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Abstract: Because carbon dioxide adsorbs the radiation from the Sun and the Earth’s surface, global
warming has become a severe problem in this century. Global warming causes many environmental
problems such as heatwave, desertification, and erratic rainfall. Above all, erratic rainfall makes peo-
ple have insufficient freshwater. To solve this problem, desalination technology has been developed
in many countries. Although desalination technology can provide freshwater, it produces brine as
well (producing 1 L of freshwater would result in 1 L of brine). The brine will decrease the dissolved
oxygen in the sea and affect the organism’s habitat. In this study, magnesium and calcium from
desalination brine were recovered in the form of magnesium hydroxide and calcium hydroxide by
adjusting the pH value for carbon capture and sodium removal. Magnesium hydroxide would turn
into magnesium carbonate through contacting CO2 in saturated amine carriers. Calcium hydroxide
was added to the brine and reacted with CO2 (modified Solvay process). Sodium in brine would then
be precipitated in the form of sodium bicarbonate. After removing sodium, brine can be released
back into the ocean, or other valuable metals can be extracted from brine without the side effect
of sodium. The results revealed that 288 K of 3-Amino-1-propanol could capture 15 L (26.9 g) of
CO2 and that 25 g/L of Ca(OH)2 at 288 K was the optimal parameter to remove 7000 ppm sodium
and adsorb 16 L (28.7 g) of CO2 in the modified Solvay process. In a nutshell, this research aims
to simultaneously treat the issue of CO2 emission and desalination brine by combining the amines
carrier method and the modified Solvay process.

Keywords: recovery; desalination brine; amine carrier; modified Solvay process; carbon capture;
sodium removal; magnesium; calcium

1. Introduction

Carbon dioxide (CO2) is the principal reason for the greenhouse effect, global warming,
and climate change [1–5]. The global average temperature increases when the concentration
of CO2 rises and causes many extreme climate events such as heatwave, desertification,
and erratic rainfall. Among them, erratic rainfall makes people have insufficient freshwater.
According to a survey of the United Nations (UN), more than 1 billion people in the world
will live in areas with scarce water resources by 2025 [6]. To solve the problem, desalination
technology has been developed since the 1950s [7]. However, when desalination technology
is ordinary, the by-product of desalination, brine, also brings about considerable harm to
the environment. For example, the brine will decrease the dissolved oxygen in the sea and
affect the organism’s habitat. Besides, producing 1 L of freshwater will generate 1 L of brine,
demonstrating that the amount of brine from desalination plants is equal to freshwater. To
solve these problems simultaneously, brine is used for CO2 capture to enhance its value
(Avoiding releasing it directly into the ocean).

Carbon capture and utilization (CCU) can be mainly divided into organic CCU and
inorganic CCU [8–10]. In organic CCU, the processes require a high temperature, pressure,

Water 2021, 13, 3463. https://doi.org/10.3390/w13233463 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-5801-0899
https://orcid.org/0000-0001-8672-180X
https://doi.org/10.3390/w13233463
https://doi.org/10.3390/w13233463
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13233463
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13233463?type=check_update&version=1


Water 2021, 13, 3463 2 of 12

and catalysts to produce valuable organic compounds; therefore, this requires much money
in order to reach the goal of industrialization and commercialization. In inorganic CCU,
the energy consumption is much lower than organic CCU due to the lower temperature
and pressure during the processes. It can also use many materials such as amine [11],
ammonia [12–15], alkaline materials [16], solid wastes [17–22], fly ash [23–26], cement [27],
wastewater [28,29], and brine to capture CO2 [30–32]. In the inorganic CCU method,
magnesium and calcium are the chief elements for capturing CO2 due to their high reaction
with CO2 and their obtainability. CO2 can be absorbed and turned into magnesium
carbonate and calcium carbonate, which will be utilized in coating materials, food additives,
and medicines. Due to the importance of magnesium and calcium, some research has
suggested separating them from desalination brine and using them to capture CO2 through
the amine carrier method and the modified Solvay process [33–36]. The outputs of previous
research are shown in Table 1.

Table 1. The outputs of previous research.

Author Method Process and Results

D. Kang et al. [33] Amine carrier method

0.79, 0.34 and 0.19 mol of CO2 was captured by 5, 10 and 30 wt%
of aqueous MEA solutions, separately. When pretreated brine

solutions were added to each saturated MEA solution, CO2 was
turned into CaCO3. Through analyses, it was proven that the

CaCO3 was in the form of calcite.

