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Abstract: In arid and semi-arid regions, it is essential to monitor the spatiotemporal variability and
dynamics of vegetation. Among other provinces of Pakistan, Punjab has produced a significant
number of crops. Recently, Punjab, Pakistan, has been described as a global hotspot for extremes
of climate change. In this study, the soil adjusted vegetation index (SAVI), normalized vegetation
difference index (NDVI), and enhanced vegetation index (EVI) were comprehensively evaluated
to monitor vegetation change in Punjab, Pakistan. The time-series MODIS (Moderate Resolution
Imaging Spectroradiometer) data of different periods were used. The mean annual variability of
the above vegetation indices (VIs) from 2000 to 2019 was evaluated and analyzed. For each type of
vegetation, two phenological metrics (i.e., for the start of the season and end of the season) were
calculated and compared. The spatio-temporal image analysis of the mean annual vegetation indices
revealed similar patterns and varying vegetation conditions. In the forests and vegetation areas
with sparse vegetation, the EVI showed high uncertainty. The phenological metrics of all vegetation
indices were consistent for most types of vegetation. However, the NDVI result had the greatest
variance between the start and end of season. The lowest annual VI variability was mainly observed
in the southern part of the study area (less than 10% of the study area) based on the statistical analysis
of spatial variability. The mean annual spatial variability of NDVI was <20%, SAVI was 30%, and
EVI ranged between 10–20%. More than 40% of the variability was observed in the NDVI and SAVI
vegetation indices.

Keywords: vegetation dynamics; vegetation indices; arid and semi-arid; time-series; crop phenology

1. Introduction

Semi-arid regions cover about 15% of the Earth’s land surface and the spatial and
temporal patterns of rainfall in these regions are very variable, which causes drastic vari-
ability in the spatiotemporal distribution, production, and development of vegetation [1,2].
Over recent decades, many semi-arid and dryland habitats have faced greater pressures
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from human-induced activities and climate change [3–5]. To better understand climatic
change and anthropogenic impacts on dryland and semi-arid ecosystems, information on
the vegetation’s spatiotemporal variability is the key source. Satellite-based knowledge is
an important tool in tracking vegetation variability and dynamics, with the potential for
broad spatial coverage and regular explanations [6,7]. The dataset of the spectral vegetation
index is particularly well-related to the leaf area index (LAI), the abundance of chlorophyll,
the absorption of gross-primary-production (GPP), and photosynthetically active radiation
(PAR) [8–10]. To monitor semi-arid and dryland vegetation activity and spot changes in
growth and phenology of vegetation [11–13], vegetation indices time-series have often
been used [14–17].

The polar-orbiting MODIS (Moderate Resolution Imaging Spectroradiometer) sensor
allows for the monitoring and measurement of vegetation and environmental indices.
MODIS-derived data have a superior spatial and radiometric resolution than that of the Ad-
vanced Very High-Resolution Radiometer (AVHRR) sensor and thus provides an enhanced
radiometric, spatial, and spectral representation of surface vegetation conditions [18,19].
Among the generally used datasets in the monitoring of vegetation dynamics, the normal-
ized vegetation difference index (NDVI) time-series is noteworthy. Nevertheless, the NDVI
has some restrictions relating to soil reflectance, affecting the index and contributing to
different index values for various conditions of soil and moisture being observed for similar
biophysical properties of the canopy [20]. A variable of soil adjustment ‘L’ was proposed to
interpret the nonlinear, first-order, variance in radiative transmission through a canopy in
the spectrum’s red and NIR (near-infrared) zones. Through this, another index (i.e., SAVI,
soil adjusted vegetation index) was obtained [21]. Subsequently, other soil-adjusted indices
(e.g., the OSAVI, optimized soil adjusted vegetation index and the MSAVI, modified soil
adjusted vegetation index) were established to optimize soil effects [22,23].

