
water

Article

A Novel Hybrid Model for Developing Groundwater
Potentiality Model Using High Resolution Digital Elevation
Model (DEM) Derived Factors

Javed Mallick 1,* , Swapan Talukdar 2 , Nabil Ben Kahla 1, Mohd. Ahmed 1, Majed Alsubih 1 ,
Mohammed K. Almesfer 3 and Abu Reza Md. Towfiqul Islam 4

����������
�������

Citation: Mallick, J.; Talukdar, S.;

Kahla, N.B.; Ahmed, M.; Alsubih, M.;

Almesfer, M.K.; Islam, A.R.M.T. A

Novel Hybrid Model for Developing

Groundwater Potentiality Model

Using High Resolution Digital

Elevation Model (DEM) Derived

Factors. Water 2021, 13, 2632.

https://doi.org/10.3390/w13192632

Academic Editor: Fernando António

Leal Pacheco

Received: 7 August 2021

Accepted: 20 September 2021

Published: 25 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia;
nbohlal@kku.edu.sa (N.B.K.); mall@kku.edu.sa (M.A.); malsubih@kku.edu.sa (M.A.)

2 Department of Geography, University of Gour Banga, Malda 732101, India; swapantalukdar65@gmail.com
3 Department of Chemical Engineering, College of Engineering, King Khalid University,

Abha 61411, Saudi Arabia; almesfer@kku.edu.sa
4 Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh;

towfiq_dm@brur.ac.bd
* Correspondence: jmallick@kku.edu.sa; Tel.: +96-61-7242-8439; Fax: +966-17-241-8152

Abstract: The present work aims to build a unique hybrid model by combining six fuzzy operator
feature selection-based techniques with logistic regression (LR) for producing groundwater potential
models (GPMs) utilising high resolution DEM-derived parameters in Saudi Arabia’s Bisha area. The
current work focuses exclusively on the influence of DEM-derived parameters on GPMs modelling,
without considering other variables. AND, OR, GAMMA 0.75, GAMMA 0.8, GAMMA 0.85, and
GAMMA 0.9 are six hybrid models based on fuzzy feature selection. The GPMs were validated by
using empirical and binormal receiver operating characteristic curves (ROC). An RF-based sensitivity
analysis was performed in order to examine the influence of GPM settings. Six hybrid algorithms and
one unique hybrid model have predicted 1835–2149 km2 as very high and 3235–4585 km2 as high
groundwater potential regions. The AND model (ROCe-AUC: 0.81; ROCb-AUC: 0.804) outperformed
the other models based on ROC’s area under curve (AUC). A novel hybrid model was constructed
by combining six GPMs (considering as variables) with the LR model. The AUC of ROCe and ROCb
revealed that the novel hybrid model outperformed existing fuzzy-based GPMs (ROCe: 0.866; ROCb:
0.892). With DEM-derived parameters, the present work will help to improve the effectiveness of
GPMs for developing sustainable groundwater management plans.

Keywords: groundwater potentiality models; GIS; data driven model; sensitivity analysis; remote sensing

1. Introduction

A large portion of the population all around the globe has been experiencing the
problem of clean drinking water despite living on the blue Earth, mostly due to (1) the
fact that only 2.5 percent of the water is drinkable; (2) the increased intake of green water
(about 70% presently); and (3) the paucity of data on the possible source of groundwater
on a micro-spatial level [1]. Irrigation, domestic, municipal, and industrial sectors have all
increased their dependence on groundwater because it is very easily available, and it is
a healthy water source [2,3]. Agriculture intensity in developing countries such as India
and Bangladesh has been gradually growing in order to satisfy increasing demand for food
crops. Rainfall occurs only during the monsoon season because of the region’s monsoon
climate, which lasts from June to September. During non-monsoon seasons, peasants
rely on groundwater for cultivation [4,5]. According to the Central Groundwater Board
(CGWB, 2014), 89% of overall groundwater is harvested for irrigation, and dependence
has risen unexpectedly in the urban sector [6–8]. India’s yearly renewable groundwater
potential is estimated to be about 433 billion cubic metres (BCM), with 399 BCM of water
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available according to recent estimates [9,10], but the demand is several times higher than
the supply. In many regions of the nation, such a scenario generally results in a decrease in
the groundwater table. Furthermore, India’s groundwater generation rate is approximately
50% [9–13]. The Central Groundwater Board (CGWB, 2014) has compiled a list of all of the
blocks in the Malda district of West Bengal, India, where groundwater production is found
to be semi-critical to critical. In the midst of this crisis, it is critical to look for potential
groundwater zones for raising water supply and conserving water [14–16].

The identifications of potential groundwater zones and the calculations of groundwa-
ter availability are essential but complex when many conditioning variables are directly and
indirectly involved [17,18]. One of the best methods for this is scientific aquifer mapping,
which is now almost nonexistent in most developing countries [19,20]. Geographic infor-
mation systems (GIS) and remote sensing have ushered in a new era in this area, allowing
multi-parametric research [14,16,21–23]. The choices of conditioning variables and the
utilization of an efficient integration approach are crucial to effective modeling [10,24–28].
Table 1 shows that some groundwater potentiality modelling conditioning factors, such as
soil texture, groundwater level, annual rainfall, Normalized Difference Vegetation Index
(NDVI), geology, land use land cover, elevation, slope, aspect, curvature, topographic
wetness index (TWI), Terrain Ruggedness Index (TRI), stream power index (SPI), distance
to river, and others, have been widely used [16,21,22,29–32]. Elevation, slope, and rainfall
have been identified as paramount parameters in the plains, while geology, lineament, and
the other factors listed above have been identified as paramount variables in the moun-
tainous area [24,33–36]. It is worth noting that not all of the variables are necessary for all
spatial units. Drainage density, for example, may be an effective parameter in flood plains,
but it may not be so in mountainous areas with several first and second order ephemeral
streams. As a consequence, caution must be exercised when selecting parameters for
modelling the research unit’s spatial characteristics [37].

Table 1. Computation of area coverage under different GWP zones of hybrid models.

