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Abstract: Due to numerous droughts in recent years, the amount of surface water in arid and
semi-arid regions has decreased significantly, so reliance on groundwater to meet local and regional
demands has increased. The Kabgian watershed is a karst watershed in southwestern Iran that
provides a significant proportion of drinking and agriculture water supplies in the area. This study
identified areas with karst groundwater potential using a combination of machine learning and
statistical models, including entropy-SVM-LN, entropy-SVM-SG, and entropy-SVM-RBF. To do this,
384 karst springs were identified and mapped. Sixteen factors that are related to karst potential
were identified from a review of the literature, and these were compiled for the study area. The
384 locations were randomly separated into two categories for training (269 location) and validation
(115 location) datasets to be used in the modeling process. The ROC curve was used to evaluate
the modeling results. The models used, in general, were good at determining the location of karst
groundwater potential. The evaluation showed that the E-SVM-RBF model had an area under the
curve of 0.92, indicating that it was most accurate estimator of groundwater potential among the
ensemble models. Evaluation of the relative importance of each of the 16 factors revealed that
land use, a vector ruggedness measure, curvature, and topography roughness index were the most
important explainers of the presence of karst groundwater in the study area. It was also found that
the factors affecting the presence of karst springs are significantly different from non-karst springs.

Keywords: karst groundwater potential; machine learning; statistical models; Kabgian watershed

1. Introduction

In recent decades, reduced availability of water in alluvial sediments and the increas-
ing demand for water has led to increased exploitation of groundwater in hard rock and
calcareous geological formations. Due to their low salt content, hard rock formations
yield water of good quality [1]. Such aquifers could help to provide water for drinking,
agriculture, and industrial uses [2]. Limestone and dolomite formations can develop karst
landscapes that contain fractures, voids, and conduits that can serve as aquifers. It is
estimated that karst covers approximately 7–12% of the Earth’s continental surface [3].
Fifteen to 25% of the world’s population depends on karst formations for fresh water [4].

Surface water is scarce in karst regions, but groundwater is more common than in
other areas. Fractures and cracks create hydraulic pathways through the rock [5]. The
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hydrogeological structure of aquifers in karst areas is unique [6]. The most prominent
feature of these aquifers is the great variation in hydrodynamic properties. The study of
aquifers to determine groundwater potential in karst regions can be very expensive due to
the difficulty of using exploratory drilling and well monitoring to assess groundwater in
heterogeneous formations [7,8]. The presence of springs are especially important indicators
of groundwater in karst regions. According to Chrysik and Stanovich [9], springs can be
indicators of the internal characteristics of an aquifer. The identification of groundwater
in regions with artesian springs can be made easier and less expensive by using low-cost
methods such as statistical and machine learning models.

Karst aquifer recharge depends on various natural factors such as climate, topography,
vegetation, soil, and geology [2,10,11]. Choosing a suitable method for assessing water
infiltration is often controversial. Geographic information systems (GISs) are powerful
tools for classifying, analyzing, and retrieving information, and have been used to replace
exploration and spatial experimentation in the field [12–14]. Saving time and money, the
ability to perform complex spatial and non-spatial data analyses, and flexibility are features
of GISs and these have made them attractive for groundwater study [15,16].

Various methods and models have been used to determine groundwater potential in
specific landscapes. Multi-criteria decision-making methods (MCDMs), statistical methods,
and hydrogeological and machine learning models are some of these approaches. Applica-
tions of data mining, machine learning, and statistical methods have been advancing in
groundwater research. The most important algorithms that have been used include logistic
regression (LR), artificial neural network (ANN) [17], random forest (RF) [18], frequency
ratio (FR) [19], evidential belief function (EBF) [20], random subspace (RS) [21,22], neuro-
fuzzy inference system (ANFIS) [23], and classification and regression tree (CRT) [18].

The following are some of the studies conducted in the field of groundwater potential
mapping using machine learning and statistical models: Zabihi et al. (2015) mapped
groundwater potential using the Shannon entropy and random forest models in the Bo-
jnourd plain of North Khorasan. The results of receiver operating characteristic (ROC)
assessments indicated that very good accuracy was achieved with the Shannon entropy
model (85.55%), but the random forest results were great (95.76%). Comparing random
forest to the Shannon entropy model revealed that certain classes of the distance to a river,
lithology, land use, and elevation factors had the greatest impacts on the groundwater
potential. Chen et al. (2018) examined the ensemble of evidence weighting with functional
tree data-mining methods. Their results showed excellent performances by the data mining
ensemble methods for predicting groundwater potential. They developed three new hybrid
artificial intelligence (AI) models that combined modified RealAdaBoost (MRAB), bagging
(BA), and rotating forest (RF) with functional tree (FT) to map groundwater potential in a
basalt landscape in DakLak Province, Highland Centre, Vietnam. They used the locations
of 130 groundwater wells and 12 topographic and geo-environmental factors to predict
groundwater. The models’ performances were evaluated using area under the curve (AUC)
and other metrics. The results showed that although all of the hybrid models increased the
fit and accuracy of prediction, the MRAB-FT (AUC = 0.742) model performed better than
RF-FT (AUC = 0.736), BA-FT (AUC = 0.714), and single FT (AUC = 0.674). The MRAB-FT
model is a promising hybrid AI technique for groundwater prediction. Rahmati et al.
(2020) used new approaches based on Gini-, entropy- and ratio-based classification trees to
predict the spatial patterns of groundwater potential in the mountains of Iran. They used
362 springs and several geo-environmental and topo-hydrological factors (slope, aspect,
elevation, topographic wetness index (TWI), distance from the fault, distance from the
river, rainfall, land use, lithology, plan curvature, and topographic roughness index (TRI))
to predict groundwater. Their results showed that Gini (AUC = 0.865) produced the best
results, followed by the entropy (AUC = 0.847) and ratio (AUC = 0.859) models. Lithology
provided the greatest impact on groundwater presence. Another study used individual
and ensemble machine learning models to predict groundwater potential. Random forest
(RF), logistic regression (LR), decision tree (DT), and artificial neural networks (ANNs)
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were the tested. The locations of approximately 374 groundwater springs were determined
and 24 factors were selected based on information gain. The 15 model combinations were
ranked using the compound factor (CF) method. Based on the success rates, the ensemble
models were the most effective for mapping groundwater potential in mountain aquifers.
The most efficient model, based on AUC evaluation, was the RF-LR-DT-ANN ensemble.
Prioritization ranking indicated that the best models were the RF-DT and RF-LR-DT en-
sembles. Machine learning and statistical models have been shown to produce accurate
groundwater potential maps, so review and evaluation of other models may improve the
accuracy of predictive mapping. They could also save time and money in the search for
groundwater in karst regions.

