1 models; enhanced performance of hybrid models by increasing the
number of variables/predictors as inputs; and the superiority of the M7 models com-
pared with the M1–M6 models. As was apparent, hybridizing the ANFIS with SFLA and
IWO algorithms remarkably improved the forecasting efficacy of classic ANFIS. For an
instance, the error statistics of the RMSE, RRMSE, MAE, R2, and NSE for the M7-based
classic ANFIS during the test phase were obtained respectively as 0.44 mm day−1, 11.26%,
0.35 mm day−1, 0.99, and 0.97 at Tabriz station; and 0.33 mm day−1, 8.34%, 0.22 mm day−1,
0.98, and 0.97 at Shiraz station; while the aforementioned error criteria were improved
by the ANFIS-SFLA (i.e., 0.15 mm day−1, 3.96%, 0.11 mm day−1, 0.99, and 0.99 at Tabriz
station; 0.13 mm day−1, 3.41%, 0.09 mm day−1, 0.99, and 0.99 at Shiraz station) and
ANFIS-IWO (i.e., 0.28 mm day−1, 7.18%, 0.19 mm day−1, 0.99, and 0.99 at Tabriz station;
0.20 mm day−1, 5.13%, 0.15 mm day−1, 0.99, and 0.99 at Shiraz station). The results
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confirmed the outcomes of previous works [27–30,37,57,58] in that coupling the optimiza-
tion algorithms and ML techniques could improve modeling of the ETo time series in
comparison with the standalone ML techniques.

Table 6. The statistical indicators obtained for the classical ANFIS and the proposed hybrid ANFIS-SFLA and ANFIS-IWO
models in estimating daily ETo vs. the standard daily ETo calculated with the FAO-56 PM method in the training and test
phases (Shiraz station).

Models Model
No.

Training Test

RMSE
(mm day−1)

RRMSE
(%)

MAE
(mm day−1) R2 NSE RMSE

(mm day−1)
RRMSE

(%)
MAE

(mm day−1) R2 NSE

ANFIS M1 0.93 22.73 0.75 0.81 0.80 0.87 22.02 0.70 0.83 0.81
M2 0.81 19.89 0.65 0.86 0.85 0.74 18.74 0.59 0.87 0.86
M3 0.52 12.62 0.41 0.94 0.94 0.48 12.22 0.40 0.94 0.94
M4 0.53 13.02 0.43 0.95 0.93 0.52 13.31 0.42 0.94 0.93
M5 0.54 13.30 0.43 0.95 0.93 0.51 12.94 0.42 0.94 0.93
M6 0.52 12.72 0.40 0.96 0.94 0.47 12.00 0.37 0.96 0.94
M7 0.32 7.98 0.22 0.98 0.97 0.33 8.34 0.22 0.98 0.97

ANFIS-SFLA M1 0.89 21.68 0.71 0.82 0.82 0.82 20.79 0.66 0.83 0.83
M2 0.71 17.39 0.55 0.88 0.88 0.65 16.59 0.51 0.89 0.89
M3 0.39 9.51 0.30 0.96 0.96 0.40 10.10 0.30 0.96 0.96
M4 0.35 8.69 0.28 0.97 0.97 0.35 8.88 0.27 0.97 0.97
M5 0.35 8.63 0.28 0.97 0.97 0.35 9.06 0.29 0.96 0.96
M6 0.30 7.28 0.23 0.98 0.98 0.25 6.42 0.20 0.98 0.98
M7 0.13 3.33 0.09 0.99 0.99 0.13 3.41 0.09 0.99 0.99

ANFIS-IWO M1 0.89 21.71 0.71 0.82 0.82 0.83 21.13 0.66 0.83 0.83
M2 0.75 18.28 0.59 0.87 0.87 0.69 17.53 0.55 0.88 0.88
M3 0.41 10.17 0.32 0.96 0.96 0.41 10.40 0.32 0.96 0.95
M4 0.44 10.81 0.35 0.95 0.95 0.42 10.73 0.34 0.95 0.95
M5 0.41 10.10 0.33 0.96 0.96 0.41 10.41 0.33 0.95 0.95
M6 0.40 9.75 0.31 0.96 0.96 0.36 9.24 0.29 0.96 0.96
M7 0.20 4.95 0.14 0.99 0.99 0.20 5.13 0.15 0.99 0.99

Note: bold values denote the error criteria for the best-performing model at the training and test phases.

