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Abstract: Wastewater-based epidemiology (WBE) is an approach that can be used to estimate
COVID-19 prevalence in the population by detecting severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) RNA in wastewater. As the WBE approach uses pooled samples from the study
population, it is an inexpensive and non-invasive mass surveillance method compared to individual
testing. Thus, it offers a good complement in low- and middle-income countries (LMICs) facing high
costs of testing or social stigmatization, and it has a huge potential to monitor SARS-CoV-2 and its
variants to curb the global COVID-19 pandemic. The aim of this review is to systematize the current
evidence about the application of the WBE approach in mass surveillance of COVID-19 infection
in LMICs, as well as its future potential. Among other parameters, population size contributing
the fecal input to wastewater is an important parameter for COVID-19 prevalence estimation. It
is easier to back-calculate COVID-19 prevalence in the community with centralized wastewater
systems, because there can be more accurate estimates about the size of contributing population
in the catchment. However, centralized wastewater management systems are often of low quality
(or even non-existent) in LMICs, which raises a major concern about the ability to implement the
WBE approach. However, it is possible to mobilize the WBE approach, if large areas are divided
into sub-areas, corresponding to the existing wastewater management systems. In addition, a
strong coordination between stakeholders is required for estimating population size respective to
wastewater management systems. Nevertheless, further international efforts should be leveraged
to strengthen the sanitation infrastructures in LMICs, using the lessons gathered from the current
COVID-19 pandemic to be prepared for future pandemics.

Keywords: mass surveillance; poor sanitation coverage; SARS-CoV-2 variants; prevalence of infec-
tion; wastewater management system; policy making

1. Background

Wastewater-based epidemiology (WBE) is a new and rapidly developing field for
identifying and quantifying endogenous and exogenous chemical and biological markers in
wastewater, and then this information is utilized to estimate in real-time certain quantitative
indicators about public health in general population (e.g., prevalence of disease, proportion
of population using illicit drugs) [1]. WBE has been identified as a rare bridge between the
environmental surveillance (ES) of wastewater and the health information of the society [2].
So far, it has been used extensively to understand the patterns and trends of illicit drug
use in communities [3–10], becoming a convenient new complementary method to more
complex and lengthy survey approaches [4].
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Like chemical markers, biological markers such as DNA/RNA of bacteria, viruses,
and fungi can also be detected through ES in wastewater, helping to identify human
sources and provide information about disease outbreaks in communities [1]. The ES of
biological markers in sewage and wastewater has been conducted worldwide, whenever
outbreaks have occurred in the past. Some examples include studies on H1N1 sub-types of
influenza A virus in sewage during influenza outbreaks [11]. Moreover, ES has been used
to investigate the presence of enteropathogenic viruses in sewage (e.g., noroviruses and
rotavirus) [12–14]. Most ES studies in sewage have compared the findings about pathogen
data with health surveillance data [12]. The Global Polio Eradication Initiatives initiated
by World Health Organization (WHO) have combined ES (wastewater was examined for
polioviruses) with acute flaccid paralysis surveillance data in several countries for many
years, aiming to identify the areas of increased risk as well as formulating or amending
vaccination strategies [15]. However, a limited number of studies have translated the
wastewater concentration of pathogens to the prevalence of disease in the population
(proportion of the population infected by the disease at a specific time). In one of such
examples, researchers used the norovirus GII concentration in sewage and the concentration
of the virus shed by an infected individual in feces to estimate the number of infected
individuals [12].