Aquifers are important water resources in the study area, so identifying areas with
hidden groundwater is critical. Groundwater has been studied extensively, but few studies
have been conducted in regions of karst formations. This study aimed to identify ground-
water in karst areas using new statistical and machine learning methods. Analysis of karst
groundwater potential in the Kabgian watershed was performed using a new statistical and
machine learning ensemble. The innovation of this research is that it combines the entropy
statistical model with different kernels of the SVM model. This led to the creation of sev-
eral hybrid models: Entropy-SVM-RBF, entropy-SVM-LN, and entropy-SVM-SIG. These
ensembles have not been previously used to map groundwater potential in a karst setting.

Description of the Study Area

The Kabgian watershed (defined by limits at 30◦27′45.2′′–30◦54′40.1′′ N, and
51◦06′31.7′′–51◦37′14.1′′ E). The watershed covers 873 km2 and is located in the Karun
basin in southwest Iran (Figure 1). The elevations range from 1538 to 3081 m. The mean
annual precipitation is 787 mm and the mean annual air temperature is 13.5 ◦C (based
on data from 1995 to 2019). More than 90% of annual rainfall occurs from November to
May. Trees (particularly Quercus brantii), shrubs (Astragalus sp.), grass (Poaceae), and rocky
outcrops cover the watershed. According to the 1:100,000 geological map prepared by the
Geological Survey of Iran, the watershed’s geology was formed from the Mesozoic era to
the present day. The lithology, oldest to newest, includes Neyriz, Sarvak, Gurpi, Pabdeh,
Asmari, Gachsaran, Razak, Bakhtiari, and Quaternary formations (Table 1). A large portion
of the watershed is underlain by soluble formations of limestone, dolomite, and gypsum,
thus the potential for karstification is high. More than 73% of the formations are karstic.
Due to rainfall amounts, low average temperature, and the extent of karst, one can expect
there to be significant groundwater in the watershed. Aquifers are, in fact, discharged by
at least 384 springs.

Table 1. Lithological characteristics of the Kabgian watershed.

Age
Symbol Lithology Formation

Area
Karstification

PotentialEra Period Epoch ha %

Cenozoic

Quaternary - Q Alluvial sediments Quaternary 10,282 11.77 No

Tertiary

Pliocene Bk Conglomerate Bakhtiari 1605 1.84 No
Miocene Ra Marl and conglomerate Razak 223 0.26 No

Miocene Gs Gypsum/anhydrite,
limestone, and marl Gachsaran 15,164 17.36 Yes

Oligomiocene As Limestone and dolomite Asmari 43,339 49.63 Yes
Paleocene Pd Marl Pabdeh 9414 10.78 No

Mesozoic Cretaceous
Campanian Gu Marl Gurpi 1841 2.11 No

Albian-Turonian Sr Limestone Sarvak 5371 6.15 Yes
Jurassic Lias Ne Limestone and dolomite Neyriz 87 0.1 Yes

Total 87,326 100 73.36%



Water 2021, 13, 2540 4 of 20
Water 2021, 13, x FOR PEER REVIEW  4  of  22 
 

 

 

Figure 1. Location of the Kabgian watershed in Iran. 

Table 1. Lithological characteristics of the Kabgian watershed. 

Age 
Symbol  Lithology  Formation 

Area  Karstification 

Potential Era  Period  Epoch  ha  % 

Cenozoic 

Quaternary  ‐  Q  Alluvial sediments 
Quater‐

nary 
10,282  11.77  No 

Tertiary 

Pliocene  Bk  Conglomerate  Bakhtiari  1605  1.84  No 

Miocene  Ra  Marl and conglomerate  Razak  223  0.26  No 

Miocene  Gs 
Gypsum/anhydrite, 

limestone, and marl 
Gachsaran  15,164  17.36  Yes 

Oligomiocene  As  Limestone and dolomite  Asmari  43,339  49.63  Yes 

Paleocene  Pd  Marl  Pabdeh  9414  10.78  No 

Mesozoic 
Cretaceous 

Campanian  Gu  Marl  Gurpi  1841  2.11  No 

Albian‐Tu‐

ronian 
Sr  Limestone  Sarvak  5371  6.15  Yes 

Jurassic  Lias  Ne  Limestone and dolomite  Neyriz  87  0.1  Yes 

Total    87,326  100  73.36% 

   

Figure 1. Location of the Kabgian watershed in Iran.

