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Abstract: Unmanned aerial vehicles (UAV, aka drones) are being used for mapping macro-litter in
the environment. As drone images require a manual processing task for detecting marine litter, it is of
interest to evaluate the accuracy of non-expert citizen science operators (CSO) in performing this task.
Students from Italian secondary schools (in this work, the CSO) were invited to identify, mark, and
classify stranded litter items on a UAV orthophoto collected on an Italian beach. A specific training
program and working tools were developed for the aim. The comparison with the standard in situ
visual census survey returned a general underestimation (50%) of items. However, marine litter bulk
categorisation was fairly in agreement with the in situ survey, especially for sources classification.
The concordance level among CSO ranged between 60% and 91%, depending on the item properties
considered (type, material, and colour). As the assessment accuracy was in line with previous works
developed by experts, remote detection of marine litter on UAV images can be improved through
citizen science programs, upon an appropriate training plan and provision of specific tools.

Keywords: plastic; remote sensing; waste management; coastal pollution; beach; drone

1. Introduction

Unmanned aerial vehicles (UAV, aka drones) are being used for monitoring macro
marine litter (>2.5 mm, [1]) (hereafter, ML) in various marine environments such as
beaches [2–8], coastal dunes [9,10], lakeshores [11], remote islands [12], sea surface [13–15],
and river waters [16].

On coasts, compared to traditional and standardized manual census surveys (e.g., [1,17]),
the use of UAVs requires much less human effort in the field and thus can potentially
increase the survey frequency. Moreover, UAV-based surveys are not intrusive and reduce
the anthropogenic impact on the coast, an important aspect especially for sensitive areas
such as dunes [9,10] and marine-protected areas [8]. Finally, as UAV images allow the
geo-localisation of ML, it is possible to identify recurrent hotspots to improve knowledge
of ML accumulation processes on coasts [5,8,9]. These assessments can serve, for instance,
to optimize ML dynamic models (e.g., [18–20]) and stranded debris management [21,22].

The limitations of UAV-based surveys, when compared to the traditional census, reside
in the less-detailed identification of ML. The survey can be based on the manual [4,8,10]
or automated [2,23–33] image processing of UAV acquisitions. Manual image screening
(hereafter, MS) consists in visually analysing UAV images (or orthophoto) and marking
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ML, generally in a GIS environment. Automatic ML detection would be preferable to the
manual procedure, as it is less tedious and demands less human effort; however, current
proposed automated methodologies still lack the ability to categorising ML items in a
detailed manner [27]. On the other hand, MS is highly subjective; thus, the quality of
the assessment may depend on several factors such as operator experience and expertise,
among others.

The consistency of MS was previously investigated by Andriolo et al. [34], who
evaluated the different assessment by a group of expert operators. Results pointed out
that the number of items marked on images depended more on the knowledge of common
items found on the site, and thus on the territoriality, than on the expertise of the operators.
This suggests that the UAV-based litter abundance map could be produced by briefly
trained personnel, such as operators recruited from emerging citizen science projects.

The use of citizen science can be a potential and valid help in the UAV-based litter
survey and MS performance. In recent years, researchers have been supported by vol-
unteers and students in collecting data on beached marine litter [35–42]; therefore, the
implementation of citizen science projects in schools could take advantage of synergies
between educational and research goals. Training workshops are used to facilitate citizen
science in classrooms and improve scientific literacy for participants [43]. Moreover, the
use of advanced software tools and data (e.g., GIS) can provide new skills to participants,
useful for their future career and social innovation [44].

The present work presents a citizen science program targeting secondary school
students (between the age of 16 and 18) for performing the MS on aerial photos taken by
a drone. The program was designed for an online working context (imposed during the
COVID-19 pandemic). A training course was held for briefing the students, who were also
provided with information material and a personalised QGIS application (Development
Team, 2020 QGIS Geographic Information System. Open Source Geospatial Foundation
Project. http://qgis.osgeo.org, accessed on 16 June 2021) for the marking and classification
of ML items.

The work aimed at (i) assessing the inherent variability of MS when performed
by different operators, (ii) evaluating the quality of the MS output from citizen science
program, and (iii) suggesting future operational improvements for the MS optimisations.

2. Materials and Methods
2.1. Study Site and Image Dataset

The study area (Figure 1) was a sandy beach located downdrift from the Arno river
estuary, within the marine protected area (MPA) of Migliarino, Massacciuccoli, and San
Rossore park (SRPRK). The whole beach extends for about 11 km along shore, with an N–S
orientation, limited southwards by a 150 m long semi-submerged groin and backward by a
dune system reaching a maximum height of about 7 m [45]. The tidal regime is micro-tidal,
the wave climate is characterised by a dominant southwesterly wave direction, with wave
heights of usually about 1 m [46].

This coastal stretch, located between the two rivers Arno (N 4340′47.408′′, E 1016′40.466′′)
and Serchio (N 4347′1.704′′, E 1016′0.016′′), is affected by a long-shore current that goes
from the mouth of Arno northward, with a considerable transport of fluvial material. The
Arno River is an important Italian watercourse that crosses the Tuscany region, running
through large cities such as Florence and Pisa and industrial and production centers such
as the province of Prato and Pontedera. The coast is also subjected to important coastal
erosion phenomena [47,48], which influence the dynamics of the accumulation of sediments
and materials transported by the river [47].