GWP
Zones

Area (km2)
AND OR GAMMA0.75 GAMMA0.8 GAMMA0.85 GAMMA0.9

Very high 2149.95 2122.06 2112.52 1850.81 1942.18 2097.03
High 4585.49 4395.94 4523.22 3644.02 4269.04 4279.91

Moderate 4789.80 4620.93 4629.72 5071.99 5255.52 4714.25
Low 4434.67 4835.19 4853.90 5493.59 5335.84 5181.40

Very low 5323.65 5309.44 5164.21 5223.11 4480.96 5010.96

Groundwater potential modeling is reliant on accurate data and applicable mod-
els [38]. Groundwater potentiality has been studied by using a number of methods,
including physical, heuristic, and mathematical approaches [39]. Physically based meth-
ods assess groundwater potential by analyzing topographical structure and geological
conditions [40,41]. Since they require very precise topography details, these methods are
typically used for a small area. Depending on the experts, heuristic-based approaches de-
termine the probability of Groundwater potentiality zones. According to Regmi et al. [42],
such methods are strongly based on professional knowledge and, in general, achieve
moderate precision. Groundwater potential modelling has favoured statistically based
models such as statistical index (SI) [43], logistic regression (LR) [15,43], evidential belief
function (EBF) [44], probability-frequency ratio (FR) [45,46], certainty factors (CF) [47–49],
weight of evidence (WoE) [50,51], and index of entropy (IoE) [38,52] over the two groups
mentioned above. These approaches are more objective and quantitative, since they are
focused on existing groundwater availability areas and contributing factors. Standard
statistical methods, on the other hand, are limited in their ability to predict the dynamic and
nonlinear interactions between groundwater and the conditioning variables [53]. Machine
learning is taken into account since no single approach or methodology is universally
suitable for all fields and study area.
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A vast number of groundwater-related data are becoming more readily available
thanks to the rapid advancement of remote sensing technology. The majority of research
used Big Data to model groundwater potentiality by using machine learning techniques
since these approaches are capable of analysing the dynamic connection between ground-
water potential and influencing parameters [54]. According to Jordan and Mitchell [55],
machine learning is an artificial intelligence branch that employs computational algorithms
to analyse and predict data by learning from training data. According to a review of the
literature, artificial neural networks [56,57], neuro-fuzzy [58], decision trees [59,60], and
support vector machines [44,47,61,62] have all been used to assess groundwater potential.
While it is obvious that machine learning algorithms enhance prediction accuracy of re-
gional groundwater availability, the generalisation efficiency of single classifiers also needs
to be improved [63]. However, until now, groundwater researchers have been unable to
agree on an appropriate model for assessing groundwater potentiality [62]. As a result,
a number of ensemble methods have recently gained popularity in geohazard susceptibility
and potentiality mapping [47,64,65].

The fundamental difference between the above-mentioned techniques is whether they
treat data objectively or subjectively. The choice of technique is based on two factors:
the analysis’ goal and scope as well as the data’s availability and quality. Since the two
techniques are rarely employed together, a large number of available data are underuti-
lized, although the knowledge driven methods have biasness for assigning weights to
the parameters.

However, our goal was to create a hybrid model that combined the two methods in
a holistic manner by employing a data-driven method defined by its simplicity and easy
interpretation of the weights and a method that can derive weights for all parameters
without biasness. Therefore, in the present study, we have used the information gain
ratio technique, which can produce weights for all parameters without bias. The use of
a multi-model approach and hybrid modelling to research susceptibility, vulnerability,
risks, potentiality, and other topics is a relatively new development [37,66–69].

In recent years, experimental hybrid approaches for groundwater potentiality re-
search have been considered since there is a need for modern predictive approaches and
techniques to be explored in order to acquire more scientific history for drawing fair conclu-
sions [46,56,70]. For groundwater potentiality modelling, a variety of hybrid approaches
have been successfully used, which were created by integrating statistical techniques with
machine learning approaches, such as ANN-fuzzy logic [71], rough set-SVM [72], the adap-
tive neuro-fuzzy inference system (ANFIS), stepwise weighted assessment ratio analysis
(SWARA) technique [73], EBF-fuzzy logic [74], and ANFIS combined with a frequency
ratio [65].

Therefore, in the present study, we have used the information gain ratio technique for
assigning weights to the parameters, and then different operators of fuzzy logic have been
used for integrating the fuzzified weighted parameters. In this manner, the hybrid fuzzy
models have been developed. Furthermore, a novel hybrid model has been generated by
integrating all fuzzy-based hybrid models with logistic regression. A key capability of
hybrid methods in groundwater potentiality research is the reduction in modeling error,
which can generate robust groundwater potentiality models. The application of LR in the
field of landslide, flood, groundwater, and other natural hazards prediction has widely
been found in the literature. In addition, previous literature reported that LR has been
highly successfully implemented for predicting natural hazards. However, in the present
study, the LR model has been applied differently in order to obtain highly accurate GPM.
In the present study, the LR has been applied on the already generated hybrid ensemble
GPMs by considering them as parameters instead of groundwater potential conditioning
parameters. The logic behind the application of LR on the generated GPMs is to reduce
the error of prediction. In other words, no models are perfect for generating real world-
like situation. Therefore, some errors can occur during modeling process. In order to
reduce these errors, many researchers have combined several models to generate ensemble
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models, although it cannot be stated that ensemble models predicted GPM without errors.
Therefore, in the present study, we also used fuzzy hybrid models and also combined all
models though the LR model. Consequently, some errors of the generated models can be
reduced due the combination of all models with training datasets. Thus, a hybrid novel
ensemble model for landslide prediction has been developed.

This capability may boost the popularity of this method and aid researchers in future
groundwater potentiality research.

Furthermore, previous comparable research paid little attention to the sensitivity
study of thematic layers. After constructing hybrid models, thematic layers in this analysis
were subjected to sensitivity tests. In order to increase the accuracy of the model’s pre-
dictions, the most influential thematic layers were calculated by using multiple machine
learning-based sensitivity analyses. This methodology is used to reduce uncertainties in
other RS/GIS-based models, such as soil erosion susceptibility [75,76], landslide vulner-
ability [77], and soil property estimation [15,78]. The RF based sensitivity analyses have
been used in the research study to classify the significant thematic layers produced by
the model. Furthermore, both parametric and non-parametric ROC curves were used to
evaluate the model’s performance. Very few studies have applied both the parametric
and non-parametric ROC curves for validation. As a result, this research study will have
a major impact on the sustainable management of groundwater.

Some research gaps have been identified based on the existing literature. For mod-
elling groundwater potentiality, there is no universally accepted precise and accurate
technique. As a result, new methods for predicting robust groundwater potential models
must be created, validated, and applied. Validation of produced models is also lacking.

Therefore, in order to fulfill the mentioned research gaps, the study’s principal goals
are the following: (1) carefully investigate topographic data supplied from DEM by com-
puting fourteen distinct DEM-derived CFs; (2) develop a novel hybrid algorithm-based
GPM by integrating several fuzzy operator feature selection-based hybrid models with
logistic regression; (3) perform sensitivity analysis using RF; and (4) validate the ground-
water potentiality models by using parametric and non-parametric ROC curves. This
research study would assist planners, regulators, lawmakers, and municipal governments
in managing groundwater properly. The following are the contributions of this work:

• General: The study adds to the robustness of expertise by designing and applying
methods to a previously unexplored GPM and sensitivity analysis field.

• Regional: Improved understanding of groundwater potentiality mapping in the
Bisha watershed of the Saudi Arabia. The findings of this study would provide
a solid foundation for earth scientists, elected officials, and partners in enhancing land
management and catastrophe management.

• Methodical: Proposed LR-based hybrid model by considering six fuzzy hybrid models
for groundwater potential mapping. RF-based sensitivity model was developed for
evaluating the influence of the parameters.

The remainder of this work is structured in the following manner. The materials and
methods are addressed in Section 2. Sections 3 and 4 contain the results and discussion.
Section 5 consists of conclusion remarks.