Y. Yoo et al. [34] Amine carrier method

CO2 was captured by different amines and carried into the
separated Ca(OH)2 to generate CaCO3. XRD, SEM, FT-IR and
TG/DTG analyses were used to investigate the crystal shape,

polymorph, and purity of the product. The results illustrated that
crystallization inhibition was possible, depending on the

structural properties of amine carriers, leading to a successful
CaCO3 polymorph control.

M.H. El-Naas et al. [36] Modified Solvay process

The authors replaced ammonia with calcium oxide to conduct a
CO2 capture. In this modified Solvay process, each mole of

Ca(OH)2 could capture two moles of CO2. Moreover, calcium
hydroxide could be directly obtained from brine by adjusting the
pH value. Under the optimal conditions, a CO2 capture of 86%

and 99% and sodium removal of 29% and 35% were achieved for
the traditional Solvay and the modified process, respectively.

The Amine carrier method uses amine to adsorb CO2 first, and alkaline earth metals
can react with the saturated amines to form bicarbonate solutions or carbonate compounds.
Since the magnesium and calcium in the brine are abundant, brine can be applied to this
method. The pH value of brine can be adjusted to a strong base to precipitate magnesium
hydroxide and calcium hydroxide for a reaction with amines. The merits of this process are
that it does not need too much energy consumption and can produce valuable products.
The other method, the modified Solvay process, is the improvement of the Solvay process.
The Solvay process is the primary industrial process for producing sodium carbonate, and
the ingredients for this are salt and limestone. The Solvay process is related to desalination
brine and CO2 capture because salt can be collected from brine, and it can react with CO2,
H2O, and NH3 to generate sodium bicarbonate and ammonium chloride (Equation (1)).
Although this process is inexpensive and convenient, ammonia volatilizes easily and is
harmful to humans [37]. In this case, calcium hydroxide from desalination brine replaces
ammonia to decrease the danger in the process (Equation (2)) [36]. The other advantage of
calcium hydroxide is that it can increase the pH value of the system so that the CO2 can be
adsorbed more than the ammonia system.
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NaCl + CO2 + NH3 + H2O→ NaHCO3 + NH4Cl (1)

2NaCl + 2CO2 + Ca(OH)2 → 2NaHCO3 + CaCl2 (2)

This research used brine for carbon capture and sodium removal through the amine
carrier method and the modified Solvay process. Brine would be adjusted to pH 9–14 to
precipitate magnesium hydroxide and calcium hydroxide. Magnesium hydroxide would
react with saturated amine carriers to produce magnesium bicarbonate solutions. Mag-
nesium carbonate would then be obtained by heating the amine carriers, and the amine
carriers could be reused after the magnesium carbonate precipitated. The amine carriers
applied in this study were 3-Amino-1-propanol, ethylamine, and diethylenetriamine. The
CO2 saturated adsorption capacity of three amine carriers and the CO2 saturated adsorp-
tion capacity of an optimal amine carrier under different temperatures were surveyed in
this study. After adsorbing CO2 and collecting magnesium carbonate, calcium hydroxide
would be used for the modified Solvay process. As shown in Equation (2), sodium bicar-
bonate would be precipitated, and the precipitation rate concerned the concentration of
calcium hydroxide and the contacting temperature. To realize the relationship between
them, different concentrations of calcium hydroxide and temperatures of brine would
be investigated. After capturing CO2 and removing sodium, the brine could be released
back into the ocean, or other valuable elements such as lithium, rubidium, and cesium
could be extracted without the side effect of sodium. In a nutshell, this study combines
the amine carrier method and the modified Solvay process. The parameters such as the
magnesium hydroxide and calcium hydroxide precipitation rate, saturated CO2 adsorption
capacity of amine carriers, and sodium removal rate were discussed. The detection of
magnesium carbonate through methods such as X-ray diffraction (XRD), scanning electron
microscopy (SEM), and whiteness analyses were explored as well, in order to confirm its
practicality. This research aims to increase the added value of brine and decrease CO2
emissions simultaneously.