The selected study area, called Test Area (Figure 1), was a 900 m2 portion of San
Rossore beach, situated between the swash zone and the upper beach dune toe. Access
to the study area is forbidden for recreational purposes and only allowed for research
activities upon permission.

http://qgis.osgeo.org
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Figure 1. Study area location. Map of Migliarino, Massacciuccoli, and San Rossore park (upper green
area) on the Tuscanian coast and satellite image of the study site (inset). Below, aerial image acquired
by drone (flight height 15 m) of the target area (red trapezoidal area).

A multirotor DJI Phantom 4 Pro v2 quadcopter, with the camera (1 inch, 20 megapixel
CMOS sensor, 24 mm full-frame equivalent) gimbal set to 90 degrees looking at the nadir
(perpendicular to flight direction), acquired high-resolution images flying at 15 m height.
Images were recorded with 80% front and 80% side overlaps.

The UAV operated automatically using the Drone Harmony (DH) ground station
software. Following previous similar studies [8,34], we chose a flight height of 15 m as
the right compromise between ground sampling distance (GSD) and area coverage. This
setting allowed us to fly over the Test Area in 10 min.

From the image dataset, the digital surface model (DSM) and the orthophoto beach
map were produced, applying a Structure from Motion-MultiView Stereo (SfM-MVS)
photogrammetric processing on Agisoft Metashape [49–52]. The final orthophoto GSD
resolution was 0.41cm/pixel (Figure 1).
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2.2. Manual Image Screening and Training Framework

For performing the manual image screening (MS) and marking ML on drone images,
similarly to Merlino et al. [8], the image was tiled with a 3× 3 m square grid to make the MS
regular and organised. An ad hoc user-friendly QGIS application interface, based on a drop-
down list of tasks, was developed to guide the operator. After the recognition of an ML item
on image, the operator was asked to digitise the item contour using the graphical existing
tool available in QGIS. The software automatically retrieved the geometric properties of the
object (area, length, and GPS coordinates of the centroid), discarding objects smaller than
5 cm. In the second step, the operator needed to label the item characteristics through a
combo box-based interface composed of a hierarchical series (category, type, and material)
of interdependent choices. For the aim, we slightly modified the ML shortlist proposed by
the previous inter-operator reliability study [34]. The simplified list (Figure 2) included
three main ML characteristics, namely type (characterised by their main potential source),
material, and colour. Litter type also included the labels i) Fragments, pieces of an object
with undefined shape and anthropogenic origin that could not be associated with any
ML types present in the list, and ii) Undefined Items, objects that had a distinct shape
but could not be associated with any type of ML present in the list, for being not visible
and/or not recognisable enough due to operator inexperience and/or low image resolution.
The Undefined option was also included in the material and colour lists, in case these
characteristics could not be precisely defined by the operator. The tool also automatically
retrieved marked item geometric properties (length, area, and coordinates). The colour
property was an independent field instead.

Within the broader citizen science project “Adotta una spiaggia/Adopt a beach”
(https://sites.google.com/view/seacleaner/educazione/adotta-una-spiaggia, accessed
on 10 May 2021), 34 students from three different secondary school classrooms in Tus-
cany (Italy) were invited to perform the MS. Since all students had no previous experience
in ML mapping and QGIS application, an online training course (four hours) was held to
introduce the issue of ML in the coastal environment and the use of QGIS for performing
the MS. Students also received supporting material comprising (i) a catalogue of ML images
extracted from orthophotos of the study site, (ii) a quick guide and a video-recorded lesson
about the use of QGIS for ML marking on orthophoto, and (iii) a recorded video lesson
showing the UAV operation in the field and the photogrammetry framework. The material
is available on the project website (see also Data Availability).

A dedicated GIS package was also provided to the students, hereafter citizen science
operators (CSO). The package included the QGIS project (qgz format) with the user-friendly
interface, the database (gpkg format), and the map of the Test Area (GEO-TIFF format). The
hierarchical series of interdependent combo boxes made the selection of litter properties
easier. In order to have information on the source of different kinds of objects, it was
specified that recognisable material must be marked considering its original definition,
avoiding, for example, selecting Fragments for broken drinking bottles.

After the training phase, each CSO autonomously marked and classified ML items
using the ad hoc QGIS interface (Figure 3). CSO returned the single geopackage (gpkg file)
containing the ML map and the corresponding attribute table. Therefore, the final dataset
was composed by the layer on the QGIS project with i) the geometric properties of ML and
ii) the characteristics (type, material, colour, and size) of each item.

After the drone flight, the standard in situ visual census (hereinafter, VC) was per-
formed by some of the authors of this paper, following the OSPAR protocol [17]. Items
were categorised using the same criteria used for the MS (Figure 2), classifying items by
dimensional class, type, colour, and material. The smallest size of items to be considered
was set to 5 cm (instead of 2.5 cm) to have a better comparison between MS and VC. In fact,
a previous study observed that the highest discrepancy between items collected in the field
and identified on UAV images was in the range 2.5–5 cm [8]. To assess the reliability of
CSO contributions in the marking phase, we compared the CSO output with the VC.

https://sites.google.com/view/seacleaner/educazione/adotta-una-spiaggia


Water 2021, 13, 3349 5 of 15Water 2021, 13, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 2. Classification of marine litter on UAV images. Left: macro-categories (source) and spe-

cific typology (Type) with the specific identity number (id). Types of litter are grouped into macro-

categories to facilitate the choice during the marking process; right: materials of litter and their 

related id (upper), colour list, and related id (middle) and size of litter and specific id (lower). Item 

size: small between 5 and 15 cm; medium between 15 and 50 cm; large if bigger than 50 cm. 