2. Materials and Methods
2.1. Study Area

The Bisha watershed, with an area of 21,260 km2, is located in Saudi Arabia’s south-
western region and shares a border with Yemen. The Bisha watershed boundaries are
found north of the equator, between 17◦59′27.588′′ N and 20◦49′13.958′′ N, and east of
the Greenwich meridian, between 41◦49′50.825′′ E and 43◦11′20.254′′ E (Figure 1). It has
a diverse landscape, with highlands, high mountains (between 2000 and 3000 m MSL),
plateaus, and Wadiyan. It also includes a large area of the desert to the north and east,
stretching all the way to Bisha and Tathlith. The elevation varies between 950 and 2980 m,
with a mean of 1655 m. As per the geological settings [79], it is made up of Jurassic–
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Cretaceous sedimentary rocks (limestone, sandstone, and shale) and Precambrian granite
igneous rocks. The region’s climate varies significantly according to geography and season.

Figure 1. Study area.

The climate varies from semi-arid in the south regions to arid climates in the north.
Three meteorological stations operated by Saudi Arabia’s Presidency of Meteorology and
Environment serve the study region (PME), namely Abha, Khamis Mushyet, and Bisha.
The average temperature in the last 30 years, according to data from three stations, has
ranged between 12 ◦C and 44 ◦C. The south–west monsoon brings variable rainfall to
the highlands of this region [80]. The precipitation results from orographic convection
over the scarp in the south-western region of Saudi Arabia, especially during the spring
and summer, and are spread out over 2–4 months (March–June), whereas rainfall for the
remainder of the period is insignificant [81]. The annual average rainfall is 245 mm. Rainfall
exceeding 200 mm per annum is limited to a 20–30 km wide crest zone. Consequently,
eastward and northward Wadi flow decreases rapidly downstream, and deposition is
greater than erosion near the eastern edge of the plateau.

The rugged landscape of the watershed has aided in biodiversity conservation in the
region. The Afromontane, which is part of the watershed, has a corresponding phytogeo-
graphic area [82]. The watershed’s highland is surrounded by woodlands and Juniperus
procera, which are home to many endemic and rare flora and fauna [83].



Water 2021, 13, 2632 6 of 26

2.2. Materials

The groundwater potentiality models for this study were prepared by using fourteen
groundwater conditioning parameters. All of these parameters have been extracted from
high resolution ALOS PALSAR DEM (spatial resolution: 12.5 m). The DEM has been
collected from Earth data of NASA (https://asf.alaska.edu/ (accessed on 7 August 2021)).

2.3. Groundwater Potentiality Inventory

For GWP mapping, several researchers have utilized the positions of springs, wells,
and quant for inventory. Well points were taken into account for GWP in this study. The
study region’s inventory graph includes 50 well points collected from various resources
and detailed site inspection. First, non-groundwater data similar to the groundwater data
utilized for GWP modeling must be prepared [84]. The selection was made on the basis
of the field survey, with equivalent numbers of non-groundwater data (50 points). The
total numbers for groundwater and non-groundwater points are 100. By arbitrary separa-
tion, all groundwater and non-groundwater data have been divided into 80% (80 points):
a proportion of 20% (20 points) delineates calibrating and test datasets. Model calibration
is performed with groundwater and non-groundwater training data, while model vali-
dation is performed with groundwater and non-groundwater testing data [22]. Similarly,
inventory maps for other areas have been developed.

2.4. Methods for Preparing Groundwater Potentiality Conditioning Factors

Since it requires multiple variables related to topography and hydrology in geospatial
layout, the architecture of the spatial groundwater potentiality model is typically very
complex and systematic. As a result, identifying variables that affect groundwater poten-
tiality is critical, and scientifically selected criteria can confirm the accuracy of groundwater
potentiality modelling charts. Considering the extensive literature review, data availability
and technical setup for GWP modelling in the current study area, the fourteen groundwater
potentiality influencing parameters were selected, such as elevation, aspect, TWI, SPI, STI,
TRI, TPI, slope, profile curvature, plan curvature, convergence index, topographic feature,
slope, flow accumulation, and flow direction. All contributing variables have 12.5 m spatial
resolution. In the present study, we used R studio version 4.1.1, ArcGIS version 10.5, QGIS
version 3.2, WEKA 3.9, GRASS GIS version 7.4.1, and SAGA GIS version 7.8.2 for machine
learning, and we used graphical work, map preparation, and parameters generation from
the DEM.

2.4.1. Elevation

The elevation is the most important element in GWP modelling [19]. The potentiality
of groundwater is inversely proportional to height. Chen et al. 2020 reported that the
probability of groundwater potentiality decreases with elevation and vice versa. As a result,
the study area is characterized by relatively flat and low altitude. As a consequence, the
presence of groundwater potentiality is normal in the region (Figure 2a).

2.4.2. Slope

The slope, which influences the speed of running water, is also a significant element in
influencing the GWP [19,85]. It regulates the amount of water that accumulates in a given
region and, thus, acts as an important function in the groundwater recharge operation.
The study area is characterized by lower slope and flat areas, which positively influences
good groundwater recharge. Therefore, most of the study area has high potential for
groundwater (Figure 2b).

https://asf.alaska.edu/
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Figure 2. DEM derived topographic parameters, such as (a) elevation, (b) slope, (c) LS Factor, (d) TRI, (e) plan curvature, (f)
profile curvature, and (g) aspect.

2.4.3. LS Factor

The length (L) and steepness (S) of the topography that impacts the quantity of
groundwater storage are defined by slope length (LS) (Figure 2c). The following equation
is used to compute LS [86]:

LS = ( f a× cellsize/22.13)0.4 × (sin θ/0.0896)1.3 (1)

where fa denotes flow accumulation, and θ denotes the slope in degree.

2.4.4. TRI

The TRI is the most important conditioning variables for GWP modeling [19,20,23]. It
was used to measure landscape heterogeneities since it represents the average discrepancy
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between a central pixel and its neighbouring cells, which affects drainage. As a result, the
greater the TRI value, the greater the elevation discrepancy between neighbouring regions
since the lower TRI value means higher groundwater content, which is mainly situated
at low elevated differences. As a result, low TRI values indicate greater groundwater
potential. In this study, the TRI value ranges from 0 to 29 (Figure 2d).

2.4.5. Curvature, Profile, and Plan Curvature

Since curvature influences groundwater allocation, it is used in GWP modelling. It
measures the change rate at which a profile line is changed by the angle of inclination of
the tangential plane [87]. Ginesta Torcivia et al. [88] and Talukdar et al. [89] reported that
the curvature differentiates the convergent and divergent runoff area. Costache and Tien
Bui [90] reported that negative value areas are linked to the process of runoff convergence.
It influences the flow of water over a surface and mostly governs water retention and
groundwater recharge. Therefore, the study area along the river is highly potential for
groundwater recharge during the rainy season (Figure 2e,f).