Since the onset of the global pandemic of the coronavirus disease 2019 (COVID-19),
ES studies have been conducted in numerous countries to detect the etiological agent
of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastew-
ater [16–19]. The most common practice for linking virus data from ES with health data
was by establishing a relationship between SARS-CoV-2 concentration in wastewater and
the prevalence data of COVID-19 reported by public health agencies and hospitals. For
example, a study has compared a SARS-CoV-2 detection event in wastewater treatment
plant (WWTP) samples with reported disease cases in the corresponding catchment in
Japan and concluded that the virus RNA was detected when the disease cases were at the
peak [17]. Moreover, the SARS-CoV-2 virus concentrations from ES have been significantly
correlated with: (a) COVID-19 prevalence in the Netherlands [19]; (b) the available number
of COVID-19-positive individuals in Israel [20]; and (c) local hospital admissions and the
COVID-19 epidemiological curve in the USA [21]. Only a handful of studies that have
translated the wastewater concentration of SARS-CoV-2 into the prevalence of COVID-19
in population [16,22–25] that can be applicable for public health decision making.

Such studies have estimated the COVID-19 prevalence in the general population
utilizing the total number of SARS-CoV-2 RNA copies per liter of wastewater, viral RNA
copies per gram shed by an infected individual, fecal load per person per day, wastewater
flow per day, and population served by the WWTPs. Some studies have calculated the point
estimates of the prevalence [22,23], whereas others provided the probability distribution
and the range of number of the infected individuals [16,24,25]. While it is possible to
calculate the COVID-19 prevalence, there are large uncertainties during the process. Some
of the reasons for uncertainties are the limited data available on virus shedding (particularly
by pre- and asymptomatic individuals), the fact that viral yield varies depending upon the
selection of virus concentration and detection methods, especially for the variants, and
the lack of appropriate methods of population normalization [26]. Certainly, there is a
need to improve the components used for the prevalence estimation. Nevertheless, these
back calculation methods have been proved to be beneficial for tackling the conditions of
drug abuse [3] or estimating the prevalence of noroviruses in the general population [12].
Hence, the WBE approach can be used to complement health surveillance using prevalence
estimates to guide decisions about resource allocation to contain the disease spreading.
In addition, the detection of SARS-CoV2 RNA in wastewater samples prior to reported
clinical cases of COVID-19 [19] indicates that wastewater surveillance can serve for an
early identification of infectious diseases in the general population.

With global cases of the COVID-19 pandemic having reached more than 200 million
by 15 August 2021, the pandemic has severely disrupted social and economic systems



Water 2021, 13, 2897 3 of 14

worldwide. Socioeconomic impacts of COVID-19 are harsher in lower- and middle-income
countries (LMICs) [27], which had already faced many development challenges before the
pandemic. Some of the more significant impacts of COVID-19 in LMICs include the loss of
income, food insecurity, inability to access medicine, and loss of access to education [28].
Even though the vaccination against COVID-19 has been rolled out in at least 217 countries
and territories [29], the emergence of new SARS-CoV-2 variants of concern (VOCs), such as
B.1.1.7 (Alpha variant), B.1.351 (Beta variant), B.1.617.2 (Delta variant), and P.1 (Gamma
variant) and their rapid spread worldwide further complicate the control of the COVID-19
pandemic. For example, by the time of writing this paper, the Alpha variant had been
identified in 163 countries, the Beta variant had been identified in 105 countries, the Delta
variant had been identified in 115 countries, and the Gamma variant had been identified in
66 countries [30]. Because of their higher transmission rate, higher disease severity, higher
reinfection rate, reduction of therapy effectiveness, and reduction in the neutralization
efficacy of sera from convalescent patients or vaccines [31,32], it is the utmost important
issue for countries to be able to conduct the real-time surveillance and monitoring of
emerging VOCs at the community level to control the pandemic.

Already in some developed nations, there have been recommendations for the system-
atic inclusion of wastewater surveillance in the national testing strategies for the detection
of SARS-CoV-2 and its variants [33]. The WBE approach, in addition, has a good potential
for estimating prevalence and tracking infections clusters and trends in general population,
as well as hot spots in large cities or areas, hence being an inexpensive approach to mass
surveillance [22,34,35]. However, almost all the studies have used the WBE approach to es-
timating the COVID-19 prevalence in high-income nations such as USA [22,23], France [36],
Australia [16], and Qatar [25]. WBE studies in low-income countries are very scanty. One of
the few exceptions is a study in India [24] that has successfully implemented this approach
utilizing WWTP samples and estimated the COVID-19 prevalence in a large urban center,
Hyderabad. However, studies that have included onsite wastewater treatment systems
(OWTSs), which are predominant wastewater management systems in LMICs, are rare.