A dedicated GIS package was also provided to the students, hereafter citizen science 

operators (CSO). The package included the QGIS project (qgz format) with the user-

friendly interface, the database (gpkg format), and the map of the Test Area (GEO-TIFF 

format). The hierarchical series of interdependent combo boxes made the selection of litter 

properties easier. In order to have information on the source of different kinds of objects, 

it was specified that recognisable material must be marked considering its original defini-

tion, avoiding, for example, selecting Fragments for broken drinking bottles. 

After the training phase, each CSO autonomously marked and classified ML items 

using the ad hoc QGIS interface (Figure 3). CSO returned the single geopackage (gpkg 

file) containing the ML map and the corresponding attribute table. Therefore, the final 

dataset was composed by the layer on the QGIS project with i) the geometric properties 

of ML and ii) the characteristics (type, material, colour, and size) of each item. 

Figure 2. Classification of marine litter on UAV images. Left: macro-categories (source) and specific typology (Type) with
the specific identity number (id). Types of litter are grouped into macro-categories to facilitate the choice during the marking
process; right: materials of litter and their related id (upper), colour list, and related id (middle) and size of litter and specific
id (lower). Item size: small between 5 and 15 cm; medium between 15 and 50 cm; large if bigger than 50 cm.
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Figure 3. Screenshots of the developed software application for marine litter identification and classification with combo
boxes.

2.3. Data Quality Assessment and Interoperator Concordance Test

A preliminary screening test was drawn to discard possible unreliable data. We
considered a sub-sample of 42 objects particularly visible and of undoubted interpretation
on the orthophoto (Figure 4). Firstly, we matched the correct objects marked by each CSO
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with the truth layer, checking the classification (for each attribute of the object) with the
classification in the truth layer. Second, we calculated the overall percentage of correct
classifications made by each CSO against the total number of objects, setting a minimum
acceptable threshold to 50%. Finally, we evaluated the degree of reliability of CSO in
recognising, marking, and classifying the objects in the test area, discarding any CSO that
did not meet the defined criteria.
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Figure 4. Examples of specific known items found on San Rossore beach. (a) Yellow foam fragment; (b) transparent plastic
container; (c) yellow ball; (d) brown shoe. The left column shows the items (red square) on the orthophoto, the central
column the items visible at 1:4 zoom factor on the orthophoto, and the right column the item picture taken in situ.

We also adopted the Kendall’s coefficient of concordance (W) [53] to measure the level
of agreement among the working groups in MS assessments. The test evaluated the level
of concordance in detecting the number of ML items on the UAV image and in labelling the
ML characteristics (type, material, colour, and dimension of items). Kendall’s coefficient of
concordance ranges from 0 (no agreement) to 1 (complete agreement).

2.4. Evaluation of Citizen Science Operators Assessments

Besides the comparison with the VC, a sub-sample of 100 items was randomly selected
by an expert operator from among the ML bulk collected in the field. The CSO classification
of the sub-sample was evaluated through three indicators, namely true positive rate (TPR),
false positive rate (FPR), and positive predicted value (PPV) [54].
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The true positive rate (TPR), also called sensitivity, measured the capacity of the
operator in classifying item properties. It was computed as:

TPR =
TP
P
× 100 (1)

where TP was the number of correctly classified items considering one single property (e.g.,
items classified as plastic also found as plastic in the field), and P was the total number
of real items within the same property (e.g., total number of plastic items in the Test Area
from the field survey).

The false positive rate (FPR), also called the false alarm ratio, measured the probability
of assigning a wrong property to an item.

FPR =
FP
N
× 100 (2)

where FP is the number of incorrectly classified items within one property (e.g., number
of items classified as plastic that from field survey were another material), and N was the
total number of real items that were not within one property (e.g., total number of items
that were not plastic in the field).

PPV is the combination of the previous two and indicates the probability that an item
has been classified correctly:

PPV =
TPR

(TPR + FPR)
(3)

All three indicators varied between 0 and 100. Better assessment is indicated by a
higher value of TPR and PPV and lower values of FPR.

3. Results
3.1. In Situ Visual Census and Manual Image Screening by Citizen Science Operator

Among the 34 citizen science operators (CSO) that completed the manual image
screening (MS) task, just 30 works were considered for the evaluation. In fact, after the
preliminary screening test, the data returned by two CSO were a copy of other colleagues.

The in situ visual census (VC) collected 332 ML items (Figure 5). Most of the ML bulk
was composed of fragments (46%) and containers (30%). Fishing-related and other items
were found in similar percentage (7%). Plastic composed about 56%, polystyrene 22%,
while white was the most abundant colour (46%) (Figure 6).