2. Materials and Methods
2.1. Karst Groundwater Potential (KGP) Inventory Map

Karst aquifers do not have a typical volume. Their extent, geometry, and functioning
can only be known through a study of karstification in their proximity. Unlike aquifers
in porous matrices, the study and modeling of karst aquifers are complex [24]. Using
modeling to determine groundwater potential has improved the ease of identification and
exploitation of these features; this has been carried out most often in non-karst regions [25].
Karst groundwater potential mapping provides a way to integrate multiple data sources
to delineate the areas that have greater groundwater potential [7]. Springs are the visible
points of a karst system. The quantity and quality of their discharge water depends on
the condition of the karst system. The presence of springs, therefore, is one of the most
important indicators of an aquifer. Hence, a correlation between springs (the dependent
variable) and environmental indicators (independent variables) hints at the potential spatial
distribution of groundwater [26]. In this study, 384 active and inactive karst spring locations
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were obtained from Yasouj’s water resources department. Additionally, 384 non-springs
were randomly generated in ArcGIS software. In order to model these points, they were
divided into the two categories of validation (30%) and training (70%).

2.2. Factors Influencing Groundwater in Karst Regions (FIGKRs)

A number of characteristics can be associated with groundwater potential in a karst
region. Based on a literature review and the conditions of the study area, 17 conditions—
slope, aspect, elevation, topographic wetness index (TWI), land use, distance from the
stream, distance from the fault, distance from the lineament, lithology, curvature, NDVI,
rainfall, topography position index (TPI), topography roughness index (TRI), vector rugged-
ness measure (VRM), and land surface temperature (LST)—were identified as potential
inputs into a predictive model [27–29]. These layers were prepared using ArcGIS 10.5,
ENVI 5.3, Saga 3.2, Google Earth Pro software. Moreover, the base map for preparing most
of this layer is a digital elevation model (DEM) with a spatial resolution of 12.5 m, which
was downloaded from https://search.asf.alaska.edu/#/ (accessed on 15 January 2020).
The impact of each of these factors on groundwater potential is briefly described below.

Different geological formations do not conduct water in the same way. Formation
type and lithology of a formation affect many hydraulic properties such as permeabil-
ity, hydraulic conductivity, and transferability [15]. Hydrological and geo-hydrological
characteristics of each aquifer are among the most prominent aspects in an exploration
for groundwater. Aside from rainfall, rivers are the other main recharger of aquifers [30].
Tectonic and structural factors such as faults and lineaments are also important factors
affecting the infiltration of surface water and accumulation in substrate. Therefore, they
are also positive recharge parameters [21,22,31]. Slope and elevation are two topographic
factors that affect groundwater potential (Figure 2).
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Figure 2. Factors influencing karst groundwater potential: (A) Elevation, (B) aspect, (C) curvature, (D) distance to lineament,
(E) distance from stream, (F) distance to fault, (G) geology, (H) land use, (I) LST, (J) NDVI, (K) rainfall, (L) slope, (M) TWI,
(N) TPI, (O) VTR, and (P) TRI.

Slope aspect is also important for its effect on evaporation, soil moisture, and vege-
tation growth that may improve or inhibit infiltration [32,33]. Surface curvature affects
runoff and infiltration as well. TWI also affects groundwater. It reflects the relationship
between a slope and its surface moisture (Figure 2). The steeper the slope, the lower the
moisture content [12,16]. It is calculated as shown in Equation (1):
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TWI = ln (As/S), (1)

where As is the watershed area and S is the slope percentage.
Land use and NDVI are other factors affecting recharge by influencing infiltration

rates and water use and abstraction. Increasing vegetation density increases infiltration and
decreasing vegetation promotes runoff [34,35]. To prepare the land use and NDVI maps of
the study area, Landsat 8 satellite images and the OLI sensor were used. The land use map
was downloaded using the 2019 image of the study area and processed in ENVI software.
A Landsat image from 25 June 2019, which had the highest amount of vegetation, was used
to prepare the NDVI map. Soil type and texture affect recharge tendencies (Figure 2). TPI
represents the direction of flow based on the position of each pixel (or areal unit) relative to
its surroundings and is calculated as shown in Equation (2):

TPI =
Epixel

Esurrounding
(2)

where Epixel is the elevation of the cell and Esurrounding is the mean elevation of the neigh-
boring pixels. Low TPI values indicate less slope, which promotes infiltration [36], and high
values indicate high slope and lower infiltration likelihood. TRI is another morphological
factor affecting groundwater, and it is calculated as shown in Equation (3):

TRI =
√

Abs(max2 −min2) (3)

where max and min are the largest and smallest values of cells in a rectangular neighborhood
of nine adjacent elevation values [37].