In addition, to optimize the vegetation signal, the enhanced vegetation index (EVI)
with enhanced sensitivity was developed in high-biomass areas to provide better vegetation
monitoring by decoupling the background signal of the canopy and the atmospheric
effects [19]. The EVI has been shown to be highly linear and closely correlated with phase
and amplitude measurements of the seasonal eddy flux tower photosynthesis, surrounding
a wider range of leaf area index (LAI) retrievals [24]. Vegetation indices (VIs) assessment
plays a vital role in assessing the growth of vegetation in biomass diversity. EVI and NDVI
obtained from MODIS surface reflectance, modified for the NBAR (nadir bidirectional
reflectance distribution function), had better accuracy compared to the leaf area index
when assessing the start of the season in large coniferous leaf forests [25,26]. The EVI for
monitoring the phenology of rice paddy in Asia during the monsoon was a successful
vegetation index compared to in situ data [27]. Among EVI, green-red-vegetation-index
(GRVI), and NDVI, it was observed that the best vegetation index was to extract seasonal
variations in the GRVI, which was influenced by variations in leaf colors [28–30]. To track
vegetation phenology and operation across a range of habitats, 2-band enhanced vegetation
index (EVI2) was observed to be a comparatively improved index than the NDVI because
of its insensitivity to context reflection [31]. A new generalized differential vegetation index
(GDVI) was established [18]. In vegetation communities such as forest, cropland, savanna,
shrubland, and grassland, the ability of NDVI time-series has been verified for the varied
semi-arid and arid climates to obtain seasonal and inter-annual variability [15]. SAVI was
also used for evaluating vegetation development in the semi-arid region of Mexico, which
is closely related to NDVI [32,33].

The NDVI and EVI derived from MODIS exhibited a highly linear correlation with
gross primary product (GPP) compared to in situ flux quantities in the Sahel’s semi-arid
atmosphere [17,34,35]. Despite these applications, it was suggested that the detection
findings of VIs in semi-arid and arid lands should be taken carefully because of the
high uncertainty of VIs in thinly vegetative areas, complex vegetation composition, and
landscape heterogeneity structure [36,37]. Herein, the performance of vegetation indices
SAVI, NDVI, and EVI are assessed for vegetation variability and dynamics in the semi-arid
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and arid environment of the province of Punjab, Pakistan. We derived NDVI, EVI, and
SAVI and related them to their spatiotemporal variability throughout the research area,
along with transects because phenological transitions in summer and winter are important
factors for changeable crop development and plant growth in spring and autumn [25]. In
the present study, two phenological metrics (i.e., for the start of the season and end of
the season) were calculated from the MODIS-derived time-series vegetation indices and
compared for each vegetation type. Furthermore, the appropriateness of vegetation indices
for monitoring the complex vegetation cover in the province of Punjab was evaluated.

2. Materials and Methods
2.1. Study Area

This study was conducted in Punjab Province, Pakistan. It is situated at 27◦42′ N to
34◦02′ N latitudes and 69◦81′ E to 75◦23′ E longitudes (Figure 1). According to the area,
Punjab is the second largest province in Pakistan, and according to the population, Punjab
is ranked number one. Punjab produces wheat, rice, and many other seasonal crops among
other provinces. In Punjab, some cities are densely populated. Punjab has 20.63 million
hectares of geographical area, almost 12.51 million hectares of cultivated area, and current
fallow areas are reported as 2.06 million hectares [38]. Punjab occupies an area of around
205,344 km2, with altitudes ranging from 300 m to 2000 m. The north–south length of
Punjab Province is long compared to its east to west width. Climate conditions differ
from one area to another, depending on the altitude. Punjab is classified into three distinct
agroecological zones (i.e., the rain-fed agricultural region of the Potohar Plateau in the
north, consisting of 10% of the total agricultural area of the province) (Figure 2) [39]. The
limited areas of agricultural production are arid and semi-arid in the province’s southern
and central regions, and the Indus Basin’s largest irrigated crop-growing area [40].
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Figure 2. Spatiotemporal distribution of mean annual (a) rainfall and (b) temperature in the study area from 2000 to 2019.