The hydrology of the surface and subsurface is affected by curvature. The greatest
slope in specific direction is aligned to the profile curvature. The negative value of profile
curvature implies that the water flow in the surface has slowed, while the positive value
denotes that the water flow has increased, and zero shows that the surface is flat. Plan
curvature, on the other hand, specifies the greatest slope in a perpendicular direction. It
depicts how water flowing in the earth’s surface converge and diverge. Negative values
reflect the surface’s concave slope, which leads water flow to confluence. Positive values,
on the other hand, show that the surface has a convex slope that controls the divergence of
water flow in the region.

2.4.6. Aspect

Another factor, aspect, has an effect on the flow paths of groundwater potentiality as
well as soil moisture content [91]. It impacts the duration of sunshine, which has an effect
on infiltration rates and snowmelt. As a consequence, it has an indirect effect on the GWP
(Figure 2g).

2.4.7. Topographic Power Index

TPI is a topographic feature’s slope orientation metric. TPI has been intended to
distinguish between the elevation of the central point and the average elevation around
the centre point in general. Positive and negative TPI values denote sites that are greater or
lesser than the typical surrounding region, respectively, whereas a zero TPI value denotes
a flat or continuous slope. The following equation was used to compute the TPI:

TPI = M0 −
∑n−1 Mn

n
(2)

where M0 denotes the altitude of the middle point, Mn denotes the altitude of the grid, and
n indicates the total number of pixels in the DEM raster file’s neighbourhood region.

2.4.8. Convergence Index

Convergence index is a smaller-scale measure of the concavity or convexity of the
ground. Concavities (e.g., valleys) are represented by negative convergence, whereas
convex features (e.g., ridges) are represented by positive convergence. The “system for
automated geoscientific analyses SAGA” computed this parameter. Convergence had
minimum, maximum, and mean values of −100, 100, and −0.586, respectively (3b).

2.4.9. Topographic Wetness Index

Topographic wetness index is a term that is frequently utilized to illustrate how
topography affects the location and length of saturated source areas [92]. It depicts how
topography influences runoff generation and the volume of flow that accumulates in
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a basin. This index depicts the volume of water stored in the area at each pixel scale [93]
and is measured using Equation (3).

TWI =
In(As)

tan β
(3)

As is the entire upslope catchment area flowing downward from a slope angle of β.
In general, high TWI values and GWP have a robust relationship [94]. The study area has
TWI value ranges from 4.1 to 19 (See Figure 3c).

1 

 

 

 

 

Figure 3. DEM derived topographic and hydrologic parameters, such as (a) TPI, (b) convergence index, (c) TWI, (d) SPI,
(e) flow direction, (f) flow accumulation, and (g) topographic features.

Stream Power Index

Another variable that influences the groundwater potentiality is SPI, which measures
the stream’s erosive strength [95]. Equation (4) is used to calculate the SPI.

SPI = As tan β (4)
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As indicates the catchment area, while β denotes the slope. The SPI in the study area
ranges from 0 to >12.6 (Figure 3d).

2.4.10. Flow Direction

After the depressions have been corrected, each cell in the grid is allocated to flow
across the DEM surface, which is continuous [96]. The flow direction of a cell may be
described as the direction in which water and sediment would flow out of that cell, regard-
less of the many techniques employed to determine flow direction in the grid. The D-8
technique assigns the flow direction for each cell in a grid to one of the eight neighboring or
diagonal neighbouring cells in the direction with the steepest downhill slope. As a result,
considering the flow direction and resolution of any cell, the distance travelled by a flow
may be calculated by using the basic Euclidean distance between cell centres, which is
dependent on cell size (1 unit cell size for N–S and E–W; 1.414 for diagonals) [96]. As
a result, the total flow length at each particular cell in the watershed may be computed. The
flow direction was determined using the SRTM digital elevation model, and it is currently
used as a crucial input component for determining the flow length.

2.4.11. Flow Accumulation

The upslope area flowed from a point in topographic orientation is referred to as flow
accumulation or upslope contributing area. The flow accumulation computed from the
DEM could be used as a proxy for ridgelines, residual soil sites, colluvium concentration,
moisture availability, and drainage flow lines [97]. Flow accumulation influences how
slope materials and rainwater are spread, as well as where water and slope material flows
tend to accumulate. The former is defined as divergent slopes, while the latter is regarded
as convergent slopes, and both are potential locations for colluvium and saturation, as well
as recharge and seepage zones.

2.4.12. Topographic Features

Topographic influences are critical for GWP modelling because they affect the hydro-
logical characteristics of the research region both directly and indirectly [98,99]. At first,
a Digital Elevation Model (DEM) was generated in ArcGIS 10.5 from the ALOS PALSAR
DEM for the study area. From the DEM, we extracted topographic features in the SAGA
GIS QGIS software.

2.5. Method for Groundwater Potentiality Conditioning Variables Using Multicollinearity Test

In flood susceptibility mapping, the multicollinearity test is a crucial step. Multi-
collinearity refers to the presence of a linear relationship between several or all of a regres-
sion model’s independent parameters [84]. A division-by-zero in regression calculation
might be caused by the existence of a linear connection between variables. This issue can
result in erroneous computations, and dividing by a little number can cause the findings to
be skewed.

Multicollinearity is a method that uses strongly interrelated independent variables
in a logistic regression model. It indicates that one variable may be predicted with a high
degree of accuracy linearly from the others. Multicollinearity has no effect on the model’s
predictability or dependability. It only has an impact on individual predictor estima-
tions [100].

Variance inflation factors (VIFs), pairwise scatter plots, and eigenvalues in a correlation
matrix are some of the approaches that may be used to discover multicollinearities. For
each flood conditioning parameter, VIF is utilised to detect multicollinearity in this study.
The VIF is a statistic that evaluates the strictness of multicollinearity by using a least squares
regression. In the present study, VIFs have been used for analyzing multicolinearity.
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2.6. Proposing Fuzzy Logic-Information Gain Ratio Weighting Based Hybrid Models for
Groundwater Potentiality Mapping

In order to improve the precision of groundwater potentiality models, hybrid FL
models have been generated by integrating fuzzy operators with information gain ratio.
This was accomplished by a series of steps. The thirteen topographic and hydrologic
parameters were used to construct groundwater potential models by using fuzzy logic
model and information gain ratio. The details of fuzzy logic and information gain ratio-
based hybrid models are as follows.

It is critical to evaluate the importance of the groundwater potentiality influencing
parameter before practicing and validating the model [101]. Based on mathematical prop-
erties and interactions with groundwater, the value of each collected parameter has been
quantified. The information gain ratio, i.e., InGR technique [99], was used to define the in-
fluential parameters for groundwater potentiality prediction. InGR significance is assigned
to each determining factor to quantify its relevance. The higher the InGR rating, the more
important the influence factor. The InGR model was selected for use in this analysis due to
its consistency and efficacy, and it is measured using Equation (5):

Gain_ratio(x, Z) =
Entropy(Z)−

n
∑
1

n
∑

i=1

|Zi |
|Z| Entropy(Zi)

−
n
∑

i=1

|Zi |
|Z| log |Zi |

|Z|

(5)

where the feature, x, belongs to the training point Z with Zi1 = 1, 2, 3, . . . , n subsets,.
Using the information gain ratio and ground truth data, the weights for all parameters

have been derived. Then, the weights were assigned to the parameters in the raster
calculator of the ArcGIS 10.5 software.