2.3. The Ensemble Algorithms
2.3.1. Index of Entropy (IOE)

In information theory, entropy is the numerical measure of the amount of information
or uncertainty in a random variable. More precisely, the entropy of a random variable
is the average value (mathematical expectation) of the amount of information obtained
from its observation. To use the IOE, a decision matrix must first be created [38,39]. The
decision matrix contains information that entropy uses as a measure for evaluating and
calculating the entropy matrix and the total weight of the factors. The values of Wj and
Hi are the coefficients of spring potential. First, the existing information content of the
decision matrix is calculated (Equation (4)):

Pi,j =
ri,j

∑m
i=1 ri,j

(4)

Then, Ej, the entropy value, is calculated (Equation (5)):

Ej = −K
n

∑
i=1

pi,j (5)

where K is a constant and M is the number of springs. After creating the division matrix
and obtaining Ej, the value of Vj is determined (Equation (6)):

Vj = 1− Ej (6)

where Vj is the degree of deviation of uncertainty. Then, the weight of all factors (Wj) is
calculated (Equation (7)):

Wj =
Vj

∑m
j=1 VJ

(7)
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2.3.2. Support Vector Machines (SVMs)

The original SVM algorithm was developed by Vladimir Vapnik in 1963 and was
generalized to a nonlinear mode by Vapnik and Corinna Cortes in 1995 [40]. SVM is a
supervised learning method for classification and regression. SVM performs well compared
to older classification methods such as perceptron neural networks. The SVM classifier
is based on linear classification of data, in which it chooses the line with the greatest
margin of confidence. Solving the optimal line equation for data is carried out by quadratic
programming (QP) methods, which are used for solving constrained problems [41].

To convert data, SVM uses a kernel trick technique to find the optimal boundary
between outputs. In simple terms, it performs complex conversions and then determines
how to separate the data based on defined tags or outputs. This model has been used
widely for classification problems. Because its effectiveness for solving various problems,
SVM’s popularity can be compared to the popularity of neural networks over the last
decade. Other methods, such as decision trees, are not easily used for similar problems [3].

To map the groundwater potential, three SVM model kernels were used: Radial base
function (RBF), sigmoid (SIG), and linear (LN). The mathematical representation of each is
as follows:

RBF : k (xi, yi) =
(
−γ ‖ Xi − Xj ‖

)
, γ > 0 (8)

Sigmoid : k (xi, yi) = tan h
(

γXT
i Xj + r

)
(9)

Linear : k (xi, yi) = XT
i Xj (10)

where k (xi, yi) is the kernel function; γ is the gamma term in the kernel function for the RBF
and sigmoid kernels; r is the bias term in the sigmoid kernel; γ, d, and r are user-controlled
parameters—their values can significantly increase the accuracies of SVM solutions.

2.3.3. Frequency Ratio (FR)

The frequency ratio (FR) is a method for spatial evaluation and understanding the
relationships between dependent and independent variables, as in classified maps. The
FR value indicates the probability of the presence of a phenomenon [42]. It determines the
correlation between spring locations. A larger ratio in a class indicates that a specific factor
is of greater importance or that the factor class is more influential on groundwater potential.
In general, an FR value near 1 indicates that there is an average correlation between spring
locations and the factors affecting it. Larger values indicate stronger correlations [10,43].
The FR value for a class is calculated as shown in Equation (11):

FR =
A/B
C/D

(11)

where A is the number of spring locations in the class, B is the total number of springs
present in the study area, C is the number of pixels in the class, and D is the total number
of pixels with the relevant factor (e.g., elevation).

2.3.4. Validation of Models

A tool that is useful for demonstration of the definitive, probabilistic, and predictive
qualities of systems is the receiver operating characteristic curve (ROC). The area under
the ROC (AUC) describes a system’s ability to predict predetermined occurrence and
non-occurrence of events [22,44]. The ROC is used to reveal the sensitivity of a model to
the percentage of unstable cells predicted correctly versus the percentage of unstable cells
predicted relative to the total. This value expresses a model’s ability to correctly distinguish
positive and negative observations in the validation data. High sensitivity indicates a high
number of true predictions (true positives), and high specificity indicates a low number of
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false positives [10,45]. False- and true-positive rates are shown on an X and Y chart. X and
Y are calculated as shown in Equations (12) and (13):

X = 1− Speci f y = 1−
[

TN
(TN − FP)

]
(12)

Y = Sensitivity =

[
TN

(TP− FN)

]
(13)

The quantitative–qualitative relationship between the AUC and the accuracy of the
forecasting (which ranges from 0 to 1), is divided to five classes: Excellent (1–0.9), very
good (0.9–0.8), good (0.8–0.7), moderate (0.7–0.6), and weak (0.6–0.5).

2.3.5. Variance Inflation Factor (VIF)

Multicollinearity indicates when an explanatory variable in a multiple regression
has a linear relationship with one or more of the other variables. This suggests that
a linear combination of two or more variables should be considered. When there is
multicollinearity among the factors used in a model, the coefficients in the resulting model
are invalid because the effect of each explanatory variables on the response variable
simultaneously includes the effects of the other variables in the model [37,45,46]. The
variance of regression coefficient estimators, therefore, is increased and model’s prediction
reflects a larger potential for error. Thus, with small changes in the data input to a model,
a regression’s coefficients can change dramatically [22]. In this research, as in previous
studies [47,48], the two criteria of variance inflation factor (VIF) and tolerance (TOL) were
used to investigate multicollinearity (Equations (14) and (15)).