2. Experimental Section
2.1. Reagents and Chemicals

Desalination brine was generated from the desalination plant in Taiwan, and its
main elements and concentrations are shown in Table 2. Lithium hydroxide (≥98%)
was obtained from Sigma-Aldrich (St. Louis, MO, USA) to regulate the pH value of
brine, and magnesium hydroxide and calcium hydroxide were precipitated. 3-Amino-1-
propanol (≥99%), ethylamine (97%), and diethylenetriamine (99%) were acquired from
Sigma-Aldrich (St. Louis, MO, USA) to capture CO2 in the amine carrier method, and
their chemical structures are demonstrated in Figure 1a–c. According to Figure 1, one can
see that three amines are alkanolamine, alkylamine, and multi-amine, respectively. CO2
gas was procured from Yun Shan Gas Co. (Tainan, Taiwan) and combined with N2 in
the ratio of 15:85. In the analysis procedure, ICP standard solution was purchased from
High-Purity Standards, Inc. (North Charleston, SC, USA). The nitric acid (≥65%) was
from Sigma-Aldrich (St. Louis, MO, USA) and diluted to 1% to be the thinner for the ICP
analysis. Additionally, all chemicals were analytical grade and applied without further
purification. The resistivity of deionized water used in the whole process was 18.0 MΩ.cm
to avoid impurities affecting the results.

Table 2. The main elements and the concentrations of desalination brine.

Elements Na Mg K Ca Rb Li B

Concentration
(mg/L) 17,420 2112 782.6 722.2 36.4 19.5 18.9
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Figure 1. The chemical structure of (a) 3-Amino-1-propanol, (b) ethylamine, and (c) diethylenetri-
amine.

2.2. Apparatus

The CO2 capture was operated through a CO2 adsorption system in the amine carrier
method and modified Solvay process. The whole system is displayed in Figure 2. In this
study, 2.5 M of amine carriers (0.5 mol of amine carrier was dissolved in 200 mL deionized
water) or brine mixed with Ca(OH)2 were placed into the reactor. 15% of CO2 gas with 85%
of N2 gas were controlled by a mass flow controller (MFC, Taiwan Puritic Corp., Hsinchu,
Taiwan) before being pumped into the reactor, and MFC was able to maintain the reactor’s
pressure at 1 bar. After being pumped into the reactor, a temperature controller (XMtd-204;
BaltaLab, Vidzemes priekšpilsēta, Rı̄ga, Latvia) maintained the temperature in the process.
When the reaction finished, there were a gas analyzer and computer to analyze the CO2
concentration of effluent gas and make us calculate the CO2 adsorption capacity in the
form of L CO2/mol amine and L CO2/L brine (Equations (3) and (4)). The adsorption
process was terminated when the analyzer detected that the CO2 concentration of effluent
gas was 15%. This reveals that the amine carriers and brine could no longer adsorb CO2.
Besides, the gas was transmitted by the PTFE pipes during this whole experiment to secure
no gas emissions.
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After magnesium hydroxide reacted with saturated amine carriers, magnesium car-
bonate was analyzed by X-ray diffraction (XRD, DX-2700, Dandong City, Liaoning Province,
China) and scanning electron microscopy (SEM, S-3000N, Hitachi, Tokyo, Japan). The
magnesium, calcium, and sodium precipitation efficiencies were detected by inductively
coupled plasma optical emission spectrometry (ICP-OES, Varian, Vista-MPX, PerkinElmer,
Waltham, MA, USA). On the other hand, the whiteness of magnesium carbonate was
detected by a whiteness meter (Pora Volo-W, JIN-BOMB Enterprise Co., Ltd., Kaohsiung,
Taiwan) to confirm its applied value.

CO2 adsorption capacity
(

L CO2

mol Amine
) =

Σ L CO2 capture

mol Amine
(3)

CO2 adsorption capacity
(

L CO2

L Brine
) =

ΣL CO2 capture

L Brine
(4)

3. Results and Discussion
3.1. The Recovery Rate of Magnesium Hydroxide and Calcium Hydroxide

At the beginning of the experiment, lithium hydroxide was added into the brine to
precipitate magnesium hydroxide and calcium hydroxide under the condition of 298 K and
10 min. The original pH value of brine was 8.14, so the parameters were set up from pH 9
to pH 14. The precipitation efficiency was calculated as Equation (5), and the precipitation
rates of magnesium and calcium at different pH values are shown in Figure 3. As Figure 3
reveals, magnesium could be precipitated as the pH value of the solution increased from
9 to 12, and the precipitation rate of magnesium hydroxide was 99.94% (2112 mg/L to
1.175 mg/L). On the other hand, calcium hydroxide was mainly precipitated at pH 14, and
the precipitation rate was 97.2% (722.16 mg/L to 19.57 mg/L). The precipitated magnesium
hydroxide and calcium hydroxide were then applied to the amine carrier method and
modified Solvay process, respectively.