Zadeh was the first to present fuzzy set theory [102]. It allows for the mathematical un-
derstanding of non-discrete natural phenomena [103]. The membership value of elements
(x) has various degrees of support and confidence ( f (x)) in the range (0, 1), according to
this theory [104]. The following formula may be used to describe a fuzzy set:

A = {x, f a(x)}, x ∈ R (6)

where A denotes a fuzzy set, x represents universal element set R, and f (x)denote the
fuzzy membership function.

The membership value of a crisp set range (0, 1) is either 1 or 0, but a fuzzy set inherits
continuous membership in the range (0, 1). Groundwater potential mapping necessitates
the establishment of a fuzzy membership function of causal components. A membership
function can be provided quantitatively by using mathematical equations depending on
the data type (ordered or categorical) and its relationship with the dependent variables. In
the present research, thirteen parameters have different data types and nature; therefore,
different types of membership function have been used. The MS-Small has been used
to create fuzzy crisp layers, such as elevation, slope, aspect, topographic features, flow
direction, LS factor, and TRI. It determines membership by relying on the input data’s
mean and standard deviation, with small values indicating high membership. On the other
hand, MS-Large function was used to transform the layers into fuzzy crisp layers, such
as profile curvature, plan curvature, flow accumulation, flow direction, SPI, TPI, and TRI.
It determines membership by relying on mean and standard deviation of the input data,
with large values indicating high membership. Thus, we transformed weighted data into
simplified, normalized, and unidirectional fuzzy crisp layers

The fuzzy operation is the next stage in the fuzzy logic method. Important fuzzy
operators include fuzzy OR, fuzzy AND, fuzzy algebraic sum, fuzzy algebraic product,
and fuzzy gamma operator [105]. Only one of the contributing fuzzy sets has an influence
on the resulting value in fuzzy OR and fuzzy AND. The fuzzy algebraic sum and fuzzy
algebraic product operators, respectively, render the output set greater or equal to the
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maximum value and smaller or equal to the minimum value across all fuzzy sets [106].
The fuzzy gamma (γ) operator produces values that fall between the fuzzy algebraic
product and fuzzy algebraic sum. The γ value ranges from 0 (no compensation) to 1 (full
compensation). The degree of compensation between two extreme confidence levels is
used to determine the optimal γ value.

In GPM investigations, the use of an appropriate fuzzy operator for data integration
is essential for obtaining the best results. The type of geographic data to be integrated
determines the fuzzy operator to use. All of the 13 criteria considered in this analysis
included equal amounts of data. Data integration can be performed by using a mix of
fuzzy operators or multiple distinct fuzzy operators depending on the nature of the spatial
data. We employed all operators to integrate the fuzzy crisp layers in this investigation.
The following formula was used to integrate fuzzy crisp layers:

f AND = MIN
[

fEle, fSlope, fAspect, fTWI , fTRI , fSPI , ..
]

(7)

f OR = MAX
[

fEle, fSlope, fAspect, fTWI , fTRI , fSPI , ..
]

(8)

Fuzzy Algebraic Product =
n

∏
i=1

Ri (9)

Fuzzy Algebraic Sum = 1−
n

∏
i=1

(1− Ri) (10)

fγ = (Fuzzy Algebraic Sum)γ × (Fuzzy Algebraic Product)1−γ) (11)

where fEle, fSlope, fAspect, fTWI , fTRI , and fSPI are fuzzy crisp layers of elevation, slope,
aspect, topographic wetness index, topographic ruggedness index, and stream power
index, respectively. Moreover, Ri represents the fuzzy membership function of the ith
map, i = 1, 2, . . . , n. The GPMs were created by applying the fuzzy gamma operator on
the results of Equations (6), (7), and (10). Six distinct GPMs were prepared by using the
following six values: AND, OR, GAMMA0.8, GAMMA 0.85, and GAMMA 0.9. GPM
maps are raster data that are ordered and continuous, with each grid/cell quantitatively
depicting the degree of ground water potentiality. GPM is measured using fuzzy operators
in a variety of ways (0, 1). By using Jenk’s Natural Break (ESRI 2012) categorization, these
GPM maps were divided into five categories: very low, low, moderate, high, and very high
potentiality. GPM maps were created accordingly.

2.7. Validation of the Models

The ROC curve is a graphical representation of the sensitivity (TPR) on the y-axis and
the specificity (FPR) on the x-axis for different cut-off points of test data. For convenience,
it is usually shown as a square box, with both axes ranging from 0 to 1. The AUC is
a useful metric of sensitivity and specificity that may be used to examine a diagnostic
test’s intrinsic validity. AUC = 1 indicates that the diagnostic test is completely accurate
in distinguishing between groundwater and non-groundwater [24]. This means that
sensitivity and specificity are equal, and both false positive and false negative errors are
zero. In actuality, this is quite unlikely to occur. The closer the AUC is to one, the better the
test performance. The diagonal from (0, 0) to (1, 1) divides the square into two equal pieces,
each with an area of 0.5. When the ROC is at this line, the test has a 50/50 probability of
accurately distinguishing between groundwater and non-groundwater. The minimal AUC
value should be 0.5 rather than 0 since AUC = 0 indicates that the test wrongly categorised
all subjects with groundwater as negative and all non-groundwater subjects as positive.
When the test findings are reversed, area = 0 becomes area = 1; therefore, a completely
incorrect test can be converted into a perfectly accurate one.

The area under the ROC curve was calculated by using both non-parametric and
parametric techniques. The user must make a decision. The parametric technique, on the
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other hand, has been frequently used to validate prediction models. Both parametric and
non-parametric techniques were utilised in this research.

2.7.1. Non-Parametric

This does not need any test value distribution pattern, and the resulting area under
the ROC curve is referred to as empirical. The first technique employs the trapezoidal rule.
It simply joins the points at each interval of the recorded values of the continuous test and
creates a straight line connecting the x-axis to determine the area. This creates a number of
trapezoids, each of which can be simply computed and totaled.

2.7.2. Parametric

When the statistical distribution of diagnostic test results in positive and negative
subjects is known, these are employed. For this, a binormal distribution is often employed.
When test values in both positive and negative subjects have a normal distribution, this
is relevant. The necessary parameters may be simply calculated by using the means and
variances of test scores in positive and negative subjects if the data are really binormal or if
a transformation such as log, square, or Box-Cox renders the data binormal. An AUC of
>70% would be considered satisfactory model performance in this situation [107].

2.8. Sensitivity Analysis

Random forest offers two distinct important metrics for ordering variables and variable
choice, mean decrease accuracy (MDA), and mean decrease Gini (MDG). When the values
of a variable become randomly permuted relative to the original data, MDA evaluates the
significance of the variable by evaluating the change in prediction accuracy [100]. MDG is
the total of all Gini impurity reductions caused by a particular variable (when that variable
is used to generate a split in the random forest), normalised by the number of trees.