Figures 5 and 6 show a comparison of the superior hybrid models (i.e., M7 models
of ANFIS-SFLA and ANFIS-IWO) and the corresponding M7 model of the classic ANFIS
at Tabriz and Shiraz stations, respectively. Lesser dispersions of the data points around
the exact line (i.e., 1:1) in the proposed hybrid models, particularly for the ANFIS-SFLA,
confirmed the higher accuracy of the coupled models over the single ANFIS. On the other
hand, the time series plots of the hybrid models denoted the reliable capability of the
proposed models for capturing the daily FAO-56 PM ETo values in comparison with the
classic ANFIS. This point is very clear about the modeling of peak points, in that the
modeled values of daily ETo via the hybrid models were much closer to the daily FAO-56
PM ETo data. In this regard, the classic ANFIS presented poor performances. Furthermore,
hydrograph plots clearly showed the efficiencies of the classic ANFIS. The hybrid ANFIS-
SFLA and ANFIS-IWO performed better in modeling the low and medium values than the
peak points.

In addition to the application of ANFIS and proposing the novel hybrid models, four
types of empirical models (Table 2) were used in this study. The values of error criteria
obtained by the original versions of the equations at the Tabriz and Shiraz stations are
tabulated in Tables 7 and 8, respectively. The Romanenko equation yielded the weakest
performance among the empirical equations, especially at Shiraz station. Additionally,
the Valiantzas equation was the best-performing empirical model at the study sites. It
was obvious that the empirical models should be calibrated in the study areas to provide
the best performance. Table 9 reports the calibrated versions of the empirical models
used. According to the statistical indicators obtained for the calibrated empirical models in
Tables 7 and 8, it can be observed that the calibration procedure significantly improved
the performance of empirical models over their original versions. The better-performing
models were the calibrated forms of the Valiantzas (followed by Hargreaves–Samani) at
Tabriz station, and the Valiantzas and Priestley–Taylor equations at Shiraz station. The
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calibrated Valiantzas equation performed the best for both studied sites in all statistical
indicators (RMSE = 0.46 mm day−1, RRMSE = 11.76%, MAE = 0.37 mm day−1, R2 = 0.98,
NSE = 0.97 in the test stage for Tabriz station; RMSE = 0.27 mm day−1, RRMSE = 7.06%,
MAE = 0.22 mm day−1, R2 = 0.98, NSE = 0.98 in the test stage for Shiraz station).
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Table 7. The statistical indicators computed for the original and calibrated empirical equations in the training and test
phases (Tabriz station).

Equations
Train Test

RMSE
(mm day−1)

RRMSE
(%)

MAE
(mm day−1) R2 NSE RMSE

(mm day−1)
RRMSE

(%)
MAE

(mm day−1) R2 NSE

Original Hargreaves–Samani 1.11 28.72 0.74 0.91 0.82 1.23 31.07 0.79 0.90 0.80
Original Romanenko 2.32 59.91 1.63 0.86 0.22 2.03 51.12 1.37 0.89 0.47

Original Priestly–Taylor 1.49 38.60 1.10 0.89 0.67 1.62 40.82 1.15 0.89 0.66
Original Valiantzas 0.57 14.74 0.41 0.96 0.95 0.74 18.81 0.61 0.98 0.92

Calibrated Hargreaves–Samani 0.79 20.38 0.57 0.91 0.91 0.85 21.42 0.60 0.90 0.90
Calibrated Romanenko 1.01 26.14 0.76 0.86 0.85 1.03 25.98 0.77 0.89 0.86

Calibrated Priestly–Taylor 0.88 22.84 0.63 0.89 0.88 0.92 23.29 0.62 0.89 0.89
Calibrated Valiantzas 0.47 12.16 0.36 0.96 0.96 0.46 11.76 0.37 0.98 0.97

Note: bold values denote the error criteria for the best-performing empirical model in the training and test phases.

Table 8. The statistical indicators computed for the original and calibrated empirical equations in the training and test
phases (Shiraz station).