On average, CSO marked about 49% of ML collected by in situ VC (Figures 5 and 6).
Nevertheless, percentages of sources were fairly in agreement with the VC. Fragments
were overestimated (53%), whereas fishing-related items (4%) and clothing (2.4%) were
slightly underestimated. Overall, materials were not properly classified due to the fact
that CSO were not able to identify about 22% of items. However, plastic and polystyrene
composed more than the 50% of ML bulk from MS. This confirmed that the composition
of ML items is a difficult property to identify from UAV images, especially by non-expert
operators. As previously observed, white colour may mislead in the material classification.

Most of items collected in situ were small (86%). From MS, small items only composed
62%, whereas medium items 37% (Table 1).
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situ visual census (VC). Types not reaching 1% of the total were not individually graphed.

Table 1. Items classification based on size, collected in situ visual census (VC) and marked during
the manual image screening (MS) by a citizen science operator (CSO).

Size VC
(Number)

VC
(%)

MS
(Average
Number)

MS
(Average %)

Small (>5 cm) 285 85.8 100 62.2
Medium (15–50 cm) 43 12.9 59 36.5

Large (>50 cm) 4 1.3 2 1.3

3.2. Citizen Science Operators Detection Performance

The Kendall W concordance value (Table 2) was lowest for the identification of the
type (0.6) and highest for the size (W = 0.91). The results showed an inverse relationship
between the number of options the operator has to choose and the concordance level.
Nevertheless, achievements were similar to the agreement among experts of a previous



Water 2021, 13, 3349 10 of 15

study [34], indicating that the skills of the CSO are low, dependent on their background
and age. The agreement was comparable for all ML characteristics, namely type (0.60 vs.
0.58), material (0.75 vs. 0.76), and colour (0.69 vs. 0.65), suggesting that the interpretation
of UAV images for an ML survey by CSO can also be robust, if they are properly trained.

Table 2. Kendall W Concordance test (W) among citizen science operators (CSO) for category, type,
material, colour, and class size calculated based on the number of items.

Attribute Number of Categories W

Type 43 0.60
Material 14 0.71
Colour 11 0.69

Size 3 0.91
Source 6 0.86

The ability of the CSO group to correctly recognise ML objects, evaluated on a sam-
ple of 100 objects randomly selected by experts, returned satisfactory results (Figure 7).
On average, CSO presented high scores in the classification of the type, colour, and size
(PPV = 94%), whereas achievements were slightly worse for material (PPV = 76%) cate-
gorisation. CSO obtained high scores in the classification of the type, colour, and size
(PPV = 94%), whereas achievements were slightly worse for material (PPV = 76%).
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Most of the CSO identified more than 50% of the ML, obtaining the highest score
for toys (TPR = 73%) and more than 60% for containers. On the other hand, CSO had
difficulties in the identification of cardboard and cotton buds (TPR < 10%). Fragments were
shown to be the most difficult to classify (FPR = 40% and PPV = 58%). Nevertheless, PPV
were highly variable for those items mostly found as fragments (buckets, containers, tires,
and toys), whereas final PPV was most homogeneous for common items such as bottles,
cans, and shoes (Figure 7).
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Regarding the ML materials (Figure 7), the highest TPR was scored for plastic (60%),
and the lowest was for wood (10%). Due to the high values of FPR, the final PPV was low
for undefined material (53%), plastic (75%), and paper (78%), whereas all other materials
were properly identified by CSO (96%, on average). The low results in classifying plastics
and papers may be because 60% of white plastic items were erroneously classified as paper
items; thus, the white colour misled the CSO.

Regarding ML colour classification (Figure 7), TPR was highest for primary colours
(e.g., Red TPR = 97%), while it was lowest for those chroma that had less contrast with
the beach background and pieces of natural wood, such as grey (11%) and brown (29%),
respectively. Although grey had the highest PPV (82%), most grey items (53%) were
wrongly labelled as white. Similarly, 30% of brown items were labelled as yellow. These
inaccuracies may be due to the high subjectivity in choosing between colours that look
similar in the UAV aerial images.

Since the provided user-friendly application helped CSO in digitising the items’ con-
tour, the size classification returned a high TPR for both medium and large items (93%).
The lowest TPR and highest FPR were instead returned for small items, for a final PPV of
87%. On average, most of the CSO (90%) classified ML size with a PPV higher than 80%.

4. Discussion

This study evaluated the reliability of non-expert citizen scientist operators (CSO)
(students of secondary schools) in marking and classifying marine litter (ML) items from
aerial photos taken by an unmanned aerial vehicle (UAV, aka drone). Overall, results
confirmed that citizen science projects can support UAV-based ML survey upon a proper
training program and the provision of a user-friendly guided software. In fact, it was
fundamental to introduce CSO to ML issues and provide (i) video tutorials, (ii) visual
manual instructions regarding manual image screening (MS) for item detection on UAV
images, and (iii) a QGIS application built for guiding the operator during MS.

Comparing CSO assessments with those of a previous UAV-based survey performed
by experts [8] in the same geographical area, we found that the percentage of material
correctly classified was slightly better for plastic (38% vs. 20%) and worse for metal (59%
vs. 66%) and glass (19% vs. 66%). Yet, the classification for dimensional class (size) was
more satisfactory for smaller items (35% against 20%). Instead, CSO overestimated the
number of medium (36%) and large items (56%), while experts correctly marked 90% and
70% of these size categories [8].

