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Abstract: Water level fluctuations play a critical role in regulating vegetation distribution, composi-
tion, cover and richness, which ultimately affect evapotranspiration. In this study, we first explore
water level fluctuations and associated impacts on vegetation, after which we assess evapotranspira-
tion (ET) under different water levels. The normalized difference vegetation index (NDVI) was used
to estimate the fractional vegetation cover (Fv), while topography- and vegetation-based surface-
energy partitioning algorithms (TVET model) and potential evaporation (Ev) were used to calculate
ET and water evaporation (Ep). Results show that: (1) water levels were dramatically affected by the
combined effect of ecological water transfer and climate change and exhibited significant decreasing
trends with a slope of −0.011 m a−2; and (2) as predicted, there was a correlation between water level
fluctuation at an annual scale with Phragmites australis (P. australis) cover and open-water area. Water
levels also had a controlling effect on Fv values, an increase in annual water levels first increasing
and then decreasing Fv. However, a negative correlation was found between Fv values and water
levels during initial plant growth stages. (iii) ET, which varied under different water levels at an
annual scale, showed different partition into transpiration from P. australis and evaporation from
open-water area and soil with alterations between vegetation and open water. All findings indicated
that water level fluctuations controlled biological and ecological processes, and their structural and
functional characteristics. This study consequently recommends that specifically-focused ecological
water regulations (e.g., duration, timing, frequency) should be enacted to maintain the integrity of
wetland ecosystems for wetland restoration.

Keywords: shallow lake; water level fluctuation; fractional vegetation cover; evapotranspiration

1. Introduction

Increases in the frequency and magnitude of climate extremes [1,2], over the past
several decades, in combination with anthropogenic activities (e.g., water level changes
from the reservoirs and dams throughout the world) have dramatically altered wetland
hydrological regimes [3], leading to the widespread degradation of aquatic ecosystems at a
global scale [4]. Alterations in hydrological regimes can result in a series of changes in phys-
ical, chemical and biological environments [5], as well as affecting the biota and ecosystems
of shallow lakes [6,7]. Understanding interactions between hydrological regimes, biota
and ecosystem processes can help maintain the integrity of wetlands and aid in wetland
restoration [6–8].

Aquatic ecosystems reflect interactions between hydrology, geomorphology, ecology
and biogeochemistry at different temporal and spatial scales [7,9]. Under the influence
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of climatic change and anthropogenic activity, hydrological regimes have deviated from
their natural processes [6]. For example, dams, which contribute to water security, energy
supply and flood protection, have fragmented freshwater species habitats [10], leading to
connective shifts between hydrological regimes, organic matter and nutrients (e.g., [7,11]).
Much effort has gone into prioritizing the restoration of aquatic ecosystems at a catchment
scale (e.g., [6,9]). For example, ecological water transfer (inter-basin or inner-basin water
diversion measures to maintain the environment flow or to meet ecological water require-
ments) is an approach used to restore changes in biological and ecological processes caused
by hydrological regime variation and its associated effects on biota and ecosystem inter-
actions. However, the outcome of such lake restoration projects may result in instability,
occasionally causing lake systems to deviate in unforeseen directions [9,12]. Ecological
water transfer projects tend to cause abrupt rises in water levels, which subsequently affect,
and even cause, changes in the biological processes of wetlands [8]. For example, rising
water levels resulting from ecological water transfer projects in the Ertou wetland have
not been able to achieve expectant improvements to provide habitat for the Siberian crane
(Grus leucogeranus) [13]. Although restoration projects play a critical role in restoring the
connectivity of hydrological regimes and the interaction between biota and ecosystems,
positive outcomes under increased biodiversity or the return to pre-disturbance community
composition have rarely been documented [9]. This implies an inherent contradiction in
the balance between restoration activities and natural environments. For example, hydro-
logical regimes and associated biological and ecological interactions vary under natural
conditions [6], while all such processes under restorative activities in most of cases are
expected to be stable(i.e., maintaining water level steady). Accordingly, the objectives of
this study were: (1) to explore temporal trends in annual water levels, and to address
the impact of ecological water transfer projects on water levels; (2) to analyze water level
effects on vegetation cover and the fractional vegetation cover (Fv); and (3) to assess varia-
tion in evapotranspiration (ET) under water level fluctuations. This will help us to better
understand the effects of water level fluctuations on biological and ecosystem processes,
while enabling us to enact suitable water management practices to maintain the integrity
of wetland ecosystems.