2.9. Proposing LR-Based Novel Hybrid Model for Groundwater Potentiality Mapping

In order to improve the precision of groundwater potentiality models, LR was paired
with previously applied and current hybrid models. This was accomplished by a series of
steps. In the first round, information gain ratio-based weightage technique and six opera-
tors of fuzzy logic were integrated in order to construct groundwater potential models. The
following procedure was used to integrate statistical models, such as LR with the hybrid
models for obtaining higher accuracy in groundwater potential models. For incorporating
the LR models, we used six newly developed models as parameters. Testing datasets
(20% of the total datasets) were used to collect data from the six hybrid models, and they
were held exclusively for validation purposes. The aim of using validation datasets and
ensemble models was to determine how well the newly generated hybrid models predicted
groundwater potentiality. Another significant advantage of using validation datasets for
second-step modelling is that they can be used for any modelling purpose. As a result, it
can provide outstanding ground truth proof for obtaining exceedingly detailed information
about the outputs of newly developed hybrid models. The validation data was used for
combining LR and hybrid groundwater potentiality models using the collected data. In
the next stage, six hybrid models have been weighted by using the weights of six hybrid
groundwater potentiality models derived from the LR models. Then, weighted parameters
were integrated in a raster calculator; thus, an LR-based novel hybrid model has been
constructed. In the last stage, the hybrid model has been validated using ROC curve in
order to observe how accurately the hybrid model predicts the groundwater potential
zones. Some details of the LR are as follows

Logistic Regression

The probability of an event is weighed against a number of potentially predictive
variables in LR (LR), which is one of the most widely used statistical techniques. In the
case of groundwater potentiality prediction, the expected occurrence has been defined as
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groundwater or non-groundwater, and the purpose of LR is to determine the best suitable
algorithm to evaluate the relationship between a set of conditioning variables and the
appearance or absence of groundwater [108]. In addition, as LR uses its convergence
criterion to maximise the likelihood function [109], its predictive success in classification
problems is considered to be very exceptional [110].

3. Results
3.1. Multicolinearity Analysis

VIF and Tolerances (TOL) were utilised to determine multicollinearity between inde-
pendent variables in this study. A multicollinearity problem is indicated by a VIF score of
>10 and a tolerance value of 0.2. The VIF and tolerance values of all factors are less than
10 and more than 0.2, respectively, according to the results of the multicollinearity test.
As a result, there is no concern with multicollinearity among independent variables. As
a result, in the current study, all nine flood conditioning variables were taken into account
while creating the FS map. The following are the results of Multicollinearity analysis for the
present study: elevation (VIF: 1.327, TOL: 0.753); aspect (VIF: 1.382, TOL: 0.724); slope (VIF:
1.242, TOL: 0.805); LS factor (VIF: 1.48, TOL: 0.7); plan curvature (VIF: 2.599, TOL: 0.385);
plan curvature (VIF: 1.952, TOL: 0.512); TPI (VIF: 1.847, TOL: 0.541); TRI (VIF: 1.65, TOL:
0.67), TWI (VIF: 1.911, TOL: 0.523); convergence index (VIF: 1.498, TOL: 0.667); topographic
feature (VIF: 4.720, TOL: 0.212); flow accumulation (VIF: 1.472, TOL: 0.679); flow direction
(VIF: 1.198, TOL: 0.834); and SPI (VIF: 5.379, TOL: 0.186).

3.2. Proposing Feature Selection Based Hybrid GW Potentiality Models

In the present study, in order to propose feature selection approach integrated fuzzy
logic models, a variety of steps have been followed. The initial collections of variables
have varying levels of predictability. Including all factors in the study, on the other hand,
may diminish the predictive power of the generated models. As a result, the predictive
capacity of the elements used in the study should be assessed, and components that have
a negative impact on the accuracy of the created models should be eliminated. For these
purposes, data from 14 CFs were retrieved on the basis of the training datasets. The weights
for all parameters were then calculated by using the information gain ratio (IG) method.
This procedure will aid in the development of more accurate prediction models. Based
on the IG findings, it could be stated that no parameters have negative prediction power;
hence, no parameters have been removed from the modelling of GWP. Since the IG value
indicates predictive power, we used these values as weights for all factors in our analysis.
The parameters were then allocated weights. As a result, the normal parameters have been
converted into weighted parameters. The following are the obtained IG values for all CFs:
elevation (IG: 0.482); topographic feature (IG: 0.274); flow accumulation (IG: 0.228); flow
direction (IG: 0.168); slope (IG: 0.146), TWI (IG: 0.142); TRI (IG: 0.138); aspect (IG: 0.103);
LS factor (IG: 0.103); convergence index (IG: 0.1002), SPI (IG: 0.1001); plan curvature (IG:
0.094); profile curvature (IG: 0.091); and TPI (IG: 0.011).

Following the generation of the weighted parameters, the parameters were converted
into fuzzy crisp layers using the fuzzy membership function. The membership functions
that were picked for different variables are specified in the Materials and Methods Section.
The fuzzy membership functions, on the other hand, were chosen based on the data
types and their contribution to groundwater potentiality modelling. As a result, the fuzzy
membership function also served as a weightage mechanism.

Following the transformation of the fuzzy crisp layer, the fuzzy operators AND,
OR, GAMMA0.75, GAMMA0.8, GAMMA0.85, and GAMMA0.9 were used to integrate
the fuzzy crisp layers. As a result, hybrid fuzzy models for groundwater potentiality
were created. Following that, the natural break algorithm was used for the resulting
fuzzy models, which range from 0 to 1 in value (with 1 indicating high potentiality and
0 indicating low potentiality), for classification. There are five groundwater potentiality
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classifications, including very high, high, moderate, low, and very low groundwater
potentiality zones.

Figure 4 represents the groundwater potentiality models as constructed using advance
hybrid algorithms, such as AND, OR, GAMMA0.75, GAMMA0.8, GAMMA0.85, and
GAMMA0.9. As shown in Figure 4, the potential zones of groundwater were divided into
five categories: very high, high, moderate, low, and very low. The potential groundwater
zone runs in a northwest–southeast direction, parallel to the drainage direction of the
catchment. The south and southeast are dominated by zones with high groundwater
potential, whereas the north and northwest are dominated by areas with low groundwater
potential zones.

Figure 4. Groundwater potentiality models based on DEM derived parameters using feature selection
and fuzzy based hybrid algorithms, such as (a) AND, (b) OR, (c) GAMMA0.75, (d) GAMMA0.8,
(e) GAMMA0.85, and (f) GAMMA0.9.

Around 1850–2149 km2 and 3644–4585 km2 areas to the total basin area are found to
have ‘very high’ and ‘high’ potentiality for groundwater, respectively, in the case of the RF
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model (Table 1). In general, all of the models defined the river catchment area as having
a lot of potential for underground water harvesting. However, since there are variations in
the size of the region, it is critical to explain the best representative model.