The operational training sessions to identify a limited and predefined set of items
present in the study area, followed by the analysis of the errors made by CSO in marking
and classifying specific litter items, might be a way to improve a priori knowledge of the
CSO. A priori CSO knowledge of some variables might be wrong, and therefore bias could
be introduced. For instance, CSO overcounted paper items from images, underestimating
instead polystyrene white pieces (probably misleading white items according to their prior
knowledge about the state of “tourist” beaches), whereas experts were aware that paper
is not present at the study site; the area is not accessible to tourists, away from sources of
anthropogenic material, and previous surveys did not encounter this material [8,40,41].
This information was deliberately not given to CSO to avoid influencing their choice during
the MS. A white object with irregular edges can easily be mistaken for a piece of paper if
one does not have prior knowledge that such a specific object is practically absent in certain
conditions. The a priori knowledge gap of non-experts can be therefore partly corrected by
specific training sessions.

On the other hand, the ability of CSO to correctly assign the source of identified
ML, and to recognise, for many of them, the type, was confirmed. The most significant
discrepancies between the two surveys are both the higher percentage of ‘Undefined’
items marked by MS compared to VC and the lower number of localised objects in the
ortho-photos, particularly small ones.
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Regarding the Data Availability on the classification of 100 items, positive predictive
value (PPV) ranged between 76% and 94% in the classification of type and material from
UAV images, a good quality assessment considering that this was the first experience in
ML study, UAV image processing, and QGIS operation and that the CSO involved had no
experience of either marine litter or mapping with QGIS.

The Kendall (W) level of agreement among CSO both in the identification and classifi-
cation of ML on drone images was similar to the agreement among experts [34], indicating
that the skills of the CSO are low dependent on their background and age. The agreement
was comparable for all ML characteristics, therefore the interpretation of UAV images for
ML survey can also be robust by CSO, if properly trained.

Results obtained from the present study, carried out on the test area, confirm that the
citizen science program greatly increases the possibility of obtaining reliable data over
large areas and long periods and can be used for the spatial and temporal ML distribution
through UAV orthophoto.

We underline that a preliminary screening of data assessments to discard low-quality
MS and/or uncompleted works was necessary. The attention and effort given dur-
ing the MS by each operator is a difficult factor to weigh, as already pointed out by
Andriolo et al. [34] for experts. We reiterate this concept, specifying that the user-friendly
application helped and facilitated CSO during the alienating and tedious MS task, limiting
the time spent in marking and decreasing fatigue. This fact was found in the particular case
of two students, who used the work done by others, thus not producing their own personal
results. In cases such as this, extra care must be taken when selecting data, compared to the
case of non-expert citizens who volunteered for this type of activity. Being a CSO group
composed of students, some lack of willingness to participate was expected; however, most
of them returned good quality data.

Besides the MS task, future citizen science programs may also propose the involvement
of citizens in the aerial image acquisition [55]. The actual diffusion of low-cost drones
may advance the collection of stranded litter images, helping in improving the spatial and
temporal coverage of coastal pollution.

5. Conclusions

This study presented a citizen science program that involved students in detecting
and mapping marine litter (ML) on unmanned aerial vehicle (UAV) images. A specific
framework was built for training the students, named citizen science operators (CSO) here.
A CSO training framework included an introduction to the ML issue and a practical session
on the use of QGIS application. The framework was shown to be efficient and may be
useful to implement citizen science projects.

The comparison with the results of the in situ visual census (VC) showed an underes-
timation of the items number, with only 49% marked on the image. In particular, a large
fraction of small size items were not recognised on UAV images. Nevertheless, the sources
of the ML were properly identified, and, overall, the ML bulk was properly described in
terms of percentage. The difficulty in correctly defining ML materials from UAV images
was confirmed in this work. Additionally, it was observed that knowledge of the most
common items in the area is critical. For this reason, the training phase should include a
session dedicated to the characterisation of ML previously found in the area.

As the assessment accuracy was in line with previous works developed by experts,
remote detection of marine litter on UAV images can be improved through citizen science
programs, upon an appropriate training plan and provision of specific tools.



Water 2021, 13, 3349 13 of 15

Author Contributions: Conceptualisation, S.M. and L.M.; methodology, S.M., M.P., L.M., U.A. and
G.G; software, M.P. and L.M.; validation, S.M., M.L., M.P., L.M., U.A. and G.G.; formal analysis, L.M.;
investigation, S.M., M.L., M.P. and L.M.; resources, S.M., M.L., M.P. and L.M; data curation, S.M.,
M.P. and L.M.; writing—original draft preparation, S.M. and L.M.; writing—review and editing,
S.M., M.L., M.P., L.M., U.A. and G.G.; visualisation, M.L., M.P. and L.M.; supervision, S.M.; project
administration, S.M.; funding acquisition, S.M. and M.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper is part of NAUTILOS project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 101000825.
This work was supported by the Portuguese Foundation for Science and Technology (FCT) and by
the European Regional Development Fund (FEDER) through COMPETE 2020, Operational Program
for Competitiveness and Internationalization (POCI) in the framework of UIDB/ 00308/2020 and the
research project UAS4Litter (PTDC/EAM-REM/30324/2017).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets generated during this study, and material supporting the
training phase of CSO can be found in https://sites.google.com/view/seacleaner/educazione/
adotta-una-spiaggia, accessed on 4 August 2021.