Equations
Train Test

RMSE
(mm day−1)

RRMSE
(%)

MAE
(mm day−1) R2 NSE RMSE

(mm day−1)
RRMSE

(%)
MAE

(mm day−1) R2 NSE

Original Hargreaves–Samani 0.94 22.85 0.75 0.86 0.80 1.00 25.48 0.80 0.88 0.75
Original Romanenko 4.30 104.51 3.56 0.82 −3.06 4.41 111.65 3.57 0.83 −3.73

Original Priestly–Taylor 1.00 24.34 0.73 0.90 0.77 0.89 22.49 0.65 0.91 0.80
Original Valiantzas 0.96 23.48 0.84 0.94 0.79 0.90 22.74 0.79 0.97 0.80

Calibrated Hargreaves–Samani 0.78 19.10 0.60 0.86 0.86 0.75 19.09 0.58 0.88 0.86
Calibrated Romanenko 0.94 23.00 0.74 0.82 0.80 0.90 22.75 0.71 0.83 0.80

Calibrated Priestly–Taylor 0.66 16.14 0.50 0.90 0.90 0.58 14.86 0.45 0.91 0.91
Calibrated Valiantzas 0.44 10.74 0.31 0.95 0.95 0.27 7.06 0.22 0.98 0.98

Note: bold values denote the error criteria for the best-performing empirical model at the training and test phases.

Table 9. The calibrated forms of empirical models applied in this study.

Stations Empirical Models Equations

Tabriz Hargreaves–Samani ETo = 1
λ 0.0028Ra(T + 17.8)(Tmax − Tmin)

0.5

Romanenko ETo = 0.00004(T + 25)2(100− RH)
Priestly–Taylor ETo = 1.7077 ∆

∆+γ
Rn−G

λ

Valiantzas ETo = 0.025252Rs
√
|T + 9.5| − 0.07853R0.6

s ϕ0.15 + 0.06109(T + 20)
(
1− RH

100

)
U0.7

2
Shiraz Hargreaves–Samani ETo = 1

λ 0.0021Ra(T + 17.8)(Tmax − Tmin)
0.5

Romanenko ETo = 0.00003(T + 25)2(100− RH)
Priestly–Taylor ETo = 1.5062 ∆

∆+γ
Rn−G

λ

Valiantzas ETo = 0.02451Rs
√
|T + 9.5| − 0.102R0.6

s ϕ0.15 + 0.060782(T + 20)
(
1− RH

100

)
U0.7

2

Figures 7 and 8 show the comparative graphs of the daily ETo estimates from the
FAO-56 PM method against the modeled data by the best empirical model (i.e., calibrated
Valiantzas) and its original form. Fewer dispersions were visible around the exact line
(1:1) in the calibrated Valiantzas model compared with the original Valiantzas. Moreover,
overestimation (i.e., red lines in the hydrograph plots) can be seen in many of data points
in the original Valiantzas at the study locations, especially at Shiraz station; however, this
overestimation was corrected by the calibrated version of this model.

Here, the modeling performances of the classic ANFIS, hybrid ANFIS-SFLA and
ANFIS-IWO models, and empirical models in the original and calibrated forms were
compared with each other. It is obvious from Tables 4 and 5 that the hybrid ANFIS-
SFLA and ANFIS-IWO models developed at the study sites presented superior results
compared with the classic ANFIS; however, the ANFIS-SFLA outperformed the ANFIS-
IWO. Moreover, as mentioned previously, the calibrated empirical models yielded better
estimates of the daily ETo than the original forms of empirical models. A performance
assessment of the classic and proposed coupled models with the empirical models in
their original and calibrated forms revealed that the original empirical models generally