3.3. Validation of the Models

The AUC of empirical and binormal ROC was used to validate the generated GPMs
utilising the collected GPS points. The resulting AUCs under the respective ROC (em-
pirical and binormal) are 0.81 and 0.805 for AND; 0.81 and 0.80 for OR; 0.801 and 0.798
for GAMMA0.75; 0.785 and 0.79 for GAMMA0.8; 0.77 and 0.785 for GAMMA0.85; and
0.792 and 0.796 for GAMMA0.9 (see Figure 5a–f). Based on both ROC curves, AND ap-
peared as the best model, followed by OR, GAMMA0.75, GAMMA0.9, GAMMA0.8, and
GAMMA0.85. However, as per the binormal ROC curve, which has widely been applied
for natural hazards, AND appeared as best model (AUCb: 0.805), followed by OR (AUCb:
0.8), GAMMA0.75 (AUCb: 0.798), GAMMA0.9 (AUCb: 0.796), GAMMA0.8 (AUCb: 0.79),
and GAMMA0.85 (AUCb: 0.785). Although all models achieved AUC values near 0.8, they
can be considered as satisfactory results. However, many researchers obtained AUC values
of more than 0.4. Due to absence of other climatic, land use, hydrologic, and geological data,
the generated hybrid models achieved little bit lower accuracy. In addition, the application
advanced machine learning algorithms can also produce highly accurate models. However,
in order to improve these models further, the LR has been recommended for utilization. As
a result, the absence of other parameters can be overlooked.

1 

 

 

 

 

Figure 5. Validation of the hybrid models using empirical and binormal ROC curves, (a) AND, (b) OR, (c) GAMMA0.75,
(d) GAMMA0.8, (e) GAMMA0.85, and (f) GAMMA0.9.

3.4. Sensitivity Analysis

The development of advanced hybrid algorithms for mapping groundwater potential
zones can only show the probable region enclosing the future occurrence of a significant
and a quantity of groundwater supplies that can be commercially used based on the com-
plex mathematical relationship between historical groundwater trends and their triggering
variables. Neither of these models, however, mentions the role of any variables in the
declining trend of groundwater potential in an area. The question arises as to how manage-
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ment plans can be planned and implemented if the effect of such factors on the occurrence
of landslides cannot be determined.

How will management plans be developed, and how will management plans be imple-
mented if the effect of such conditions on groundwater potentiality cannot be determined?
Identifying variables related to groundwater potential zones may aid in reducing the fre-
quency of groundwater decline in a given region. Therefore, it is crucial to figure out which
variables have the most influence. In order to estimate the relevance of each conditioning
variable in the RF modelling process, the mean decrease in Gini (MDG) and mean decrease
in accuracy (MDA) have been employed [111]. The findings (based on MDG and MDA)
show that all factors were included in the GWP modelling, but the most important ones
were convergence index, topographic features, flow accumulation, elevation, LS factors,
flow direction, profile curvature, and slope (Figure 6). TPI, aspect, and TRI were the least
important determinants in establishing the relative significance of the 14 variables included
in the hybrid models (Figure 6).

Figure 6. Sensitivity analysis for the best model (AND model) using MDA and MDG.

3.5. Development of LR-Based Hybrid Model and Its Validation

This study utilizes six hybrid algorithms for mapping groundwater potential zones.
Furthermore, a sensitivity model based on RF was used to describe the sensitive parameters
of these potential groundwater models. All of these models performed very well for
predicting potential groundwater zones, according to the results of the ROC’s AUC values,
using AND, OR, GAMMA0.75, GAMMA0.8, GAMMA0.85, and GAMMA0.9 models.
Nonetheless, this study aimed to improve the precision and reliability of groundwater
potential mapping by integrating statistical models such as LR models with previously
created potential groundwater zone models. We used all the nine groundwater potential
models that had already been developed by using the machine learning algorithms. After
integrating six groundwater potential maps with mathematical models, the error for over
and underestimation of all models can be eliminated. The LR model’s characteristics are
as follows: The Chi-square significance was greater than 0.05 in the Hosmer–Lemeshow
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test, indicating that the equation’s fitting goodness could be calculated. The independent
variables could explain the dependent factor according to the Cox and Snell (R2) and
Nagelkerke (R2) values (Cox and Snell R2: 0.171; Nagelkerke R2: 0.233). The following is
how the LR was calculated (Equation (12)).

1.62 + (OR × 0.23) + (GAMMA0.8 × 0.053) + (GAMMA0.85 × 0.004) +
(GAMMA0.9 × 0.061) + (GAMMA0.75 × 0.0012) + (AND × 0.31)

(12)

The performance of the LR-based novel hybrid ensemble models is shown in Figure 7.
The groundwater output was divided into five subclasses using the natural break algorithm
(from very high to very low). The very high groundwater potential zone was estimated
by the novel hybrid model to be 1635.92 km2, followed by high (3235.88 km2), moderate
(5233.84 km2), low (6001.85 km2), and very low (5165.05 km2).

Figure 7. Groundwater potentiality model using LR-based novel hybrid model.

Then, by using the ROC curve, we validated the novel hybrid groundwater poten-
tial model by using the testing dataset. The new model’s AUC values (AUCe: 0.866,
AUCb: 0.892) indicate that it is extremely accurate and informative in estimating potential
groundwater zones (Figure 8). It also outperformed the six hybrid models, implying that
combining an advanced hybrid model with a statistical model would improve model
accuracy even more.
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Figure 8. Validation of the LR-based novel hybrid model using empirical and binormal ROC curve.

4. Discussion

In areas with limited surface water, particularly in dry and semi-arid climates, ground-
water supplies are critical. When these regions’ industrial and agricultural water needs are
high, aquifers can be depleted at rates that surpass recharge rates, placing them in danger
of irreversible harm. As a result, precise estimates of the spatial dimensions of groundwater
in a watershed are critical. Assessments such as these can help with water management
planning and usage strategies. By understanding the geomorphological and hydrological
conditioning variables connected with subsurface storage, groundwater mapping may
be enhanced and made more cost-effective. In order map groundwater potential, several
approaches have been devised, each with its own set of benefits and drawbacks.

To map groundwater potential, this study created a unique state-of-the-art method
that combined statistical, machine-learning, and feature selection approaches with RS and
GIS tools. To assist scientific judgments for issues with a variety of management criteria,
feature selection techniques, statistical models, and machine-learning algorithms (such
as information gain ratio, fuzzy logic, and LR, respectively) have been utilised. The very
high groundwater potential zone, according to the results of six advanced hybrid models
and one novel hybrid model, encompasses an area of 1635–2149 km2. The groundwater
potential models were evaluated by using an empirical and binormal ROC curve. AND
(AUCe = 0.81; AUCb: 0.804) was the best representation model for groundwater poten-
tiality modelling based on both ROC curves, followed by OR, GAMMA0.75, GAMMA0.9,
GAMMA0.8, and GAMMA0.85. On the other hand, the novel hybrid model achieved
higher accuracy (AUCe: 0.866; AUCb: 0.892). This model outperformed the six hybrid
models. The integration of all hybrid models through the LR model has eliminated the
mis-classified area. Therefore, the novel hybrid model performed better and can be used
for other areas, although higher accuracy can be achieved if all kind parameters have
been integrated. According to our findings, GW managers in the study area region should
concentrate on expanding GW exploitation and agricultural operations in the area close to
rivers. Since they receive more natural recharge, these locations have a larger GW potential.