VIF = 1− R2 (14)

TOL =
1

1− R2 (15)

3. Results
3.1. Multicollinearity Analysis

The independence of descriptive variables is particularly important for modeling. A
multicollinearity test was used to investigate the effect of the independent variables on one
another. The results showed that none of the factors used in this study had multicollinearity
issues and all variables were independent of one another. Most of the VIF value was related
to the slope (2.524) factor, and less of it to the aspect (0.052) factor (Table 2).

Table 2. Multicollinearity analysis among FIGKRs.

Independent Variables Coefficient Std. Error VIF

Aspect 0.000 0.071 1.052
Curvature −0.030 0.084 1.157
Elevation −0.082 0.121 1.545

Distance lineament 0.092 0.093 1.191
Distance to stream 0.440 0.094 1.419

Fault 0.048 0.088 1.169
Geology −0.002 0.095 1.244
Land use −0.011 0.078 1.268

LST 0.291 0.104 1.556
NDVI 0067 0.104 1.360

Rainfall 0.657 0.094 1.495
Slope −0.320 0.20 2.524
TPI 0.468 0.127 1.475
TRI 0.576 0.251 1.429
TWI 0.075 0.125 1.677
VRM 0.063 0.194 1.10
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3.2. Investigation of the Spatial Relationship between FIGKRs and Spring Locations

The set of spring locations of the calibration group was introduced as a dependent
variable and the selected parameters (elevation classes, slope, etc.) were introduced as
independent variables by the frequency ratio method. Using the frequency ratio technique,
the probability of the presence of a spring in each class was calculated for all parameters.
Comparative analyzes between the position of springs and environmental parameters
affecting groundwater were performed using FR and entropy models, the results of which
are shown in Table 3 and Figure 3. According to Table 3, the FR index values for the
potential classes of each factor are shown in Figure 3. Then, the probability density (PD)
and the final weight values of the entropy index of each factor were calculated based on
FR.

Table 3. Spatial relationships between influence factors and spring locations.

Factor Classes Percentage of
Domain

Percentage of
Springs FR PD Hj Hjmax Ij Vj W

NDVI

−0.15 to 0.14 44.17 41.67 0.94 0.18

2.3 2.3 0.003 0.003 0.002
0.14–0.23 28.52 30.47 1.07 0.20
0.23–0.33 17.21 17.19 1.00 0.19
0.33–0.51 8.43 8.59 1.02 0.19
0.51–0.93 1.67 2.08 1.24 0.24

Rainfall

495.95–710.25 13.89 7.81 0.56 0.11

2.1 2.3 0.074 0.078 0.049
710.25–844.19 29.19 22.66 0.78 0.15
844.19–969.20 25.28 15.10 0.60 0.11
969.20–1097.19 19.46 36.72 1.89 0.36

1097.19–1257.92 12.18 17.71 1.45 0.28

Slope

0.81–9.39 24.25 30.99 1.28 0.30

2.1 2.3 0.088 0.075 0.047
9.39–16.73 27.10 34.64 1.28 0.30
16.73–24.09 25.70 25.00 0.97 0.23
24.09–33.41 17.69 8.07 0.46 0.11
33.41–79.86 5.26 1.30 0.25 0.06

TPI

−117.17 to −8.40 5.12 7.81 1.53 0.30

2.1 2.3 0.097 0.098 0.061
−8.40 to −3.09 19.76 31.77 1.61 0.32
−3.09 to 1.32 37.99 38.54 1.01 0.20

1.32–7.51 29.71 20.31 0.68 0.14
7.51–109.20 7.43 1.56 0.21 0.04

Curvature

−36.48–−1.92 12.29 16.61 1.35 0.33

2.0 2.3 0.158 0.130 0.081
−1.92 to −0.64 37.87 45.60 1.20 0.29
−0.64 to 1.28 37.56 28.99 0.77 0.19

1.28–3.2 11.39 8.79 0.77 0.19
3.2–48 0.90 0.00 0.00 0.00

Elevation

1538–1898 11.81 2.60 0.22 0.05

2.1 2.3 0.106 0.088 0.055
1898–2130 29.85 40.10 1.34 0.32
2130–2314 29.19 41.15 1.41 0.34
2314–2541 20.54 10.42 0.51 0.12
2541–3081 8.62 5.73 0.66 0.16

Distance
to

lineament

12.5–797.75 33.97 41.67 1.23 0.27

2.3 2.3 0.031 0.028 0.017
797.75–1606.43 29.96 32.29 1.08 0.24

1606.43–2605.43 20.11 15.89 0.79 0.17
2605.43–3985.63 10.54 4.69 0.44 0.10
3985.63–6999.69 5.41 5.47 1.01 0.22

Distance
to stream

12.5–613.64 30.51 23.70 0.78 0.15

2.2 2.3 0.035 0.038 0.023
613.64–1253.555 27.31 21.61 0.79 0.15
1253.55–1973.65 22.53 24.48 1.09 0.20
1973.65–2878.42 14.10 25.26 1.79 0.34

2878.42–5000 5.54 4.95 0.89 0.17
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Table 3. Cont.