2. Materials and Methods
2.1. Study Site

Baiyangdian Lake (38◦43′–39◦02′ N, 115◦38′–116◦07′ E), being the largest freshwater
lake in the North China Plain (Figure 1), plays an important role in water resource provi-
sions, flood controls and climate regime regulations [14]. Historically, nine rivers flowed
into Baiyangdian Lake; however, most of these rivers, under the influence of climate change
and anthropogenic activity, have dried up. Baiyangdian Lake belongs to a shallow-water
lake system type, for which water levels range from 6.5 m to 9.5 m. When water levels fall
below 6.5 m, Baiyangdian Lake will dry up, while its surrounding wetlands will disappear
when the water levels fall below 5.5 m [15]. Furthermore, 94 km2 of raised fields and greater
than 3700 ditches divide the entire water body into 140 small shallow lakes. Due to its
unique wetland topography and vegetation composition (mainly P. australis community),
small water level fluctuations typically cause significant alterations in ratio between vege-
tation cover and open-water area. To alleviate water shortages, ecological water transfer
projects have been implemented in the lake since the 1980s to maintain its integrity [16].
Specifically, the planning outline of the Xiong’an New Area, which has jurisdiction over
Baiyangdian Lake, includes an ordinance for its ecological restoration (e.g., natural water
level fluctuating around 6.5 m, and water quality meeting China surface water environmen-
tal quality class III-IV standard). Inevitably, however, alterations in hydrological regimes
will result in changes to Baiyangdian Lake aquatic ecosystems [17–19].
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Figure 1. Baiyangdian Lake location.

2.2. Data and Field Experiments

The MOD13Q1 Normalized Difference Vegetation Index (NDVI) was used to assess
fractional vegetation cover (Fv) during 2001–2018, which was obtained from the Goddard
Space Flight Center (https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 18 January
2019). The MOD13Q1 NDVI product is a 16-day composite image of vegetation indices,
in a sinusoidal projection, with a (nominal) spatial resolution of 250 m. Daily water level
data throughout 1961–2018 were obtained from the Baoding Hydrological and Water
Resources Survey Bureau, Hebei Province. Daily observations of air temperature, relative
humidity, wind speed, and sunshine hours during the same period were obtained from
Baoding meteorological station under the authority of the National Climatic Centre of the
China Meteorological Administration (http://data.cma.cn, accessed on 18 January 2019).
Combined with vegetation ecological characteristics (e.g., average height, and leaf area
index-LAI), daily meteorological variables were used to obtain the total evapotranspiration
(ET), potential transpiration (Tv), and potential evaporation (Ep) using the TVET mode and
Penman equation [20,21].

Six quadrats (0.5 m × 0.5 m) were used to obtain the P. australis community’s parame-
ters within the lake during growing season (from May to October during 2019), such as
plant coverage, height, seedling number, and biomass in each month. The six quadrats were
set at a depth from −10 cm to 50 cm at 10 cm intervals from the surface to the bottom of wa-
ter, wherein 0 cm was the boundary between land and water. The relative elevations were
also measured using the sounding rods, which were used to deduce the high-resolution
DEM of the Baiyangdian wetland by combining the relative elevation and altitude data
using ArcGIS 10.0. The DEM, combined with vegetation parameters, was used to deduce
the suitable water level for the P. australis community, and then to simulate the dynamic
vegetation pattern using the dynamic vegetation simulation model. Vegetation patterns
obtained from the vegetation simulation model were compared with the patterns from
landsat 8 satellite remote sensing images (August 2015), and validated its reliability.

2.3. Methods

(1) Temporal trend analysis method
To explore temporal trends in the data series, this study used a fitted linear regression

model and the Mann–Kendall test to determine the slope of linear fitted lines as well as
characteristics of abrupt changes. The fitted linear regression model, tested against the null
hypothesis (slope) applying a two-tailed hypothesis test (t-test) at a confidence level of
95% [22], is a common method used today in statistical climate analysis [23]. Originally

https://ladsweb.modaps.eosdis.nasa.gov/
http://data.cma.cn
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proposed by Mann (1945) [24] and refined by Kendall (1975) [25], the Mann–Kendall test has
been widely used to evaluate the presence of statistically significant trends in hydrological
and climatological time series (e.g., [23,26]) under the assumption of independence.