Acknowledgments: We would like to thank the Park of Migliarino, Massacciuccoli, and San Rossore
for the permission to access the protected area and perform the field experience. Thanks to all the
co-authors for the commitment to participating in this work and for providing the high-quality data
necessary to perform the inter-operator concordance test. A special thanks goes to the involved
scholastic institutes, to the students that participated in this citizen science and educational experience
during the hard days of COVID emergencies, and to their teachers that supported them and helped
us in collecting data: for IIS Meucci of Massa (MS), Fabio Pieraccioni; for IIS Zaccagna-Galilei of
Carrara (MS), Chiara Collotti and M. Cristina Matelli; for IIS Agnoletti of Sesto Fiorentino (FI), Laura
Dei; for ISI Garfagnana of Castelnuovo (LU), Andrea Malagoli; for LS Marconi San Miniato (PI),
Laura Doria.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GESAMP. Guidelines for the Monitoring and Assessment of Plastic Litter in the Ocean by Joint Group of Experts on the Scientific

Aspects of Marine Environmental Protection. 2019. Available online: http://www.gesamp.org/publications/guidelines-for-the-
monitoring-and-assessment-of-plastic-litter-in-the-ocean (accessed on 2 April 2021).

2. Taddia, Y.; Corbau, C.; Buoninsegni, J.; Simeoni, U.; Pellegrinelli, A. UAV Approach for Detecting Plastic Marine Debris on the
Beach: A Case Study in the Po River Delta (Italy). Drones 2021, 5, 140.

3. Deidun, A.; Gauci, A.; Lagorio, S.; Galgani, F. Optimising beached litter monitoring protocols through aerial imagery. Mar. Pollut.
Bull. 2018, 131, 212–217. [CrossRef] [PubMed]

4. Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, F. Mapping marine litter using UAS on a beach-dune system: A multidisciplinary
approach. Sci. Total Environ. 2020, 706, 135742. [CrossRef] [PubMed]

5. Andriolo, U.; Gonçalves, G.; Sobral, P.; Fontán-Bouzas, Á.; Bessa, F. Beach-dune morphodynamics and marine macro-litter
abundance: An integrated approach with Unmanned Aerial System. Sci. Total Environ. 2020, 749, 141474. [CrossRef] [PubMed]

6. Escobar-Sánchez, G.; Haseler, M.; Oppelt, N.; Schernewski, G. Efficiency of Aerial Drones for Macrolitter Monitoring on Baltic
Sea Beaches. Front. Environ. Sci. 2021, 8, 283. [CrossRef]

7. Martin, C.; Zhang, Q.; Zhai, D.; Zhang, X.; Duarte, C.M. Enabling a Large-Scale Assessment of Litter along Saudi Arabian Red
Sea Shores by Combining Drones and Machine Learning. Environ. Pollut. 2021, 277, 116730. [CrossRef] [PubMed]

8. Merlino, S.; Paterni, M.; Berton, A.; Massetti, L. Unmanned Aerial Vehicles for Debris Survey in Coastal Areas: Long-Term
Monitoring Programme to Study Spatial and Temporal Accumulation of the Dynamics of Beached Marine Litter. Remote Sens.
2020, 12, 1260. [CrossRef]

9. Andriolo, U.; Gonçalves, G.; Sobral, P.; Bessa, F. Spatial and size distribution of macro-litter on coastal dunes from drone images:
A case study on the Atlantic coast. Mar. Pollut. Bull. 2021, 169, 112490. [CrossRef]

10. Andriolo, U.; Gonçalves, G.; Bessa, F.; Sobral, P. Mapping marine litter on coastal dunes with unmanned aerial systems: A
showcase on the Atlantic Coast. Sci. Total Environ. 2020, 736, 139632. [CrossRef]

11. Hengstmann, E.; Fischer, E.K. Anthropogenic litter in freshwater environments–Study on lake beaches evaluating marine
guidelines and aerial imaging. Environ. Res. 2020, 189, 109945. [CrossRef]

https://sites.google.com/view/seacleaner/educazione/adotta-una-spiaggia
https://sites.google.com/view/seacleaner/educazione/adotta-una-spiaggia
http://www.gesamp.org/publications/guidelines-for-the-monitoring-and-assessment-of-plastic-litter-in-the-ocean
http://www.gesamp.org/publications/guidelines-for-the-monitoring-and-assessment-of-plastic-litter-in-the-ocean
http://doi.org/10.1016/j.marpolbul.2018.04.033
http://www.ncbi.nlm.nih.gov/pubmed/29886939
http://doi.org/10.1016/j.scitotenv.2019.135742
http://www.ncbi.nlm.nih.gov/pubmed/31791786
http://doi.org/10.1016/j.scitotenv.2020.141474
http://www.ncbi.nlm.nih.gov/pubmed/32846347
http://doi.org/10.3389/fenvs.2020.560237
http://doi.org/10.1016/j.envpol.2021.116730
http://www.ncbi.nlm.nih.gov/pubmed/33652184
http://doi.org/10.3390/rs12081260
http://doi.org/10.1016/j.marpolbul.2021.112490
http://doi.org/10.1016/j.scitotenv.2020.139632
http://doi.org/10.1016/j.envres.2020.109945