This review paper aims to systematize the current evidence about the application of
the WBE approach in LMICs, including the ways to incorporate predominant and diverse
wastewater management systems and to conduct the mass surveillance of COVID-19 in-
fections. We discuss the benefits the WBE approach has and the challenges to mobilize
it effectively in the context of LMICs. This paper focuses on wastewater surveillance in
diverse wastewater management systems existing in LMICs coupled with the possibility
of translating the obtained SARS-CoV-2 concentration data into the prevalence estima-
tion/trend identification/status of infection in the general population. We provide a series
of policy and practice recommendations to execute the WBE approach that can contribute
positively in the ongoing efforts in LMICs to control the COVID-19 pandemic.

2. Potential of WBE for COVID-19 Mass Surveillance in LMICs

WBE can play an important role in efforts to identify the status of spread of COVID-19
and VOCs in LMICs as a complementary approach to health surveillance. The WHO
strongly recommends testing COVID-19 suspect cases and individuals who are in close
contact to avoid further infections [37]. However, the recommended testing protocol re-
quires costly kits and equipment, trained technicians, and laboratories of at least a biosafety
level 2 [38,39]. There are fewer laboratory facilities and trained workforce that could meet
the identification of viral infections following the WHO guidelines in LMICs [40]. The
establishment of fully equipped laboratories requires a huge investment, which poses sub-
stantial economic burden in such resource-constrained countries [41]. Besides, the essential
increment in medical supplies and personal protective equipment will also likely increase
significant costs and the associated financial burden [41]. However, limiting the number
of tests will consequently increase the probability of the infection spread. Conversely,
the WBE approach uses pooled/composite samples. In fact, multiple samples must be
collected for the successful implementation of the WBE approach. For example, Centers for
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Disease Control and Prevention [42] has advised for frequent wastewater sample collection
(a minimum of three samples in a certain period), to track trends (development or change)
of infection over time. Although the cost for reagents is identical for clinical testing and
WBE testing (a mean of 15 USD per test kit) [43], the cost per sample for WBE testing is
higher due to concentration steps. Nevertheless, WBE is more cost-effective than clinical
testing, because WBE can essentially test thousands of people through one sample whereas
clinical testing requires thousands of individual tests for a given area. Therefore, WBE is
one viable method to conduct mass surveillance that will be economical for resource-poor
settings [43].

The economic advantages of WBE can become even more important when considering
the possible spread of VOCs in LMICs. Up to the writing of this paper, there have been rela-
tively few LMICs reporting VOC spread, compared to in high-income countries. However,
there have been sporadic findings about mutations in SARS-CoV-2 in wastewater samples
from LMICs [44], which show that the spread of VOCs in these countries is happening
and might be underreported. A possible underreporting of VOCs in LMICs is of major
public health concern, given the effects of these variants on vaccine efficacy [31]. Most of
the LMICs are anticipating the start of widespread vaccination campaigns soon, but the
rapid spread of SARS-CoV-2 variants could adversely impact the outcomes of vaccination
campaigns. Although the real-time surveillance of VOCs has been already recommended
for some countries [33], the technology involved for next-generation sequencing (NGS)
is prohibitively expensive, cumbersome, time-consuming and requires additional spe-
cialized infrastructures and standardized protocols [45] and high technical expertise for
data interpretation. Thus, individual testing could further escalate the significant costs
of managing the pandemic in already resource-constrained LMICs. In this sense, the
WBE approach that uses pooled samples from the study population can become a strong
complementary approach to the identification of the SARS-CoV-2 variants circulating in
the general population.