2.2. Data Acquisition

Table 1 summarizes the datasets used in this study including MODIS time-series
data. The three vegetation indices (VIs) used in this study included NDVI, EVI, and SAVI,
and all images were extracted from MOD13Q1. All data were acquired from the years
2000 to 2019, which laid the basis for analyzing MODIS time-series data. In particular, a
combined time-series of TERRA 16-day composite vegetation indexes (MODIS products
MOD13Q1 time-series) at 250 m spatial resolution satellite data was downloaded from the
Earth-data (https://lpdaacsvc.cr.usgs.gov/appeears/) (accessed on 20 May 2020) using
the Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS) tool to
extract data [41,42]. The study area’s annual rainfall and mean temperature data from 2000
to 2019 were acquired from the Pakistan Meteorological Department (PMD) to determine
the mean annual rainfall and mean monthly temperature (http://www.pmd.gov.pk/)
(accessed on 12 August 2020).

Table 1. Datasets used in the present research study.

S. No Data Spatial
Resolution Time Period Source

01 MOD13Q1 250 2000–2019
https://lpdaacsvc.cr.usgs.gov/
appeears/ (accessed on 20 May

2020)

02 MCD12Q1 500 2019
https://lpdaacsvc.cr.usgs.gov/
appeears/ (accessed on 20 May

2020)

03 Rainfall data 2000–2019 http://www.pmd.gov.pk/
(accessed on 12 August 2020)

04 Temperature
data 2000–2019 http://www.pmd.gov.pk/

(accessed on 12 August 2020)

The ArcMap v.10.6 software was used to map and analyze vegetation variability, and
ERDAS Imagine 2015 was used for image classification in this study. The shapefile of the
respective areas was created, and the area-of-interest (AOI) was extracted by masking using
ArcMap v.10.6. image processing tasks and NDVI analysis were accomplished by using
ENVI 5.4 [43,44]. The MODIS product (MCD12Q1) of 500 m resolution was used to illustrate

https://lpdaacsvc.cr.usgs.gov/appeears/
http://www.pmd.gov.pk/
https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
http://www.pmd.gov.pk/
http://www.pmd.gov.pk/
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the land use and land cover areas. The legend of the International Geosphere-Biosphere
Program (IGBP) was also used in the present study. We downloaded the MCD12Q1-2019
from NASA-lpdaac [45].

2.3. Analyzing Vegetation Indices
2.3.1. Vegetation Indices

Three vegetation indices (NDVI, EVI, and SAVI) are widely used to identify vegetation
variability, based on the green, blue, red, and NIR bands of MODIS (Table 2). These
VIs were used to identify mean monthly (from January to December) and mean annual
vegetation variability from 2000 to 2019.

Table 2. Vegetation indices used in the study. The G and L values are 2.5 and 0.5, respectively.

Vegetation Indices Data Source Formula References

NDVI https://lpdaacsvc.cr.usgs.gov/appeears/
(accessed on 20 May 2020) NDVI = (NIR − RED)

(NIR + RED)
[21,46,47]

SAVI https://lpdaacsvc.cr.usgs.gov/appeears/
(accessed on 20 May 2020) SAVI = (NIR − RED)

(NIR + RED + L) × (1 + L) [48,49]

EVI https://lpdaacsvc.cr.usgs.gov/appeears/
(accessed on 20 May 2020)

EVI =
G× (NIR − RED)

(NIR + 6 × RED − 7.5 × BLUE + 1)
[19]

2.3.2. Mean Monthly and Annual VIs and Their Variability

The mean monthly VI data based on the 2000 to 2019 time series was used to calculate
the mean monthly VIs [50]. Equation (1) was used to calculate every pixel of 20 years of
arithmetic mean VIm, with n and VIm represent the number of years and the monthly VIs
value, respectively.

VIm =
1
n

n

∑
1
(VIm) (1)

The mean annual calculations of the VIs were used to calculate the mean annual VI
(VIa). To adequately represent vegetation growth, the VIs for the budding season (January
to December) were used to calculate the annual mean of VIs and their variation. The
deviation (DVIi) from the years 2000 to 2019, mean annual VIs at a given spatial location
for a certain year i was calculated using the following equation.

DVIi = VIi −VIa (2)

Furthermore, the relative annual VI deviation (rDVIi) was estimated using the follow-
ing equation, which defines the deviation as a percentage of the mean annual VIs:

rDVIi =
DVIi × 100

VIa
(3)

The annual mean of VIs variability (VVI) was estimated with the relative annual VI
deviation (rDVIi), with n being the number of years using the following equation.