P (%) =
[M]0 − [M]

[M]0
·100 (5)
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P is the precipitation efficiency, [M]0 is the metal (Mg and Ca) concentration of brine,
and [M] is the metal concentration (Mg and Ca) of brine after the precipitation process.

3.2. Amine Carrier Method-CO2 Adsorption Capacities of Different Amine Carriers

Before magnesium hydroxide reacted with saturated amine carriers, the adsorption
capacities of different amine carriers should be explored first. Figure 4a–c reveals the
saturated CO2 adsorption capacities of 3-Amino-1-propanol, ethylamine, and diethylene-
triamine under the condition of 288 K. In Figure 4, the trends of the three amine carriers are
similar. The CO2 adsorption capacities rose when time increased. However, their saturated
capacities and time were totally different. Their saturated CO2 adsorption capacities were
15.1 L, 9 L, and 15.2 L per mol amines at about 150 min, 50 min, and 300 min, respectively.
The CO2 adsorption capacities were affected by the ethyl group, so the saturated capacities
were highest when using diethylenetriamine in this experiment. However, the stability of
diethylenetriamine was dependent on the number of amino groups [34]. Its viscosity might
enlarge when CO2 was dissolved. The enlarged viscosity made the reaction challenging
to conduct, so the period of the experiment was most extended among the three amine
carriers.
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(c) diethylenetriamine.

Although the reacting time of ethylamine was shorter and the adsorption capacity
of diethylenetriamine was higher in this research, ethylamine and diethylenetriamine
are more volatile than 3-Amino-1-propanol (Ethylamine and diethylenetriamine would
produce fogs). Besides, it was also found that the temperature of diethylenetriamine during
the adsorbing process would increase and enhance the temperature controller’s energy
consumption. For the sake of more carbon dioxide, safety, and a lower energy consumption,
3-Amino-1-propanol was chosen as the optimal amine carrier in this study.
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3.3. Amine Carrier Method-CO2 Adsorption Capacities of 3-Amino-1-Propanol at Different
Temperatures

The temperatures of 3-Amino-1-propanol were set up from 288 K to 328 K in this
part, and the concentration of 3-Amino-1-propanol was 2.5 M. Figure 5 illustrates that
lower temperatures of 3-Amino-1-propanol could capture more CO2. At 288 K and 298
K, 15 L and 11 L of CO2 could be adsorbed by 1 mol of 3-Amino-1-propanol, separately.
However, when the temperature reached 328 K, 3-Amino-1-propanol only captured 9.7 L
of CO2. The speculated reason for this is that the solubility of CO2 was lower under the
condition of higher temperatures and that 3-Amino-1-propanol would evaporate at higher
temperatures as well. In this case, 3-Amino-1-propanol could not adsorb CO2 efficiently
then. Combining the results of the two parts, 288 K of 3-Amino-1-propanol was optimal,
and it could adsorb about 15 L of CO2.
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3.4. XRD, SEM, and Whiteness Analyses of Magnesium Carbonate

After capturing CO2 through 3-Amino-1-propanol at 288 K, moderate magnesium
hydroxide from desalination brine was added into saturated 3-Amino-1-propanol. Magne-
sium hydroxide would then react with CO2 and turn into magnesium bicarbonate solutions.
Through heating the amine carriers, magnesium carbonate would be precipitated, and the
amine carriers could be reused. The XRD pattern of magnesium carbonate is displayed in
Figure 6, and the magnesium carbonate was in the form of nesquehonite. The molecular
formula and crystal system of nesquehonite are MgCO3·3H2O and monoclinic [38–41]. To
gain a deeper understanding of nesquehonite, the SEM analysis is revealed in Figure 7.
The shape of nesquehonite was linear and acicular, and it coincided with the narrative in
the other literature [41].
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On the other hand, magnesium carbonate can be used as the coating material, and
its index is whiteness. Whiteness is the degree of whiteness on the surface of a substance.
If the whiteness is above 90, it can be the coating material or the paint ingredient. A
comparison of the whiteness of commercial and experimental magnesium carbonate is
shown in Table 3. To get a higher preciseness, three different samples of commercial
and experimental magnesium carbonate were detected, and the average whiteness of
commercial product and magnesium carbonate we obtained was 94.8 and 93.6, respectively.
This means that the magnesium carbonate produced in this study has an applied value in
other industries so as to reach resources’ circulation.
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Table 3. Whiteness of commercial product and experimental magnesium carbonate.