Factor Classes Percentage of
Domain

Percentage of
Springs FR PD Hj Hjmax Ij Vj W

TRI

0.44–1.73 33.31 41.93 1.26 0.37

1.8 2.3 0.209 0.143 0.089
1.73–3.08 33.09 37.76 1.14 0.33
3.08–4.65 23.98 17.71 0.74 0.22
4.65–8.02 8.97 2.60 0.29 0.08

8.02–45.76 0.64 0.00 0.00 0.00

Fault

12.5–713.48 32.14 22.40 0.70 0.14

2.3 2.3 0.017 0.017 0.010
713.48–1482.60 28.12 31.25 1.11 0.22

1482.60–2382.52 20.82 27.86 1.34 0.27
2382.52–3547.29 13.01 13.80 1.06 0.21
3547.29–5826.93 5.92 4.69 0.79 0.16

TWI

0.73–5.54 41.61 27.08 0.65 0.09

2.2 2.3 0.047 0.065 0.040
5.54–7.46 37.47 37.24 0.99 0.14

7.46–10.17 13.42 20.57 1.53 0.22
10.17–14.11 5.46 11.98 2.19 0.32
14.11–23.11 2.04 3.13 1.54 0.22

VRM

0.0001–0.0024 73.17 70.83 0.97 0.20

1.9 2.3 0.172 0.164 0.102
0.0024–0.0066 21.63 24.48 1.13 0.24
0.0066–0.0166 4.59 3.65 0.79 0.17
0.0166–0.0463 0.56 1.04 1.85 0.39
0.0463–0.3325 0.05 0.00 0.00 0.00

LST

31.60–38.41 9.63 2.86 0.30 0.07

2.2 2.3 0.048 0.044 0.027
38.41–41.39 18.70 16.67 0.89 0.20
41.39–44.03 25.17 29.95 1.19 0.26
44.03–46.59 27.41 29.69 1.08 0.24
46.59–53.40 19.08 20.83 1.09 0.24

Aspect

Flat 13.75 10.68 0.78 0.08

2.8 3.2 0.128 0.134 0.084

North 15.95 11.46 0.72 0.08
Northeast 11.68 14.32 1.23 0.13

East 9.13 11.72 1.28 0.14
Southeast 10.47 14.32 1.37 0.14

South 13.93 10.16 0.73 0.08
Southwest 10.15 8.85 0.87 0.09

West 7.32 10.16 1.39 0.15
Northwest 7.63 8.33 1.09 0.12

Geology

Q 11.77 15.10 1.28 0.16

2.6 3.0 0.132 0.120 0.075

Sr 6.15 1.30 0.21 0.03
Ne 0.10 0.26 2.65 0.32
Bk 1.84 0.52 0.28 0.03
As 49.63 44.79 0.90 0.11
Pa 10.78 6.77 0.63 0.08
Ga 17.36 30.21 1.74 0.21
Ra 0.26 0.00 0.00 0.00
Gu 2.11 1.04 0.49 0.06

Land use

Agriculture 24.93 27.08 1.09 0.09

2.6 3.2 0.174 0.224 0.140

Dense forest 1.49 0.78 0.52 0.05
Garden 0.29 1.04 3.62 0.31

Low forest 8.20 3.65 0.44 0.04
Moderate forest 27.80 16.67 0.60 0.05

Rangeland 27.37 41.41 1.51 0.13
Residential 0.18 0.52 2.90 0.25

Rock 0.00 0.00 0.00 0.00
Woodland 9.74 8.85 0.91 0.08
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3.3. The Importance of FIGKRs

The variables that most influence the potential for springs (Figure 4) were land use,
VRM, TRI, and aspect. NDVI, distance to nearest fault, LST, and distance to nearest stream
were least important.
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Figure 4. Variable importance analysis.

3.4. Karst Groundwater Potential Mapping (KGPM)

Karst groundwater potential was split into five classes (very low, low, moderate,
high, and very high) using the natural break algorithm in ArcGIS 10.5 and then mapped
(Figure 5).
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Figure 5. Karst groundwater potential maps generated by (a) entropy-SVM-RBF, (b) entropy-SVM-
SIG, and (c) entropy-SVM-LN.
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The results indicate that 11.6%, 20%, and 10% of the study area was classified as
having very high potential by entropy-SVM-RBF, entropy-SVM-SIG, and entropy-SVM-LN
(Figure 6). On the contrary, 18.5%, 21%, and 19% of the watershed was classified as having
very low groundwater potential by the models (entropy-SVM-RBF, entropy-SVM-SIG, and
entropy-SVM-LN).
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Figure 6. Percentage of karst groundwater potential classes in the study area.

3.5. Validation Analysis

The validation analysis showed that the entropy-SVM-RBF model (AUC = 0.911) was
most accurate (Figure 7 and Table 4). The standard error values of entropy-SVM-RBF were
the smallest as well. The entropy-SVM-RBF produced the following metrics: SE = 0.0185,
sensitivity = 92.17, specificity = 75.65, PPV = 79.1, NPV = 90.6, and accuracy = 92.1. This was
the highest accuracy score among the models. Generally speaking, all three ensemble mod-
els achieved acceptable levels of accuracy for mapping karst groundwater potential. The
results were validated both mathematically and empirically using of the field-determined
locations of springs as truths. In fact, data-mining methods detect and match factors based
on empirical evidence and this ultimately underpins predictions. Empirical data from field
surveys and excavations (i.e., drilled wells) can also be used to validate modeling results
after the fact.

Table 4. Statistical metrics used to evaluate the models’ performances.