VVI =
1
n

n

∑
1
|rDVIi| (4)

2.4. Detection of Phenological Metrics

The TIMESAT software is a popular tool for the study of time-series data [51]. Given
the variability of the VIs time-series, TIMESAT’s curve approach has the best suitable noise
reduction efficiency and signal integrity maintenance. Reliable results were obtained using
TIMESAT for most vegetation forms identified by the three VIs [37,52]. The TIMESAT
software was used to smooth out the time-series of VIs and calculate the phenological

https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
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metrics for the study area. Other functions of the local Gaussian type were used for data at
intervals around the time-series minimum and maximum. Two phenological metrics were
analyzed and mapped for all VIs time-series, namely, the start of the season and the end of
the season. Table 3 lists the identified phenological metrics and their descriptions [51].

Table 3. Description of phenological metrics.

Metric Definition

Start of the season Time for which the left edge has increased to 30% of the
seasonal amplitude measured from the left minimum level.

End of the season Time for which the right edge has decreased to 30% of the
seasonal amplitude measured from the right minimum level.

3. Results
3.1. Vegetation Indices
3.1.1. Mean Monthly VIs

The mean monthly NDVI for the period from 2000 to 2019 and the months from
January to December are shown in Figure 3. Mean monthly VIs indicate a growing cycle
throughout the year of various vegetation types, and two growing seasons can be seen,
winter (Rabi) and summer (Kharif). The first part (Rabi) shows that vegetation growth starts
in October and November. The second part (Kharif) indicates another vegetation growth
season commencing in late April to the first week of May in the study area. From late
December to the first week of January, the vegetation in the entire area tends to be senescent.
Low NDVI values were also observed from April to July and October to November.
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Seasonal mean monthly dynamics of vegetation indices demonstrate seasonal growth
of the vegetation, representing the trend of development for different types of vegetation.
The agricultural area showed high vegetation activity during both seasons (Rabi and



Water 2021, 13, 2550 7 of 15

Kharif), while low vegetation from April to July and October to November in many parts
of the study area was observed.

3.1.2. Mean Annual VIs

The mean annual NDVI, EVI, and SAVI from 2000 to 2019 indicated identical spatial
trends for different landscape situations described above, but differed in spatial vigor
(Figure 4). All VIs represented a regional trend of strong VIs for the northwest and southeast
of the study area and small values for the industrial and suburban areas. Maximum annual
VI trend was observed in the eastern, central, and southeastern parts of the study area.
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Figure 4. Spatial annual average distribution NDVI, EVI, and SAVI were obtained from 16-day MODIS data from 2000 to
2019 in Punjab.

The spatial variability of annual mean VIs was consistent with regional climate condi-
tions in northern and southern Punjab (Figure 4). With greater rainfall in northern parts, an
increasing trend in vegetation (trees, grasslands, and farm ground) forms longer growing
seasons. Figure 5 displays the mean annual variation in the VIs for the period from 2000 to
2019. It shows spatial variations of annual mean VIs from one year to the next, which can
be used for monitoring purposes.

In comparison, in southern Punjab, relatively small growing seasons are starting in
the desert area. In this region, vegetation growth is limited throughout the year by low
precipitation. The NDVI image displays higher values in most instances than the images
in the EVI and SAVI time series. In the northern part of Punjab, dense coniferous forests
are found in high mountains with large annual precipitation. Grasslands have spread
almost throughout the entire Punjab; NDVI displayed higher mean annual values than EVI
and SAVI time-series images. To highlight the spatial variations in distinctive eco-regions
between the NDVI, EVI, and SAVI, three large transects were used as samples within the
mean VIs time-series images of the year (Figure 4).

All transects start with sparse vegetation and cross heavily vegetated areas to cover a
wide variety of VI values, except transect c. All these transects include forests, croplands,
grasslands, savanna, and barren land. Similar patterns can be found between the VI profiles
(Figure 5). Nevertheless, the NDVI profiles observed wider data ranges than the EVI and
SAVI profiles.
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Figure 5. Annual mean VI profiles for the period 2000 to 2019. (a) Gradient eco-region that passes
several oases; (b) gradient elevation; (c) variation along latitude 34◦ N. B, C, F, and G stand for
barrenland, cropland, forest, and grassland, respectively. See Figure 4 for the locations of the three
transects.