Water 2021, 13, 3489 15 of 21

provided the weakest performances. Among the empirical models applied, the calibrated
Valiantzas model illustrated better accuracy than the M1–M6 models of classic ANFIS
at both stations, M1 and M2 models of ANFIS-SFLA, M1–M5 models of ANFIS-IWO at
both phases of the Tabriz station; M1–M2 (training phase) and M1–M5 (test phase) models
of ANFIS-SFLA; as well as M1, M2, and M4 models of ANFIS-IWO at the training stage
and M1–M6 models of ANFIS-IWO at the test stage of Shiraz station. We concluded that
the calibrated version of the Valiantzas model could be of use in modeling the daily ETo
with a high degree of precision; therefore, this model could be compatible with the hybrid
models proposed in the present study. In general, the M7 models of ANFIS, ANFIS-SFLA,
and ANFIS-IWO performed much better than the calibrated empirical models; however,
the M7 models of ANFIS-SFLA developed at the Tabriz and Shiraz stations were the
best-performing techniques for modeling of the daily ETo with a dependable accuracy.
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In this section, the modeling accuracy of all applied models is qualitatively described
based on the various ranges for the RRMSE and NSE criteria. In terms of the NSE statistic,
the accuracy of the classic ANFIS, the hybrid ANFIS-SFLA and ANFIS-IWO, and the
calibrated forms of empirical models was located in the “very good” class, since the values
of NSE for the mentioned models were in the range of 0.75–1.0. Similarly, the performance
of the original Hargreaves–Samani and Valiantzas at Tabriz and Shiraz stations, as well as
the Priestly–Taylor equation at Shiraz station, belonged to the “very good” category. The
accuracy class of the original Priestly–Taylor model at Tabriz station was “good”, since
0.65 < NSE ≤ 0.75. Finally, the original Romanenko belonged to the “unsatisfactory” class
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at both locations. The performance of applied models was then classified based on the
RRMSE criterion. The M1 and M2 models of the classic ANFIS at Tabriz station, the M1
model of the classic ANFIS at Shiraz station, as well as the M1 models of ANFIS-SFLA and
ANFIS-IWO at both of the stations were located in the “fair” degree (20% < RRMSE < 30%).
In addition, at Tabriz station, the performance of the M6 and M7 models of ANFIS-SFLA
during the training stage, M4–M7 models of ANFIS-SFLA during the test stage, the M7
model of ANFIS-IWO in training, and the M6–M7 models of ANFIS-IWO in the test period
were classified in the “excellent” class. For the case of Shiraz station, the M7 models of
classic ANFIS, M3–M7 models of ANFIS-SFLA (training stage) and M4–M7 models of
this technique, as well as the M6–M7 models of ANFIS-IWO, were found to belong to
the “excellent” class. Regarding the classes of empirical models, it can be clearly seen in
Tables 6 and 7 that the accuracy class of the original Romanenko model was poor, especially
at Shiraz station. As is clear, the performance class of excellent was not observed for
the empirical models in their original and calibrated forms, with the exception of the
calibrated Valiantzas in the test stage at Shiraz station. The best class of empirical models
was obtained by the original and calibrated versions of the Valiantzas model at Tabriz and
Shiraz stations, and the calibrated Priestly–Taylor model at Shiraz station.
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Given that the ETo equations were developed in specific areas and with the climatic
conditions of that location, it is therefore necessary to calibrate these equations with reliable
reference data before use in other areas. In other words, none of the empirical equations
met the needs of all climatic conditions, and only met the specific conditions in which
they were developed. Besides, evapotranspiration as a climatic variable is affected by
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their regional and climatic characteristics. For this, calibration of empirical models is a
basic requirement to achieve their better performance. The better accuracy of calibrated
equations over their original ones justify this issue.

Moreover, the same procedure should be taken into consideration when assessing the
entire performance of the models used. In this context, the empirical models should be
calibrated through the application of a training dataset, as used for the machine learning
models. Finally, the performance of each empirical model can be evaluated by different
types of supervised learning algorithms via machine learning models. Machine learning
models, by finding and learning from patterns in a dataset, can understand the relationship
between ETo and other meteorological variables, and they can be used as strong tools
for prediction. Especially in the case of the limited availability of data, machine learning
models can provide a satisfactory simulation, even with a minimum dataset. In addition,
optimization algorithms can be used as boosting tool for improving the ability of the
ordinary ANFIS model for ETo prediction. We recommend that other potential researchers
apply different types of newly developed machine learning models to evaluate and reach
the highest accuracy in ETo prediction.