Magnesium Carbonate Samples Whiteness

Commercial product
Sample 1 94.9
Sample 2 94.7
Sample 3 94.8

Experimental magnesium carbonate
Sample 1 93.5
Sample 2 93.5
Sample 3 93.8

3.5. Modified Solvay Process-Removal of Sodium at Different Ca(OH)2 Concentrations

After finishing the amine carrier method, the modified Solvay process was imple-
mented through calcium hydroxide and desalination brine. This process could not only
adsorb CO2 but also remove the sodium in the brine. The procedure was as follows:
calcium hydroxide was added into pH 14 of brine and reacted as in Equation (2). The con-
centrations of Ca(OH)2 were set up from 5 g/L to 25 g/L, and the results are demonstrated
in Figure 8. As Figure 8 illustrates, 5 g/L of Ca(OH)2 could only remove 1000 ppm of
sodium, and the value would increase with the Ca(OH)2 concentration increasing. Under
the condition of 25 g/L of Ca(OH)2, the sodium removal could reach about 7000 ppm,
and the removal efficiency was 45%. The results seem to show that the concentration of
Ca(OH)2 could increase continuously; however, excessive Ca(OH)2 would react with CO2
first and produce calcium carbonate rather than sodium bicarbonate (It would interrupt
the generation of sodium bicarbonate). Therefore, the optimal Ca(OH)2 concentration in
this study was 25 g/L.
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3.6. Modified Solvay Process-Removal of Sodium at Different Temperatures

The temperatures were set up from 288 K to 328 K in this study, and the fixed parameter
was 25 g/L of calcium hydroxide. Figure 9 illustrates that an increase in the temperatures
would decrease the removal efficiency of sodium. At 288 K, the sodium removal was
about 7000 ppm, and it was only under 1000 ppm at 328 K. The main reasons were the
solubilities of CO2 and sodium bicarbonate. At higher temperatures, the solubility of
CO2 would decrease and make it challenging to conduct the reaction. On the other hand,
even if the reaction progressed, the precipitated sodium bicarbonate was easily dissolved
in the high-temperature aqueous solution [36] (The solubilities of sodium bicarbonate at



Water 2021, 13, 3463 10 of 12

different temperatures are demonstrated in Table 4). Combining the above reasons, 25 g/L
of Ca(OH)2 at 288 K was the optimal parameter for removing sodium. After removing
sodium, the brine could then be released back into the ocean, or other valuable metals
could be extracted in a further process. Sodium bicarbonate can be used in other industries
as well in order to achieve the goal of a circular economy. In a nutshell, the modified Solvay
process could adsorb 16 L of CO2 per liter of brine with 25 g of Ca(OH)2 and reduce the
side effect of sodium.
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Table 4. Solubility of sodium bicarbonate at different temperatures.

Temperatures 288 K 298 K 308 K 318 K 328 K

Solubility (g/100 g water) 7.6 8.4 9.9 12.1 13.9

4. Conclusions

This study aims to recover magnesium and calcium to adsorb CO2 and remove sodium
through the amine carrier method and the modified Solvay process. The results reveal
that the magnesium hydroxide and calcium hydroxide precipitation rates were 99.94% and
97.2%, separately. 288 K of 3-Amino-1-propanol could capture 15 L (26.9 g) of CO2 first,
and magnesium hydroxide could then react with 3-Amino-1-propanol in order to turn into
magnesium carbonate. The XRD, SEM, and whiteness analyses of magnesium carbonate
showed that it had an applied value in this study as well. Moreover, 25 g/L of Ca(OH)2 at
288 K was the optimal parameter for removing sodium and adsorbing CO2 in the modified
Solvay process. The efficiencies of sodium removal and capacity of CO2 were 7000 ppm
(45%) and 16 L (28.7 g), respectively. In sum, this research demonstrates a system that
could capture CO2 through amine carriers and brine. In addition, the high concentration
of sodium in the brine was also decreased. This means that the study could reduce CO2
emissions and the environmental problems caused by brine simultaneously.
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