Transect a starts from the northwestern forest area near Attock and ends in the east–
southeast cropland areas and is about 400 miles long. Mostly barren land, cropland, and
grassland are found in this transect region. The transect extends to cropland, sparse
grassland, and crosses the barren area in the district of Chakwal, showing very low VI
values. Transect b starts from sparse grassland and cropland areas in the central Punjab,
crosses a mix of forest, sparse vegetation, and agricultural area in central Punjab, and ends
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in the cropland areas. NDVI and SAVI display high VI values compared to EVI values in
this area.

Transect c follows the north to south latitude line from 34◦ N to 29◦ N and is about
800 km long. A small part of grassland and highly evergreen needle leaf forest characterize
the northern part of the transect, where SAVI and NDVI showed high variation, whereas
EVI had little variation. The VI values were higher between 33◦ N and 34◦ N and showed
a rather smooth behavior. This area was also categorized as homogeneous, mainly forest,
cropland, and grassland cover. The higher values of VIs were found in northwestern
Punjab between 33◦ N and 34◦ N latitudes, parallel to the agricultural areas, forests, and
steppe along the mountains. The VIs values were lower in the zone between 33◦ N and
32◦ N due to barren land and shrublands. Barren land was mostly observed on the western
side of this zone. Barren terrain and cropland were observed between 31◦ N and 32◦ N
latitudes. Annual and seasonal variability were found in transect c. The VIs of the grassland
located in the district of Chakwal was meaningfully less than that of the barren land and
grassland between 29◦ N and 30◦ N latitudes due to the highly arid climate and very sparse
vegetation.

The EVI map showed maximum variability (Table 4) by equating the three variability
maps quantitatively. The NDVI time-series thus captured greater inter-annual variation for
the entire Punjab Province from 2000 to 2019 compared to EVI and SAVI. Given the high
vegetation in the northern area near the river, the high variability observed in this area
only from EVI data could be due to the variations in soil background properties.

Table 4. Mean annual VI variability in percentage for 2000 to 2019.

Percentage NDVI EVI SAVI

0–10% 7.03 3.82 6.95
10–20% 18.53 30.23 17.85
20–30% 13.54 28.23 15.02
30–40% 19.29 23.44 17.65
>40% 41.61 14.28 42.53

3.2. Phenological Metrics Detection

The phenological metrics of the start of the season and the end of the season over the
Punjab Province were mapped from 2000 to 2019 using the NDVI, EVI, and SAVI time-
series MODIS data. Their standard deviation (SD) and mean for each type of vegetation
from the three VI datasets is shown in Table 5. The normal standard deviation at the start of
the season ranged from 12.3 days to 33.4 days. The default end-of-season deviation ranged
from 14.4 days to 40.7 days. Except for forest, the NDVI end of season exhibited a strong
deviation from EVI and SAVI. Except for savanna and shrublands, the start of the season
from the NDVI, MODIS time series showed greater deviation than EVI and SAVI.

Table 5. Phenological metrics detected by VIs over the study area for 2000–2019.

S.
No

Vegetation
Classes

SOSNDVI EOSNDVI SOSEVI EOSEVI SOSSAVI EOSSAVI

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1 Grassland 120.3 33.4 116.9 28.3 118.4 29.5 293.8 28.7 313.4 27.8 290.2 40.7