(2) Fractional vegetation cover
According to [27], the fractional vegetation cover (Fv) is approximately equal to the

scaled normalized difference vegetation index (NDVI) (N*):

Fv ≈ N∗ (1)

N∗ =
NDVI − NDVI0

NDVIs − NDVI0
(2)

where NDVI0 and NDVIs correspond to NDVI values of bare soil (LAI = 0) and surfaces
with 100% Fv, respectively.

(3) Dynamic vegetation simulation model
Cellular automata, which are widely used to simulate vegetation species population

dynamics (e.g., [8,28,29]), were used to simulate Phragmites australis variation patterns
under water level fluctuations. Cellular automation is defined by S, N and f as follows [30]:

St+1 = f (St, N) (3)

where S is a finite set representing the cell state; t denotes the transition step; f is the
transition rule or function; and N is the amount of cell neighbors.

In this study, the vegetation parameters of each cell adopts a specific state, such as
Sp.a, Sw and S0, representing the P. australis community, open-water area and arable or bare
land area, which are sorted under a certain level of spatial distribution at the beginning of
the simulation (St). Cell states during the subsequent time step (St+1) are then defined by
wetland states and species interactions; namely, arable or bare land was defined as being in
a stable state, while P. australis cover and open-water area could be present within each
other’s cells under conditions of water level fluctuations, which can be summarized under
the following rules:

St+1 =



S0, when St= S0 and Wl < 0 cm

Sw, when St= Sw and Wl ≥ 60 cm

Sw, when St= Sp.a and Wl ≥ 60 cm

Sp.a, when St= Sp.a, Wl ≤ 60 cm

Sp.a, when St= Sw, Np.a ≥ 5 and Wl ≤ 60 cm

Sw, when St= S0 and Wl > 0 cm

(4)

where St and St+1 represent cell states at time t and t + 1, respectively; Np.a represents the
cell number of the P. australis community; and Wl is water depth (cm).

To simulate P. australis cover and open-water area dynamics, 20 randomly-selected wa-
ter levels were used to train the model, while natural water levels obtained between
1960 and 2019 were used to simulate vegetation pattern dynamics. Landsat vegeta-
tion pattern images of 2005 were used to validate simulation results from the dynamic
vegetation model.

(4) Assessing evapotranspiration under water level fluctuations
To obtain ET under the 20 randomly-selected water levels, the Penman equation was

used to calculate Ep [20], while vegetation-based surface energy partitioning algorithms
(TVET model) combined with a dynamic vegetation model was used to estimate Ev and Tv
in areas with vegetation cover.

The formula of the Penman equation is as follows [20]:

Ep = EpR + EpA =
∆

∆ + γ
Rn +

γ

∆ + γ

6430(1 + 0.536u2)D
λ

(5)
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where Ep is potential evaporation (mm day−1); EpR (mm day−1) and EpA (mm day−1)
represents radiative and aerodynamic components of the Penman equation, respectively;
Rn is the daily net radiation (MJ m−2 day−1), wherein Rn/λ provides the equivalent water
depth units (mm day−1) in this study; ∆ is the slope of the saturation vapor pressure curve
(Pa K−1); γ is the psychrometric constant (Pa K−1); D is the vapor pressure deficit (Pa); u2 is
the daily average wind speed at 2 m height (m s−1); and λ is the latent heat of vaporization
of water (2.45 × 106 J kg−1).