Many unknowns and uncertainties surrounding the COVID-19 pandemic have given
rise to widespread fears, fueling in many cases stereotyping and stigmatization [46]. The
stigmatization of COVID-19 patients, survivors, and frontline health workers [47–49] can
lead to mental health problems and be counterproductive for curbing pandemics and
attaining equitable development [50]. Stigma can also prevent the access of vulnerable
groups to healthcare and social services, leading to social exclusion, discrimination, psy-
chological distress, and violence in LMICs [51–53]. By being a non-invasive method [2], the
WBE preserves the personal identity of patients by creating overall population infection
profiles. Thus, it can offer a lot of potential in social contexts where stigmatization against
COVID-19 patients and their families is prevalent. Therefore, the WBE approach could
prove to be an effective mass screening approach to dealing with social stigma during
the pandemic.

Asymptomatic COVID-19 infection has been reported to range from 18% to 31% [54–56],
which are unaccounted by health surveillance except in the case of contact tracing. A recent
study in clinical testing data to determine the abundance of asymptomatic versus symptomatic
cases revealed that 79.2% of the COVID-19-positive individuals were asymptomatic [57].
However, many symptomatic and asymptomatic people shed the virus in stool that can be
detected in wastewater. WBE embraces both symptomatic and asymptomatic groups.

3. Challenges in Mobilizing WBE for COVID-19 Mass Surveillance in LMICs

Wastewater production and collection are key aspects for ensuring the representative-
ness of WBE exercises [58]. The implementation of the WBE approach in a given area is
much easier in the context with centralized wastewater management systems, which gather
wastewater from many users through sewerage networks and treat it at one or several
WWTPs [58]. The population size of a WWTP catchment is generally known for centralized
wastewater management systems which can be used swiftly to obtain quantitative health
information for the study population through back-calculation.
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Wastewater management systems in LMICs are generally poor. LMICs contain the
majority of the 2.4 billion people that still lack access to improved sanitation worldwide [59].
Moreover, over 95% of the wastewater produced in LMICs is being discharged untreated
in the environment [60], polluting water bodies with chemicals and viruses [61]. While cen-
tralized wastewater management systems cover 91% of the population in most advanced
economies [60,62], their coverage is much lower in many LMICs. Often, they cover only
portions of larger urban areas and are often not planned for smaller towns and densely
populated areas, low-income urban areas, and rural areas [63,64] (Figure 1). One of the
reasons for not planning centralized wastewater management systems in these areas is the
high expenditure associated with sewage collection, which often accounts for 60% of the
total budget allocated for waste management [65,66].

Figure 1. Populations with sewer connection in selected low- and middle-income countries (LMICs) [64].

Discouragingly, cities with centralized wastewater management systems often have
low sewerage connection rates [67], sometimes lower than 10% of the population in many
LMICs (Figure 1) [64]. In most cities and rural areas of many LMICs, individual households
are not connected to sewerage systems and rely mostly on OWTSs [60,64] (Figure 2). Such
systems consist of infrastructures in which excreta are stored or treated where generated,
e.g., pit latrines and septic tanks [68]. This complies with the WHO/UNICEF definition of
improved sanitation.

While the SARS-CoV-2 RNA virus concentration and detection methods in wastew-
ater are evaluated as feasible enough to be performed in most of the microbiology and
environmental engineering laboratories in LMICs [69], the major bottleneck of the WBE
application lies in existing wastewater management systems. As mentioned in the previ-
ous section, the lack of central wastewater management systems in the majority of areas
in LMICs prevents the easy application of the WBE approach in estimating COVID-19
prevalence in the catchment [70], which is otherwise being simply estimated in developed
nations, for example in Australia [16]. In addition, poor sewerage connection rates, sewer
oversizing, and leaks are some other problems [58], which affect the ability to estimate
properly wastewater flow in WWTPs ultimately leading to the faulty back-calculation
of COVID-19 infection status in the study population. Furthermore, widely employed
OWTSs representing individual houses further complicate WBE applications in LMICs.
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Sampling each OWTS is labor-intensive, expensive and has strong unethical ramifications
considering the sensitivity of the obtained information.