Models AUC SE 95% CI PPV NPV Sensitivity Specificity Accuracy

Validating
sample

E-SVM-RBF 0.911 0.0185 0.866–0.944 79.1 90.6 92.17 75.65 92.1
E-SVM-SIG 0.820 0.0269 0.764–0.867 80.6 72.7 68.70 83.48 80.2
E-SVM-LN 0.710 0.0330 0.647–0.768 65.8 67.3 68.70 64.35 68.4
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4. Discussion

Karst formations may be the most important source for water supply in many parts
of the world. A review of the literature showed that many studies have investigated
groundwater potential using both machine learning and statistical models. Most of these
studies focus on groundwater extracted from wells and rarely combine machine learning
with statistical models to determine groundwater potential in watersheds in karst regions.
This study determined karst groundwater potential using three new ensembles of statistical
and machine learning algorithms—entropy-SVM-RBF, entropy-SVM-SIG and entropy-
SVM-LN.

4.1. Machine Learning Algorithm Performance

Analysis of spring potential classes showed that the areas of predicted lowest potential
were largest and the areas of predicted highest potential were smallest for both the entropy-
SVM-RBF and entropy-SVM-LN models. Moreover, geographically, the regions with the
highest karst groundwater potential were predicted to be the southern and southeastern
regions of the watershed. The results of the ROC analysis (Figure 7) indicated that the
predictive performance of the entropy-SVM-RBF model was best and that it had the highest
accuracy score at 0.911 as well. The entropy-SVM-SIG model’s accuracy was second best at
0.82, while entropy-SVM-LN had a 0.71 accuracy score. Examination of the assorted SVM
kernels showed that their performances were affected by two variables—C and γ. These
parameters were extracted using the grid-search technique. If the C and γ variables were
implemented using new optimization techniques, the performance of the kernels could be
increased. Thus, it is recommended that future studies applying SVMs for groundwater
potential prediction should use soft-computing optimization techniques to optimize the
values of the kernel parameters. This demonstrates that use of SVM in combination with
meta-heuristic algorithms and statistical models such as EBF and entropy can separately
improve and enhance the prediction power and accuracy beyond the SVM, EBF, and
entropy models. Abedini and Xu [49,50] also reported on the excellent results using SVM-
RBF and SVM-entropy for other purposes. There was a significant difference between
individual and ensemble models based on predictor performance. The average prediction
rates based on AUC values revealed significant improvements. However, the results only
pertain to these specific models; it is possible that the new ensembles could better predict
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groundwater potential map. It is suggested that the accuracy of other models be evaluated
by other researchers. It would be better to compare other models in other studies and
present their results.

4.2. Role of Factors in the Occurrence of Karst Springs

The relationships between the weights of the classes of the independent environmental
factors and the Kabgian-dependent watershed springs variable were calculated (Table 3).
The analysis of the importance of the factors affecting springs occurrence indicated that
land use (14%) has the greatest impact on karst groundwater potential. This is followed
by VRM (10%), TRI (9%), curvature (8%), aspect (8.5%), and geology (8%). As spring flow
determines the type of land cover, land use determines the potential for groundwater. In
that some land uses such as agriculture and residential development have extended into
areas where springs previously existed, we can see the effect of land use on subsurface
water. On the contrary, the extent and density of vegetation (especially where tree cover
is limited) in many karst formations and in regions of high elevation can accentuate the
influence of both land cover and land use.

A factor that has not often been used in previous studies and that was identified in
this study as important is the VRM. This study revealed a greater importance of geological
and geomorphological factors in the development and formation of karst springs. Unlike
in non-karst regions, faults and lineaments have little influence on groundwater potential
in karst zones. In fact, faulted and fractured areas in karst regions often serve as recharge
zones, and springs are found at the outlet of aquifers. In past studies, factors such as faults
and fault-related features have been identified as important for the creation of springs, but
in this watershed, faults are apparently not very important. Moreover, in previous studies,
the distance from the nearest river was also found to be important, but in this study, it
was not. This contradicts the findings in other studies [34,51]. The lower importance of
distance from a river is, in part, due to the hydrology of karst. Aquifers do not necessarily
follow surface streams and rivers. In contrast, [30–55] identified land use and land cover,
curvature, and lithology as most important to the formation and development of springs in
this region of karst. Since the land surface temperature in areas near springs was expected
to be cooler than those without springs due to the influence of flowing water on the surface
temperature, we used an LST index. LST had a significance of only 3% on KGP, which was
somewhat higher than distance from the nearest fault, distance from the nearest lineament,
distance from the nearest river, and NDVI. NDVI had the least influence on KGP, perhaps
due to the lack of contact between vegetation and aquifers in the region. Though karst
aquifers are obviously saturated and have abundant water to support vegetation, they tend
to be deep below the surface, beyond the root zones that absorb water for plants.