The hybrid dual-source ET model by Guan and Wilson (2009) [21] has been used to
partition ET into Ev and Tv (e.g., [8]). Guan and Wilson (2009) [21] and Liu et al. (2020) [8]
provide details on TVET formulae as follows:

Ev =
∆As + (1− Fr) ρacp

ra
a+rs

a
(es(Tz)− ez)

∆ + γ
(6)

Tv =
∆Ac + Fr ρacp

rc
a+ra

a
(es(Tz)− ez)

∆ + γ(1 + rc
s

rc
a+ra

a
)

(7)

where total available energy (A) for the surface is first partitioned by a layer approach
into two portions: the canopy part (Ac) and the soil part (As); ρa is the air density; cp is the
specific heat capacity of air; es is the saturated vapor pressure; ∆ represents the slope of the
saturated vapor pressure versus the temperature curve; γ is the psychrometric constant
(~66 Pa K−1); Tz is the air temperature at reference height z; ra

a is the aerodynamic resistance
between mean air flow at the canopy height and the reference height; rs

a and rc
a represent

the aerodynamic resistance between the mean air flow at the canopy height and the soil
surface, and the aerodynamic resistance between the mean leaf surface area to the mean
canopy surface area, respectively; and rc

s is the bulk canopy stomatal resistance.

3. Results
3.1. Alterations in Water-Fluctuations

Findings showed that the dynamic vegetation model yielded suitable results on
P. australis cover patterns and open-water area, namely, an 84% agreement in image inter-
pretation and a 0.75 Kappa coefficient (K) (Table 1).

Table 1. Comparation for vegetation pattern between simulated by vegetation simulated model and interpreted from
landsat data (2015).

Classification P. australis Open-Water Area Other Land-Use Types Total Accuracy (%)

P. australis 129,275 11,607 0 140,882 91.76
Open-water area 38,819 73,894 0 112,713 65.56

Other land-use types 3018 1141 82,502 86,661 95.20
Total 171,112 86,642 82,502

Accuracy (%) 75.55 85.29 100
Overall accuracy 84% Kappa 0.75

Water level fluctuations, being influenced by both climate change and anthropogenic
activity, exhibited a significant decreasing trend at a fitted linear regression slope of
−0.011 m a−2 (p < 0.05) (Figure 2a). Annual water levels ranged from 5.43 to 9.22 m
throughout 1960–2019. An abrupt downward change was detected in 1966, with an aver-
age annual water level of 8.78 and 7.39 m before and after the occurrence of abrupt change,
respectively (Figure 2c). To meet ecological transfer water requirements, a series of ecologi-
cal water transfer operations were conducted by government, which dramatically altered
water levels. To reduce water consumption, some ecological water transfer operations were
conducted outside the growing season. For example, water level increased from 6.72 to
7.47 m, which is equivalent to 93 × 106 m3 of water from the Yellow River flowing into
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the Baiyangdian wetland from December 2010 to March 2011. Therefore, ecological water
transfer projects have dramatically altered water levels from the 1980s onwards.
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3.2. Variation in Vegetation Patterns under Water Level Fluctuations

According to simulation results, P. australis cover and open-water area varied with
water level fluctuations at an annual scale, whether they are in stable or dynamic states
(Figure 3). Moreover, P. australis cover and open-water area decreased or increased with an
increase in water levels, and vice versa. Given that the Baiyangdian wetland is a shallow
lake system (wherein its lowest water level [6.5 m] is considered the tipping point after
which the lake will dry up), changes in P. australis cover and open-water area are sensitive
to increases or decreases in water levels. In this study, an abrupt change occurred at
an approximate water level of 6.59 m, wherein P. australis area slopes were −46.24 and
−1.91 km2 m−1 for water levels ranging from 5.43–6.59 and 6.59–9.50 m with decreasing of
suitable water level for P. australis, respectively.

As seen in Figure 4, Fv values are controlled by water levels. The Fv increased, reaching
a peak at a water level around 6.95 m, and then decreased along with water level increasing.
According to the fitted model, the maximum Fv value (0.57) was deduced, and suitable
water levels for vegetation ranged from 6.94 to 6.97 m. At a monthly scale, the linear
relationship between Fv values and water levels were good in March and April, namely,
the initial growing stage. And Fv decreased with an increase in water levels with a slope of
−0.06 (R2 = 0.34).