Convergence index, topographic feature, flow accumulation, altitude, LS, and slope
degree all contributed significantly to the GW potential investigation. Convergence affects
the flow speed on the slopes, which in turn affects erosion and sedimentation, which in turn
affects the infiltration rate and GW potential indirectly. TWI is a hydrological conditioning
variable that relates to the likelihood of water accumulation in different areas of the basin
and, as a result, influences the basin’s GW potential. The fourth most critical factor in
modelling was altitude. Higher elevations have steeper slopes and increased flow velocity,
resulting in higher drainage density, whereas lower altitudes have the opposite scenario.
Regarding the large topographical variance in the studied region (947 to 2992 m), this
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aspect contributed significantly to the GW potential in our study. SPI, LS, and slope degree,
among other significant conditioning variables (CF), have an influence on flow speed
and infiltration rate and are, thus, listed as top contributors in this study. In estimating
GW potential, Rahmati et al. [112] demonstrated the relevance of the two categorical
conditioning factors of land use and lithology. Furthermore, they stated that TWI was the
least important CF, which contradicts the findings of this study. According to Mousavi
et al. [113], the top contributing CFs are TWI, height, distance from rivers, river density,
distance from faults, and fault density. Yousefi et al. [114] presented a work that stressed
the relevance of TWI and altitude variables in groundwater potential mapping, which is
consistent with the findings of our study. Despite the fact that the two critical CFs connected
to the fault layer were not included in this investigation, the algorithms produced high-
accuracy GPMs. This demonstrates that substituting simpler calculation-process factors
such as DEM-derived CFs for the key component in GW modelling may nevertheless
achieve excellent accuracy.

LR-based novel hybrid model outperformed fuzzy-based hybrid models when it came
to groundwater potentiality models. Based on these findings, the paper recommends
utilising hybrid models and ensemble models for multi-parametric spatial prediction. To
the authors’ knowledge, although there has been no previous study that used these models
in this study area, it should be noted that the LR-based hybrid model has demonstrated
good performance in other environmental fields such as livelihood risk prediction [115,116],
groundwater salinity [117], stream-flow prediction [118], piping erosion [119], and flash-
flood hazard assessment [120,121]. However, it can be noted that state-of-the-art machine
learning models outperform older approaches in most cases [121]. Ensemble models,
in particular, frequently outperformed single models [122]. For groundwater potential
mapping, Mosavi et al. [123] assessed four ensemble models, i.e., Boosted generalized
additive model (GamBoost), adaptive Boosting classification trees (AdaBoost), Bagged
classification and regression trees (Bagged CART), and random forest (RF), and found that
the Bagging models (i.e., RF and Bagged CART) had a higher performance than the Boosting
models (i.e., AdaBoost and GamBoost). This indicates that ensemble models outperformed
other traditional ensemble models. Therefore, based on the previous literature, it can
be stated that the generated hybrid models could be reliable and used for management
strategies. This study also suggests that a few more hydrogeological and meteorological
factors should be included in the models in order to improve the accuracy of the results.
The study area is known for its water scarcity due to damming across the river and other
human issues. Such information might be useful in developing long-term water harvesting
and agricultural plans. Water bodies have been recognised as a good conditioning factor for
groundwater potentiality; therefore, rapid reclamation of water sources should be avoided
at all costs. According to this research, land cover and canopy density are also significant
conditioning factors. Forest loss and devastation, on the other hand, are irrefutable realities.
As a result, maintaining forest cover will help groundwater recharge. A scientific study of
groundwater at distinct prospective zones is required in order to make a more accurate
suggestion on the amount of water that may be collected from each potential zone.

The results obtained are exclusive to this study, and they may differ in other investiga-
tions due to the fact that the input data for modelling vary from one location to another.
As a result, possible models must be considered, with the best predictive capability-based
model being chosen to aid in the identification of high groundwater potential regions in
order to alleviate drought. Moreover, the novel technique can be useful in areas where
there is a shortage of precise and high-resolution data, such as land use, lithology, soil,
hydrogeology, and fault-related variables such as fault density and distance from faults.

5. Conclusions

The goal of this research study was to introduce a novel approach for determining
GW potential by using a limited amount of high-resolution input data. For GPM, the
suggested system used a weighted six fuzzy operator’s model with logistic regression to
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implement feature selection. The novel hybrid model outperformed the six fuzzy-based
hybrid models and provided trustworthy GPMs according to the results. The novel hybrid
model’s higher accuracy might be due to its capacity to provide more broad outputs and
deal with overfitting. All of the models projected the same regions with extremely high
GW potential. The reliability of the technique is demonstrated by the GPMs’ consistency.
The major goal of this work was to establish precise GPMs in the study region using
solely DEM-derived variables. The relevance of the novel technique was demonstrated
in the absence of other major CFs owing to the algorithms’ high AUC values. The results
indicated that convergence, TWI, altitude, SPI, and LS all have a significant role in the
algorithms’ performance. As a result, in the absence of other key CFs including land use,
lithology, soil, and fault-related CFs, the novel hybrid algorithms successfully extracted
connections between DEM-derived variables and GW potential. Since we only need a few
numbers of datasets covering DEM and groundwater locations, the suggested methodology
may be utilised for large-scale GW potential mapping at the nation and continent levels.
It should be noted that the established technique is suggested for assessing GW potential
through topographically driven groundwater locations. This technique may provide water
sector managers and GW experts with the knowledge they need to establish appropriate
water resource planning. Scholars may focus future studies on the DEM’s spatial resolution
and other DEM-derived variables in order to enhance the technique and, as a result, the
modelling outcomes.

The absence of information on groundwater productivity features such as as transmis-
sivity and specific capacity further hampered our investigation. In future research, when
these data are available, it is suggested that the relationship between these parameters be
explored. Despite the drawbacks, the groundwater potential maps projected in this work
can assist water resource managers and policymakers in the disciplines of watershed and
aquifer management in preserving the best possible use of this vital freshwater resource.

The superior models developed in this work might be useful with respect to water
resource managers in identifying susceptible areas and developing and enforcing appropri-
ate groundwater management regulations. Hybrid machine learning approaches and deep
learning are strongly recommended for future study in order to discover an ideal model
with a greater level of adaptivity, accuracy, and generalisation ability.
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List of Acronyms

GPM: Groundwater potential model
LR: Logistic regression
DEM: Digital elevation model
ROC: Receiver operating characteristic
ROCe: Empirical receiver operating characteristic
ROCb: Binormal receiver operating characteristic
CGWB: Central Groundwater Board
BCM: Billion cubic metres
GIS: Geographic information system
NDVI: Normalized Difference Vegetation Index
TWI: Topographic wetness index
TRI: Terrain Ruggedness Index
SPI: Stream power index
EBF: Evidential belief function
SI: Statistical index
WoE: Weight of evidence
ANN: Artificial Neural network
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