Figure 2. Populations using septic tanks in selected LMICs [64].

4. Mobilizing the WBE Approach for COVID-19 Mass Surveillance in LMICs

Despite the challenges outlined in the previous section, it is still possible to mobilize
the WBE approach for COVID-19 applications in LMICs. Considering the issues related to
centralized wastewater management systems outlined above, this would most likely entail
downscaled applications from metropolitan cities/municipalities to small cities, towns,
smaller communities, specific drainage areas, residences, schools, and other institutions,
according to the need of the locality (Figure 3). An ES study conducted in a populous city
of India taking wastewater samples from WWTPs [71] advocated for the WBE application
in LMICs starting from larger cities. Below, we expand on some of the possible WBE
application strategies to cover most of areas in LMICs.

A major problem in the WBE application in context with low sewerage connection
rates is the uncertainty of the population size of the WWTPs catchment. In such a case,
one possible approach would be to use population biomarkers to quantify the contributing
population size in real time. Possible population biomarkers that are naturally excreted
by humans in wastewater [72,73] include creatinine [74], cholesterol, coprostanol [72],
nicotine [75], cortisol, androstenedione, and the serotonin metabolite 5-hydroxyndoleacetic
acid (5-HIAA) [76]. Therefore, with some additional chemical analysis, population data
could be obtained and used for the mass surveillance of COVID-19 infection. In the areas
provided with completed centralized wastewater management systems, samples can be
taken at the inlets of WWTPs. Moreover, areas with a sewer network but without WWTPs
are also very common in LMICs where wastewater is being disposed directly to water
bodies such as rivers. In such a case, wastewater samples can be collected from the outlets to
these water bodies or from manholes (Figure 3) [44]. Here, municipalities/city offices/local
governments should be coordinated and mobilized to delineate areas, identify wastewater
sampling points and estimate population size corresponding to each wastewater outlet.
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Figure 3. Strategies for mobilizing the wastewater-based epidemiology (WBE) approach for the mass surveillance of
COVID-19 in LMICs.

In areas not served by centralized wastewater management systems, community-
managed decentralized wastewater treatment systems (DEWATS) are increasingly used.
Such DEWATS employ cluster systems in scattered and low-density urban communities
and rural areas [60]. Community-managed DEWATS connected to simplified sewer systems
or communal sanitation centers have the potential to close the gap between OWTSs and
centralized wastewater management systems [63], with their prevalence growing in LMICs
due to cost-effectiveness [65], e.g., in Indonesia [63], Nepal [77], India [78], Bangladesh [79],
and South Africa [80]. Wastewater samples from community-managed DEWATS (Figure 3)
which has a known population size would increase the feasibility of the WBE approach for
COVID-19 applications.

The fact remains that large portions of urban areas and rural areas in LMICs still rely
on OWTS, such as septic tanks (Figure 2). Hence, excluding households with OWTSs will
neglect a large portion of urban and rural population, prohibiting a complete picture of
disease spread. However, the population with OWTSs can be considered by randomly
sampling a representative number of households (Figure 3). The aim of such an approach
is not to identify individual households with COVID-19 cases, but to understand the status
and trends of COVID-19 infection in the targeted population. Social stigma is a major
concern where individual household can be unintentionally identified while applying
WBE. Therefore, municipalities/city offices/local governments should be coordinated
and mobilized to make local communities understand the purpose and importance of the
WBE application for the mass surveillance of COVID-19 and to seek prior approval from
the community. Separately, institutions that use OWTSs, such as schools, colleges, and
offices, can use the WBE approach, as the population size is almost constant and known.
However, the number of people visiting hospitals and health centers is largely undefined,
and the population contributing to these institutions’ OWTSs fluctuates. Hence, including
these types of institutions are less useful for estimating the COVID-19 prevalence in the



Water 2021, 13, 2897 8 of 14

study area. Nevertheless, the ES of wastewater from hospitals with a known number of
COVID-19 cases could provide crucial information, e.g., for model development.