3.3. Evapotranspiration Variation under Water level Fluctuations

Alterations in vegetation patterns and Fv values changed ET at both monthly and
annual scales. At an annual scale, ET, Ev, Tv and Ep exhibited decreasing trends with a slope



Water 2021, 13, 2651 7 of 12

of−3.52,−0.56,−2.97 and−2.70 mm a−2, respectively (Figure 5a). The Ev and Tv exhibited
opposite trends, which was mainly caused by the controlling effects that vegetation cover
has on partitioning net radiation and altering aerodynamics, wherein Tv reached a peak in
July and Ev only yielded low values during this same month (Figure 5b). And ET values
presented decreasing trends for the entire lake, open-water area and P. australis cover with
a rate of −2.6, 1.4 and 1.2 × 106 m3 a−2, respectively. Moreover, mean ET values for the
entire lake, open-water area and P. australis cover were 398, 160 and 238 × 106 m3 a−1,
respectively (Figure 5c).
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ranged from 1094 to 1925 mm a−1 with a spatial average value of 1628 mm a−1; and in 1998, 
when Fv reached the maximum, ET ranged from 1005 to 2129 mm a−1 with a spatial av-
erage value of 1732 mm a−1. Comparison between 1965, 1984 and 1998, water-level de-
creased first and increased later (from 9.22 to 6.37 to 7.15 m), however, spatially averaged 
ET kept increasing. Also, spatial difference of ET kept increasing (from 645 to 831 to 1124 
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Figure 5. Variation in annual (a) and monthly (b) evapotranspiration (ET) and potential evaporation (Ev), potential
evaporation (Ev), potential transpiration (Tv) and potential evaporation (Ep) in Baiyangdian Lake. Annual evapotranspiration
(ET) for reed, open water, and whole lake showed (c). This figure also provides linear fitted slopes for ET, Ev, Tv and Ep and
for ET for the entire lake and open-water area and P. australis cover.

Baiyangdian Lake ET has exhibited significant spatial variations over time (Figure 6).
In 1965, when the water-level reached the maximum, ET ranged from 861 to 1506 mm a−1

with a spatial average value of 1278 mm a−1; in 1984, when the lake dried up, ET ranged
from 1094 to 1925 mm a−1 with a spatial average value of 1628 mm a−1; and in 1998, when
Fv reached the maximum, ET ranged from 1005 to 2129 mm a−1 with a spatial average
value of 1732 mm a−1. Comparison between 1965, 1984 and 1998, water-level decreased
first and increased later (from 9.22 to 6.37 to 7.15 m), however, spatially averaged ET kept
increasing. Also, spatial difference of ET kept increasing (from 645 to 831 to 1124 mm a−1).
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maximum water level (9.22 m, in 1965), (b) the water level wherein the lake dried up (6.37 m, in 1984) and (c) the maximum
fractional vegetation cover (Fv) (7.15 m, in 1998).



Water 2021, 13, 2651 9 of 12

4. Discussion
4.1. Response of Ecological Effects to Water Level Fluctuations

Water levels have dramatically deviated from their natural regimes under the effects
of climate changes and anthropogenic activities [6]. China has enacted ecological water
transfer projects to alleviate water shortages (e.g., the Momoge, and Baiyangdian wet-
lands) [13,14]; however, such initiatives tend to cause abrupt wetland flooding events
which result in a corresponding abrupt rise in water levels (as shown in Figures 2 and 4).
Water level fluctuations, particularly extreme ones, can disturb aquatic vegetation commu-
nities [31] and affect vegetation composition and distribution [32–34]. As shown in Figure 4,
changes of Fr agreed with the water level fluctuation at annual and monthly scale. For
example, prolonged deep flooding, caused by extreme climatic events or ecological water
transfer projects, has resulted in a reduction of light infiltration that has subsequently con-
tributed to the loss of both emergent and submerged aquatic vegetation [35–37]. As shown
in Figure 4c, even small water level fluctuations during critical periods (e.g., the germina-
tion stage) will dramatically affect and alter the distribution of plant communities [23,38].
Meanwhile, affected by critical nutrient load thresholds, alterations in vegetation cover
caused by extreme water level fluctuations have also been proven to play a vital role in
controlling regime shifts [3,34]. Both increases and decreases in aquatic vegetation cover
may led to increases and decreases in primary production as well as alterations in lake
nutrient cycling processes [37], which will inevitably effect net primary productivity (NPP)
and carbon (C) sequestration [39,40]. As shown in Figures 5 and 6, water level fluctuations
inevitably altered the ratio of vegetation cover and open water area, and correspondingly
resulted in the changes in partition of ET. The causes mainly lie in changing physical and
biological processes with macrophyte growth (e.g., P. australis). For example, macrophyte
growth (e.g., height, leaf area for P. australis) influences aerodynamic resistance, and then
alters the partition of solar radiation used for evaporation and transpiration [21], and even
resulted in higher evapotranspiration than that for open water (Figure 5). On the other
hand, vegetation regulates their physiological processes (i.e., photosynthesis, respiration
and transpiration) to adapt to drought or flooding (e.g., [3,41]). Interestingly, ET for the
Baiyangdian Lake increased at low water levels (e.g., Figure 6b) compared with that at
high water levels (Figure 6a) due to P. australis expansion.