Water 2021, 13, 3349 14 of 15

12. Fallati, L.; Polidori, A.; Salvatore, C.; Saponari, L.; Savini, A.; Galli, P. Anthropogenic Marine Debris assessment with Unmanned
Aerial Vehicle imagery and deep learning: A case study along the beaches of the Republic of Maldives. Sci. Total Environ. 2019,
693, 133581. [CrossRef]

13. Garcia-Garin, O.; Borrell, A.; Aguilar, A.; Cardona, L.; Vighi, M. Floating marine macro-litter in the North Western Mediterranean
Sea: Results from a combined monitoring approach. Mar. Pollut. Bull. 2020, 159, 111467. [CrossRef]

14. Garcia-Garin, O.; Monleón-Getino, T.; López-Brosa, P.; Borrell, A.; Aguilar, A.; Borja-Robalino, R.; Cardona, L.; Vighi, M.
Automatic detection and quantification of floating marine macro-litter in aerial images: Introducing a novel deep learning
approach connected to a web application in R. Environ. Pollut. 2021, 273, 116490. [CrossRef] [PubMed]

15. Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of floating plastics from satellite and unmanned aerial systems
(Plastic Litter Project 2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 175–183. [CrossRef]

16. Geraeds, M.; van Emmerik, T.; de Vries, R.; bin Ab Razak, M.S. Riverine plastic litter monitoring using Unmanned Aerial Vehicles
(UAVs). Remote Sens. 2019, 11, 2045. [CrossRef]

17. OSPAR Commission. Guideline for Monitoring Marine Litter on the Beachs in the OSPAR Maritime Area; OSPAR Commission: London,
UK, 2010.

18. Kako, S.; Isobe, A.; Kataoka, T.; Yufu, K.; Sugizono, S.; Plybon, C.; Murphy, T.A. Sequential webcam monitoring and modeling of
marine debris abundance. Mar. Pollut. Bull. 2018, 132, 33–43. [CrossRef] [PubMed]

19. Cordeiro, T.C.; Barrella, W.; Butturi-Gomes, D.; Petrere Júnior, M. A modeling approach for reposition dynamics of litter
composition in coastal areas of the city of Santos, Sao Paulo, Brazil. Mar. Pollut. Bull. 2018, 128, 333–339. [CrossRef]

20. Yoon, J.H.; Kawano, S.; Igawa, S. Modeling of marine litter drift and beaching in the Japan Sea. Mar. Pollut. Bull. 2010, 60, 448–463.
[CrossRef]

21. Rangel-Buitrago, N.; Williams, A.; Costa, M.F.; de Jonge, V. Curbing the inexorable rising in marine litter: An overview. Ocean
Coast. Manag. 2020, 188, 105133. [CrossRef]

22. Williams, A.T.; Rangel-Buitrago, N. Marine litter: Solutions for a major environmental problem. J. Coast. Res. 2019, 35, 648–663.
[CrossRef]

23. Bak, S.H.; Hwang, D.H.; Kim, H.M.; Yoon, H.J. Detection and monitoring of beach litter using uav image and deep neural
network. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.-ISPRS Arch. 2019, 42, 55–58. [CrossRef]

24. Bao, Z.; Sha, J.; Li, X.; Hanchiso, T.; Shifaw, E. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle
images using the segmentation threshold method. Mar. Pollut. Bull. 2018, 137, 388–398. [CrossRef] [PubMed]

25. Jakovljevic, G.; Govedarica, M.; Alvarez-Taboada, F. A deep learning model for automatic plastic mapping using unmanned
aerial vehicle (UAV) data. Remote Sens. 2020, 12, 1515. [CrossRef]

26. Duarte, D.; Andriolo, U.; Gonçalves, G. Addressing the Class Imbalance Problem in the Automatic Image Classification of Coastal
Litter From Orthophotos Derived From Uas Imagery. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2020, V-3–2020,
439–445. [CrossRef]

27. Pinto, L.; Andriolo, U.; Gonçalves, G. Detecting stranded macro-litter categories on drone orthophoto by a multi-class Neural
Network. Mar. Pollut. Bull. 2021, 169, 112594. [CrossRef] [PubMed]

28. Gonçalves, G.; Andriolo, U.; Gonçalves, L.; Sobral, P.; Bessa, F. Quantifying Marine Macro Litter Abundance on a Sandy Beach
Using Unmanned Aerial Systems and Object-Oriented Machine Learning Methods. Remote Sens. 2020, 12, 2599. [CrossRef]

29. Gonçalves, G.; Andriolo, U.; Pinto, L.; Duarte, D. Mapping marine litter with Unmanned Aerial Systems: A showcase comparison
among manual image screening and machine learning techniques. Mar. Pollut. Bull. 2020, 155, 111158. [CrossRef]

30. Kataoka, T.; Hinata, H.; Kako, S. A new technique for detecting colored macro plastic debris on beaches using webcam images
and CIELUV. Mar. Pollut. Bull. 2012, 64, 1829–1836. [CrossRef]

31. Kataoka, T.; Murray, C.C.; Isobe, A. Quantification of marine macro-debris abundance around Vancouver Island, Canada, based
on archived aerial photographs processed by projective transformation. Mar. Pollut. Bull. 2018, 132, 44–51. [CrossRef]