Samplings in the cases outlined above should comply the CDC guidelines [41]. In
case of OWTSs, composite samples serve as a representative sample which can be obtained
by combining portions of multiple grab samples manually [81]. For example, samples
from septic tanks should be grab samples of a sludge from multiple chambers and lo-
cations within the tanks and should be combined to generate representative composite
samples [82].

To summarize, despite the possible challenges, the application of the WBE approach
for the mass surveillance of COVID-19 could be possible in LMICs. This would require
segregating larger areas into sub-areas corresponding to wastewater management systems
(Figure 3), collecting representative wastewater samples separately and estimating the
population size of the catchment of wastewater sampling point correctly.

5. Policy and Practice Recommendations

Instead of testing individuals through health surveillance, WBE can be applied as a
complementary approach which is cost-effective and especially suitable for mass surveil-
lance in resource-poor country and regions [43]. WBE is an essential tool for detecting the
re-emergence of COVID-19 and to early warn future outbreaks [26]. The WBE approach
provides a prevalence or trend of COVID-19 infection in the general population which
is usually underreported in health surveillance. However, as discussed in the previous
sections, the poor or a non-existent central wastewater management system is the major
bottleneck of the WBE application for the mass surveillance of COVID-19 in LMICs. At
the current expansion rates of central wastewater treatment systems, most people in Asia
and Africa will still not experience safely managed sanitation by 2050 [83]. Therefore, we
recommend applying the WBE approach in LMICs by considering the existing situations
of diverse wastewater management systems to curb current progression.

For applying the WBE approach in LMICs, large areas, such as municipalities, can be
divided into smaller sub-areas or individual communities corresponding to the existing
wastewater management systems. Subsequently, wastewater samples can be collected
and analyzed for each sub-area. At first, the COVID-19 prevalence in several smaller
catchments can be estimated and then combined to obtain the single prevalence of the city
or the municipality.

Wastewater is a pooled sample, and its analysis reduces the economic burden com-
pared to testing individuals. Although SARS-CoV-2 detection methods in wastewater are
reported to be feasible in LMICs [69] and this review paper does not discuss the technologi-
cal aspect of virus detection, testing still can entail high cost in LMICs. In particular, setting
up an appropriate laboratory (e.g., BSL-2 laboratories) and procuring necessary equipment
for molecular analysis (e.g., NGS and variant-specific qPCR) can be very costly and pose
challenges in LMIC settings.

In order to overcome this financial problem, relevant stakeholders in LMICs should
plan to implement the WBE approach initially in larger cities, because larger cities have
ended up becoming the main hotspots of COVID-19 infections as they are characterized
by higher population densities, extensive economic activities, and complexity of human
mobility patterns [84]. Subsequently, wastewater surveillance should be institutionalized
as municipal or prefectural testing strategies for the virus detection. Public or private
academic and research institutions and profit-making clinical and environmental laborato-
ries could become valuable collaborators in such efforts. For example, local governments
can outsource wastewater surveillance to public or private environmental and clinical
laboratories. LMICs should also seek and utilize fundings that are usually supported
by international donors, for example resources that are made available for rapid qual-
ity COVID-19 tests [85]. Before planning wastewater sampling in an area, sewage lines
(sewer networks) should be mapped, and the population size of the catchment should be
known [44]. In addition, sub-areas with community-managed DEWATS and individual
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OWTS should be mapped, and the respective population sizes should be estimated. Such
a mapping can be performed in collaboration and coordination with stakeholders, for
example water supply and sewerage system authorities, city development committee,
public works and human settlement authorities, and local community leaders [86]. At the
same time, environmental health experts should be mobilized to translate the virus data
into public health estimates, while public health experts/authorities should utilize such
data for public health actions. The overall coordination of above described strategies could
be handled by entities such as health departments, home affairs departments, presidential
taskforces on COVID-19, and committees for COVID-19 prevention and control [86].