4.2. Implications for Wetland Restoration and Management

Diversity, vegetation structure and ecological processes, reported by Ruiz-Jaen and
Aide (2005) [42], are the three ecological attributes used to assess the success of ecologi-
cal restoration projects. Considering their critical role in maintaining wetland structure
and function, several water regulation strategies have been enacted to alter hydrological
regimes of wetlands, such as ecological water transfer projects (e.g., [13]) and water level
controls (e.g., [3]). However, abrupt increases in water levels caused by such ecological
water transfer projects and increases in minimum water levels both deviate from natural
hydrological regimes (as shown in Figure 2d), which will inevitably alter aquatic vege-
tation communities and influence waterfowl habitats in the meantime (e.g., the Siberian
crane) [13]. As reported by [7], it is important to increase our mechanistic understanding
on how flow regimes impact biological and ecological processes to enact effective riverine
restoration measures. In this context, although wetland restoration measures have been
conducted in the recovery of hydrological and biological processes, such as ecological water
transfer projects [13], soil and seed bank restoration approaches [43] and the incorporation
of propagules [38], it is not sufficient to use hydrological or ecological processes alone to
assess whether wetland restoration measures have been successful or not.

Understanding of nexus between flow-biota-ecosystem processes will help to resolve
new challenges in assessing environmental flow [7] as well as providing a more com-
prehensive understanding of wetland restoration assessments. Furthermore, water level
fluctuations can alter ecosystem metabolism, subsequently controlling both C and nutrient
concentrations and flux [7]. Water level fluctuations, especially with regard to extreme
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drought or flooding, drive ecological and physiological processes while altering the C
balance [44], which will also trigger ways in which shallow lakes react under C seques-
tration [3,45]. For example, it is important to understand (1) how many conditions affect
vegetation distribution as well as its abundance, composition richness and diversity [46,47];
and (2) how many conditions alter anaerobic and aerobic states, and subsequently influence
C decomposition and accumulation through means of hydrological regimes (e.g., water
depth, duration, frequency and timing) [48,49]. Recently, much attention has been focused
on the effects of extreme drought and flooding on C cycling processes (e.g., [6,44,50]. For
example, ecosystem responses can exceed the duration of climate impacts through C cycle
lag effects. And, most importantly, aquatic ecosystem response mechanisms to extreme
hydrological regime alterations remain uncertain [44].

5. Conclusions

Water level fluctuations play a critical role in maintaining the ecosystem integrity
of shallow lake systems. This study explored water level fluctuations, analyzed their
influences on fractional vegetation cover (Fv), and simulated vegetation patterns and
evapotranspiration (ET) under different water levels over time. Several conclusions can be
drawn from our results:

(i) The average water levels at annual scale or during germination stage (e.g., March and
April) play a key role in regulating the vegetation community. However, the abrupt
rise in water levels (due to ecological water transfer) inevitably caused disturbances
to aquatic vegetation communities.

(ii) The ET in different vegetation patterns influenced by water level fluctuations were
estimated using the dynamic vegetation model combined with TVET model. Physical
and biological processes influenced by varying macrophyte (e.g., P. australis) cover
and open water area altered the partition of ET. Interestingly, high ET values appeared
at low water levels instead of at high water levels.

(iii) Suitable water levels, estimated for maintaining suitable habitat for P. australis
(avoiding abrupt changes in ratio of vegetation cover to open water area, and
maintaining higher Fv), ranged from 6.59 to 6.97 m. Furthermore, ecological water
transfer projects and operations should be regulated under a specific mode of
operation to reduce their impact on macrophytes while maintaining the integrity
of Baiyangdian Lake ecosystems, e.g., avoiding abrupt water level rise during the
generation stage.
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