4. Conclusions

An attempt was made in the present study to improve the modeling accuracy of the
ANFIS in daily ETo estimation. The Tabriz and Shiraz stations in Iran were selected as the
two studied sites. The classic ANFIS was coupled with optimization algorithms such as
SFLA and IWO. So, novel hybrid ANFIS-SFLA and ANFIS-IWO models were proposed
and implemented. The classic and hybrid models were developed under seven models
(M1–M7) utilizing different numbers of climatic variables as inputs. Evaluation results
showed that the developed novel models demonstrated superiority over the classic ANFIS;
however, the hybrid model ANFIS-SFLA provided better performances than ANFIS-IWO.
Generally, the performances of the classic and coupled models were improved with an
increasing number of predictors/variables. The M1 models with minimal inputs and
M7 models with full predictors were the worst and best models in modeling the daily
ETo, respectively. The M7 models of the hybrid ANFIS-SFLA were the best-performing
models for precise modeling of the daily ETo time series at the studied sites. Four empirical
models were also applied in this study, and then the performances of the empirical models
were assessed in their original and calibrated forms. It was found that calibrating the
empirical equations could improve the accuracy of the estimated daily ETo over their
original forms. Among the empirical models, the Romanenko model showed the weakest
results in its both original and calibrated versions. In contrast, the Valiantzas was the
best model. A performance assessment of the classic ANFIS, hybrid ANFIS-SFLA, and
ANFIS-IWO, as well as the original and calibrated empirical models, demonstrated that the
implemented hybrid models, followed by the classic ANFIS (M3–M7 models), generally
outperformed the empirical models. In addition, different empirical-based methods had
different complexities, and some of them required more input data, which might be difficult
to achieve. Therefore, there is a need to develop/improve methods with varying inputs to
adapt to the real situation considering the availability of the data. This study hybridized
an ML-based model (i.e., ANFIS) with the optimization algorithms, including the SFLA
and IWO. Future research works could implement a variety of hybrid models for ETo
modeling through coupling the ANFIS and SVM with the other types of bio-inspired
optimizers, including the firefly algorithm (FA), whale optimization algorithm (WOA), krill
herd algorithm (KHA), dragonfly algorithm (DFA), grasshopper optimization algorithm
(GOA), etc. Similar to the case studies considered in the current work, the climate of a large
part of Iran is arid or semiarid. Therefore, the estimation performance of implemented
models in capturing the ETo time series can be evaluated in climates similar to that of
Iran (and other parts of the world), and the obtained results could be compared with our
findings in this study.
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Nomenclature

ET Evapotranspiration
ETo Reference evapotranspiration
FAO Food and Agricultural Organization
PM Penman–Monteith
ML Machine learning
MVRVM Multivariate relevance vector machine
MLP Multilayer perceptron
GRNN Generalized regression neural networks
RBFNN Radial basis function neural networks
FG Fuzzy genetic
ANN Artificial neural networks
ELM Extreme learning machine
FFBP Feed-forward back-propagation
SVM Support vector machine
GEP Gene expression programming
MARS Multivariate adaptive regression splines
ARCH Auto-regressive conditional heteroscedasticity
ANFIS Adaptive neuro-fuzzy inference system
ANFIS-GP ANFIS-grid partitioning
ANFIS-SC ANFIS-subtractive clustering
DL Deep learning
RF Random forests
GLM Generalized linear model
GBM Gradient boosting machine
ABC Artificial bee colony
GA Genetic algorithm
FFNN Feed-forward neural networks
FA Firefly algorithm
ACO Ant colony optimization
CSA Cuckoo search algorithm
FPA Flower pollination algorithm
SFLA Shuffled frog-leaping algorithm
IWO Invasive weed optimization
Xmin Minimum
Xmax Maximum
Xmean Mean
Xst. dev Standard deviation
Xcv Coefficient of variation
IMO Iran Meteorological Organization
Tmin Minimum air temperature
Tmax Maximum air temperature
T Mean air temperature
U2 Wind speed at 2 m height
SSD Sunshine duration
RH Relative humidity
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Rs Solar radiation
Ra Extraterrestrial radiation
Rn Net radiation
G Soil heat flux
es Saturation vapor pressure
ea Actual vapor pressure
es−ea Saturation vapor pressure deficit
ϕ Latitude
λ Latent heat of evaporation
∆ Slope of the saturation vapor pressure curve
γ Psychometric constant
RMSE Root-mean-square error
RRMSE Relative RMSE
MAE Mean absolute error
R2 Coefficient of determination
NSE Nash–Sutcliffe efficiency
ETi, F

0 FAO-56 PM ETo

ETi, m
0 Modeled ETo

ETiF
0 Average of the FAO-56 PM ETo values

ETim
0 Average of the modeled ETo values

N Total number of observational values
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