32. Kylili, K.; Kyriakides, I.; Artusi, A.; Hadjistassou, C. Identifying floating plastic marine debris using a deep learning approach.
Environ. Sci. Pollut. Res. 2019, 26, 17091–17099. [CrossRef]

33. Wolf, M.; van den Berg, K.; Garaba, S.P.; Gnann, N.; Sattler, K.; Stahl, F.T.; Zielinski, O. Machine learning for aquatic plastic litter
detection, classification and quantification (APLASTIC–Q). Environ. Res. Lett. 2020, 15, 114042. [CrossRef]

34. Andriolo, U.; Gonçalves, G.; Rangel-Buitrago, N.; Paterni, M.; Bessa, F.; Gonçalves, L.M.S.; Sobral, P.; Bini, M.; Duarte, D.;
Fontán-Bouzas, Á.; et al. Drones for litter mapping: An inter-operator concordance test in marking beached items on aerial
images. Mar. Pollut. Bull. 2021, 169, 112542. [CrossRef] [PubMed]

35. Hidalgo-Ruz, V.; Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): A study
supported by a citizen science project. Mar. Environ. Res. 2013, 87, 12–18. [CrossRef] [PubMed]

36. Kordella, S.; Geraga, M.; Papatheodorou, G.; Fakiris, E.; Mitropoulou, I.M. Litter composition and source contribution for 80
beaches in Greece, Eastern Mediterranean: A nationwide voluntary clean-up campaign. Aquat. Ecosyst. Health Manag. 2013, 16,
111–118. [CrossRef]

37. Thiel, M.; Penna-Díaz, M.A.; Luna-Jorquera, G.; Salas, S.; Sellanes, J.; Stotz, W. Citizen scientists and marine research: Volunteer
participants, their contributions, and projection for the future. In Oceanography and Marine Biology: An Annual Review; CRC Press:
Boca Raton, FL, USA, 2014; ISBN 9781482220667. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2019.133581
http://doi.org/10.1016/j.marpolbul.2020.111467
http://doi.org/10.1016/j.envpol.2021.116490
http://www.ncbi.nlm.nih.gov/pubmed/33486249
http://doi.org/10.1016/j.jag.2019.03.011
http://doi.org/10.3390/rs11172045
http://doi.org/10.1016/j.marpolbul.2018.04.075
http://www.ncbi.nlm.nih.gov/pubmed/29773443
http://doi.org/10.1016/j.marpolbul.2018.01.054
http://doi.org/10.1016/j.marpolbul.2009.09.033
http://doi.org/10.1016/j.ocecoaman.2020.105133
http://doi.org/10.2112/JCOASTRES-D-18-00096.1
http://doi.org/10.5194/isprs-archives-XLII-3-W8-55-2019
http://doi.org/10.1016/j.marpolbul.2018.08.009
http://www.ncbi.nlm.nih.gov/pubmed/30503448
http://doi.org/10.3390/rs12091515
http://doi.org/10.5194/isprs-annals-V-3-2020-439-2020
http://doi.org/10.1016/j.marpolbul.2021.112594
http://www.ncbi.nlm.nih.gov/pubmed/34118575
http://doi.org/10.3390/rs12162599
http://doi.org/10.1016/j.marpolbul.2020.111158
http://doi.org/10.1016/j.marpolbul.2012.06.006
http://doi.org/10.1016/j.marpolbul.2017.08.060
http://doi.org/10.1007/s11356-019-05148-4
http://doi.org/10.1088/1748-9326/abbd01
http://doi.org/10.1016/j.marpolbul.2021.112542
http://www.ncbi.nlm.nih.gov/pubmed/34052588
http://doi.org/10.1016/j.marenvres.2013.02.015
http://www.ncbi.nlm.nih.gov/pubmed/23541391
http://doi.org/10.1080/14634988.2012.759503
http://doi.org/10.1201/b17143-6


Water 2021, 13, 3349 15 of 15

38. Merlino, S.; Locritani, M.; Stroobant, M.; Mioni, E.; Tosi, D. SeaCleaner: Focusing citizen science and environment education on
unraveling the marine litter problem. Mar. Technol. Soc. J. 2015, 49, 99–118. [CrossRef]

39. Merlino, S.; Locritani, M.; Bernardi, G.; Como, C.; Legnaioli, S.; Palleschi, V.; Abbate, M. Spatial and temporal distribution of
chemically characterized microplastics within the protected area of pelagos sanctuary (Nw mediterranean sea): Focus on natural
and urban beaches. Water 2020, 12, 3389. [CrossRef]

40. Merlino, S.; Abbate, M.; Pietrelli, L.; Canepa, P.; Varella, P. Marine litter detection and correlation with the seabird nest content.
Rend. Lincei 2018, 29, 867–875. [CrossRef]

41. Giovacchini, A.; Merlino, S.; Locritani, M.; Stroobant, M. Spatial distribution of marine litter along italian coastal areas in the
Pelagos sanctuary (Ligurian Sea-NW Mediterranean Sea): A focus on natural and urban beaches. Mar. Pollut. Bull. 2018, 130,
140–152. [CrossRef] [PubMed]

42. Vlachogianni, T.; Fortibuoni, T.; Ronchi, F.; Zeri, C.; Mazziotti, C.; Tutman, P.; Varezić, D.B.; Palatinus, A.; Trdan, Š.; Peterlin, M.;
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