Various environmental factors affect the presence of springs in an area. Springs will
appear at points where different conditions are suitable. In general, the higher the density
of springs in an area, the better the environmental conditions for springs and vice versa.
Therefore, the existence of only one spring does not represent appropriate conditions for
spring development; numerous springs must be present for this to be the case. Individual
springs are found in low-potential areas due to unknown and idiosyncratic conditions. It
may be very difficult and expensive to determine these factors for the purpose of developing
maps of spring potential. However, as shown in Figure 5, there are no springs in areas with
very low potential (red areas). On the contrary, there are no springs in some areas with
very high potential (blue areas); this state can be due to two reasons: A statistical gap and
lack of accurate ground data related to spring distribution of springs, or the absence of
specific conditions during a specific time frame that causes the absence or disappearance
of springs. What is important in machine learning models is to locate these areas so that
despite a lack of accurate information and data, it is still possible to map spring potential
throughout the study area.
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5. Conclusions

This study evaluated the ability of data-mining models to predict areas of groundwater
potential in a karst region. Machine learning and statistical models were combined to
create three models: Entropy-SVM-LN, entropy-SVM-SG, and entropy-SVM-RBF. Sixteen
conditioning factors were measured to produce a database for the watershed, and 384
springs were used as locations of known aquifer presence. The predictions of the three
models demonstrated that they were effective at determining the potential for groundwater
throughout the watershed. The results showed that the factors that promote the presence
of springs in the region are different from the factors that are known to predict the presence
of springs in non-karst regions. Measures of precipitation and geologic formation may
be the most important influences on spring formation in non-karst areas, but in karst
regions, geomorphometric variables, such as VRM and TRI, and surface curvature are
the most important factors influencing groundwater potential. Land use and land cover
have significant relationships with groundwater in karst zones. Faults and lineaments
serve as locations of recharge for aquifers in karst regions and springs may appear at
great distances from them due to hydraulic slopes. These features in non-karst regions
can indicate the locations of groundwater resources because flows through porous media
with non-Darcy conditions are directly related to faults and lineaments. In karst regions,
groundwater resources are unrelated to either LST indices that indicate hot or cold spots
or NDVI. There are many models and algorithms that can be used to map groundwater
potential, but this study compared individual and ensemble results of the entropy statistical
model and SVM machine learning algorithms to map groundwater potential. The results
only pertain to these specific models. It is possible that the new ensembles could better
predict groundwater potential maps. It is suggested that the accuracy of other models be
evaluated by other researchers. It would be better to compare other models in other studies
and present those results. Finally, we suggest that geophysical field methods be used to
validate results to accurately assess groundwater potential in the karst landscape of the
study area.

Author Contributions: Conceptualization, M.F., M.Z., M.A. and J.P.T.; methodology, M.F., M.A.
and H.A.; validation, M.F., M.A. and H.A.; formal analysis, M.F., M.A. and M.Z.; investigation,
M.F. and H.A.; data curation, M.F. and H.A.; writing—original draft preparation, M.F. and M.A.;
writing—review and editing, M.F., M.A., H.A., M.Z. and J.P.T.; supervision, M.F., M.A. and M.Z.;
project administration, M.F., M.A. and M.Z.; funding acquisition, M.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by a project of the Ministry of Education of the Slovak
Republic, VEGA 1/0308/20, Mitigation of Hydrological Hazards, Floods, and Droughts by Explor-
ing Extreme Hydroclimatic Phenomena in River Basins and project HUSKROUA/1702/6.1/0072,
Environmental Assessment for Natural Resources Revitalization in Solotvyno to Prevent the Further
Pollution of the Upper-Tisza Basin through the Preparation of a Complex Monitoring System.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, A.; Pandey, A.C. Geoinformatics Based Groundwater Potential Assessment in Hard Rock Terrain of Ranchi Urban

Environment, Jharkhand State (India) Using MCDM—AHP Techniques. Groundw. Sustain. Dev. 2016, 2, 27–41. [CrossRef]
2. Amin, M.M.; Veith, T.L.; Collick, A.S.; Karsten, H.D.; Buda, A.R. Simulating Hydrological and Nonpoint Source Pollution

Processes in a Karst Watershed: A Variable Source Area Hydrology Model Evaluation. Agric. Water Manag. 2017, 180, 212–223.
[CrossRef]

http://doi.org/10.1016/j.gsd.2016.05.001
http://doi.org/10.1016/j.agwat.2016.07.011


Water 2021, 13, 2540 19 of 20

3. Chen, W.; Pourghasemi, H.R.; Naghibi, S.A. A Comparative Study of Landslide Susceptibility Maps Produced Using Support
Vector Machine with Different Kernel Functions and Entropy Data Mining Models in China. Bull. Eng. Geol. Environ. 2018, 77,
647–664. [CrossRef]

4. Stevanović, Z. Karst waters in potable water supply: A global scale overview. Environ. Earth Sci. 2019, 78, 1–12. [CrossRef]
5. Andreo, B.; Vías, J.; Durán, J.J.; Jiménez, P.; López-Geta, J.A.; Carrasco, F. Methodology for Groundwater Recharge Assessment in

Carbonate Aquifers: Application to Pilot Sites in Southern Spain. Hydrogeol. J. 2008, 16, 911–925. [CrossRef]
6. De Giglio, O.; Caggiano, G.; Apollonio, F.; Marzella, A.; Brigida, S.; Ranieri, E.; Lucentini, L.; Uricchio, V.F.; Montagna, M.T. The

aquifer recharge: An overview of the legislative and planning aspect. Ann Ig 2018, 30, 34–43. [PubMed]
7. Jebreen, H.; Banning, A.; Wohnlich, S. Karst Groundwater Resources: Problems, Management, and Sustainability, an Example

from a Carbonate Aquifer in Palestine. AGU Fall Meet. Abstr. 2018, 2018, H53L-1744.
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