2 Evergreen
Broadleaf Forests 115.9 27.3 113.5 26.9 116.9 27.8 29.5 26.8 306.2 26.9 288.3 33.5

3 Evergreen
Needleleaf Forests 116.5 28.3 111.2 23.5 111.9 22.3 286.4 23.4 308.9 27.7 280.3 27.2

4 Shrublands 140.3 26.8 133.8 22.9 135.8 23.5 310.3 27.9 330.5 27.8 307.5 34.8
5 Cropland 138.3 22.3 133.3 23.6 132.6 21.5 308.7 19.3 314.5 18.2 302.3 20.3
6 Savanna 123.3 33.2 121.5 18.3 121.5 17.4 302.3 15.6 309.5 15.2 299.5 39.5
7 Mixed Forests 126.3 17.9 121.3 14.3 118.3 12.3 299.7 16.9 315.3 14.4 286.5 26.2
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Figure 6 illustrates the two-phonology metrics for different vegetation types. Despite
the peak change, the season start and season-end distributions of the histograms from the
three VIs agreed. Comprehensible bimodal dispersals are seen for the grassland season
start, cropland season start, and season-end cropland. The bimodal cropland starts from the
season and distribution at the end of the season, suggesting diverse phenological trends for
dissimilar crop types because of the bare soil’s effect on the vegetation index [53]. Different
density grasslands and vegetation cover may exhibit varying green-up behaviors, causing
the bimodal start of season distribution. Discrepancies for grassland start of the season,
evergreen leaf forest end of the season, and grassland end of the season were observed
from three VIs. Start o f seasonNDVI had a high peak and a secondary peak at MOD13Q1
for grassland, whereas the start o f seasonNDVI had two parallel peaks. Similar disagree-
ments were noted at the grassland end of the season. End o f seasonEVI had bimodal
distribution for the evergreen needleaf forest as associated with the unimodal dispersal
of End o f seasonNDVI and end o f seasonEVI . The values spread near the histogram’s tail
indicate over estimations of evergreen needle leaf forest, mixed forest, savanna, grassland,
and shrubland at the end o f seasonNDVI .
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4. Discussion

This approach is used to map and identify vegetation variability distributions.

4.1. VI Variability

Various factors including clouds and shadow-polluted pixels, time-based interpolation,
smoothing, spatial filtering, cropping assumptions, and mixed pixels can influence the
VI values. NDVI and SAVI are more prone to atmospheric effects than EVI, induced by
cloud presence. The impurity of the peaks of the remaining clouds makes a big difference
in NDVI values. Some limitations in the MODIS cloud mask exist even after using it
to decrease cloud properties on per-pixel surface reflectance [54,55]. Vegetation shifts
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are misidentified with EVI, degraded by the presence of clouds and aerosols [56]. The
reliability of quantified vegetation variations mainly depends on how image classification
incorporates atmospheric and cloud transmission information. Affected pixels may be
treated by additional masking [56], which targets the resulting inconsistencies through
quantifying vegetation variability using the NDVI time series. High VI variation (>40%)
can be seen in areas near water bodies, and low vegetation occurs near built-up areas
(Figure 4) [54,55]. VI variation (10–30%) occurs in the vicinity of the river, and the majority
of cropland areas occur in the study area. This variation may be due to a combination
of minor crop fields. In sparsely vegetated areas, in particular, EVI has more coverage
than SAVI and NDVI. The soil composition of these regions largely consists of dry sand.
NDVI has been described as vulnerable to the spectral effect of soil moisture and texture
in the spaces between desert grassland and shrubland [57,58]. The great annual diversity
observed from EVI may be correlated with a difference in soil history at low levels of VIs.

4.2. Detection of Phenology Metrics

Using TIMESAT’s curve-fitting approach with an equal seasonal amplitude thresh-
old (40%), different VI dynamic phenological metrics were detected for Punjab Province
(Figure 6). Despite the indecision of the VIs time-series, TIMESAT has obtained good re-
sults from the three VIs for most vegetation types. The results of the three VIs in this study
follow that of previous studies [12,29], demonstrating their efficiency for phenological
metrics recognition in arid and semi-arid environments. There are, however, still some
inconsistencies in the findings of phenology detection. In our analysis, the variability at
the end of the season observed from MODIS VIs was greater than that at the start of the
season (Table 4), consistent with earlier studies [59,60].