The national governments of LMICs should take initiatives in forming a multidisci-
plinary team of scientists embracing environmental engineering and public health expertise
to act extensively against growing COVID-19 infections. A nationwide wastewater surveil-
lance campaign is advised to better understand the temporal and spatial dynamics of
COVID-19 disease prevalence [87]. In addition, a combined national and international
collective effort, such as “COVID-19 WBE Collaborative” consisting of scientists from
multiple disciplines that aims to facilitate timely and high-impact WBE studies for public
benefit [88], could also aid in increasing the applicability of WBE in LMICSs. Nevertheless,
the international community should leverage further international efforts to help govern-
ments strengthen and hasten the accomplishment of sanitation and health infrastructures
in LMICs, using the lessons gathered from the current COVID-19 pandemic to be prepared
for future epidemics.

6. Conclusions

WBE is a wastewater surveillance approach, which can be used for quantitative
surveillance of SARS-CoV-2 in an informal converging wastewater network in large cities
in LMICs as an initial step. Many studies have shown that the quantitative detection of
SARS-CoV-2 in ES over time correlates well with reported COVID-19 cases and mortality.
In fact, several studies have shown that ES can serve as an earlier indicator as well. The
quantitative assays can show temporal-spatial trends to identify hotspots of transmission.
All of the information will be helpful for public health stakeholders even in the absence of
the prevalence data. Preforming clinical testing for mass surveillance puts huge financial
burden on LMICs, because WHO recommended testing protocols are costly to implement.
In addition, the recent recommendation of the real-time surveillance of VOCs that need
prohibitively expensive NGS technology is less affordable by LMICs. Furthermore, WBE
uses a pooled sample, and hence, the non-invasive method could prove to be an effective
to deal with social stigma during the pandemic. While useful for LMICs for the cost-
effective mass surveillance of COVID-19, the WBE application is challenging because
a centralized wastewater management system is a key for this approach but is poor or
non-existent in the majority of the countries. The strategy discussed here for mobilizing
WBE in LMICs is downscaling its application from metropolitan cities or municipalities
to small cities, towns, smaller communities, specific drainage areas etc., according to the
existing wastewater management systems. For example, a large area can be divided into
small sub-areas: (a) areas with a sewerage network with WWTPs; (b) areas with a sewerage
network discharged into environmental water bodies; (c) areas with community-managed
DEWATS; (d) areas with individual OWTS such as septic tanks; (e) institutions with an
approximately constant population size such as schools and offices. At the early stage
of the WBE implementation, large cities should be focused, instead of implementing it
as a national strategy. We suggest that fostering institutional collaboration could further
help reduce the financial burden. In more detail, considering both the current boom in
clinical testing facilities and the expanding wastewater surveillance research in LMICs,
local governments could alternatively opt to outsource sample collection and analysis to
other relevant public and private academic and research institutions. Before planning
for wastewater sampling, the mapping of sewage lines, areas with community-managed
DEWATS, and individual OWTS should be prepared in coordination with city wastewater
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management authorities, city development committees, etc. Relevant authorities should
be coordinated to estimate the population size in the respective catchments. After the
translation of virus data to public health estimates by environmental scientists, public
health experts should be collaborated to utilize the data for making public health decisions.
To devise this strategy of implementing the WBE approach, health departments and
national or regional COVID-19 taskforces could provide an overall coordination between
the stakeholders. Further, collective efforts of national and international scientists could
increase the applicability of WBE in LMICs.
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