The greatest variance in phenological metrics was observed from the NDVI time series.
The overestimation of the end of the season exhibited high variability rates because of
its vulnerability to atmospheric conditions and soil composition. The difference between
histogram dispersals of phenological metrics of estimated VIs may be due to their varying
sensitivities to soil context variations. Likewise, in the drylands of Arizona, USA, the
spatiotemporal variability of soil surface phenology removed from NDVI was higher than
EVI [61]. The difference in highest greenness between NDVI and EVI was related to the
physiological features of the vegetation types due to their different sensitivities [36]. More
comprehensive information is required for the improved assessment of the suitability of VIs
in a dryland environment for phenological detection. Our understanding of ecosystem pro-
cesses over the arid landscape would be useful for evaluating satellite-derived phenological
metrics with measurements of flux tower footprint CO2 or in situ VI extents [62,63].

In the present research, the limitation of data acquisition throughout situ precludes
further review. Furthermore, in our study, we compared only three widely used VIs.
Furthermore, the utility of other vegetation indices such as the optimized soil adjusted
vegetation index (OSAVI), EVI2, and MSAVI, and their combined use can be of significance
for complex vegetation cover investigations in the arid and semi-arid regions.

One of the limitations of the approach taken in this study is that it is rigid (i.e., it
assumes that the time series oscillates at a regular interval over the year). Additionally,
remote sensing vegetation indices were more closely associated with the formation of the
canopy structure in the spring, and persistence after photosynthesis ceased in autumn.
Additionally, low fractional vegetation cover in the south of the study area was a primary
limitation so site-specific circumstances such as the considerable spatial heterogeneity of
pixels generated by the sparse vegetation were a source of uncertainty. Sites with short
growth seasons and a scarcity of high-quality observations would make it even more
difficult to extract seasonal patterns. Moreover, the spatial patterns of the VI-derived
phenology agreed well with the timing of the start, end, and length of season, but uncer-
tainties appeared in areas with limited seasonality expressed in the satellite signal and
systematic biases.
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5. Conclusions

An approach was implemented to identify vegetation variability and its dynamics by
comprehensively using three vegetation indices (EVI, SAVI, and NDVI) estimated through
MODIS time-series data in the Punjab Province of Pakistan. The varying associations of
NDVI, EVI, and SAVI were estimated in different vegetation forms. A minor correlation
exists between NDVI, EVI, and SAVI, with Pearson’s correlation coefficients ranging from
0.42 to 0.50. Due to the blue band reflectance disturbance, EVI typically showed high
uncertainties in sparse vegetation areas of grassland and forest. The EVI time-series
showed the highest inter-annual variability in Punjab from 2000 to 2019, with 14.28%
of the total region showing higher variability than 40%. For most vegetation types, the
phenological metrics of season-start and season-end generated by the NDVI, SAVI, and
EVI were consistent. The greatest deviations from phenological metrics were obtained
from the NDVI time-series (33.4 days at the start of the season and 40.7 days at the end of
the season), suggesting soil context-sensitivity and atmospheric effects of the index. The
annual mean VI images displayed parallel spatial arrangements of vegetation conditions
with fluctuating levels. Major steps include using the temporal interpolation algorithm
to remove contaminated pixels to reconstruct MODIS NDVI time-series data. The EVI
time-series showed greater inter-annual variations from 2000 to 2019 compared to SAVI
and NDVI. Given the high vegetation variability in northern Punjab, the high variability in
EVI values could be due to variations in soil background properties. In the future, to assess
the climatic effect on semi-arid, arid, and rainfed areas’ vegetation dynamics, satellite data
will be assessed along with climate data for the region and other larger areas.
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Abbreviations

EVI2 2-band Enhanced Vegetation Index
AVHRR Advanced Very High-Resolution Radiometer
AOI Area-of-Interest
EVI Enhanced Vegetation Index
GDVI Generalized Differential Vegetation Index
GRVI Green-Red-Vegetation-Index
GPP Gross primary production
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IGBP International Geosphere-Biosphere Program
LAI Leaf Area Index
MODIS Moderate Resolution Imaging Spectroradiometer
MSAVI Modified Soil Adjusted Vegetation Index
NBAR Nadir Bidirectional Reflectance Distribution Function
NIR Near-infrared
NDVI Normalized Vegetation Difference Index
OSAVI Optimized Soil Adjusted Vegetation Index
PMD Pakistan Meteorological Department
PAR Photosynthetically active radiation
SAVI Soil Adjusted Vegetation Index
SD Standard deviation
VIs Vegetation indices
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