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Abstract: Detailed knowledge of energy and mass fluxes between land and the atmosphere are neces-
sary to monitor the climate of the land and effectively exploit it in growing agricultural commodities.
One of the important surface land fluxes is evapotranspiration, which combines the process of evapo-
ration from the soil and that of transpiration from plants, describing the movement of water vapour
from the land to the atmosphere. Accurately estimating evapotranspiration in agricultural systems is
of high importance for efficient use of water resources and precise irrigation scheduling operations
that will lead to improved water use efficiency. This paper reviews the major mechanistic and
empirical models for estimating evapotranspiration including the Penman–Monteith, Stanghellini,
Priestly–Taylor, and Hargreaves and Samani models. Moreover, the major differences between the
models and their underlined assumptions are discussed. The application of these models is also
reviewed for both open and closed field mediums and limitations of each model are highlighted. The
main parameters affecting evapotranspiration rates in greenhouse settings including aerodynamic
resistance, stomatal resistance and intercepted radiation are thoroughly discussed for accurate mea-
surement and consideration in evapotranspiration models. Moreover, this review discusses direct
evapotranspiration measurements systems such as eddy covariance and gas exchange systems. Other
direct measurements appertaining to specific parameters such as leaf area index and surface leaf
temperature and indirect measurements such as remote sensing are also presented, which can be
integrated into evapotranspiration models for adaptation depending on climate and physiological
characteristics of the growing medium. This review offers important directions for the estimation of
evapotranspiration rates depending on the agricultural setting and the available climatological and
physiological data, in addition to experimentally based adaptation processes for ET models. It also
discusses how accurate evapotranspiration measurements can optimise the energy, water and food
nexus.

Keywords: evapotranspiration; greenhouse; agriculture; energy; water; food; nexus

1. Introduction

The global increase in food demands pressures food systems to increase yields despite
limitations in water resources. As such, there is an impetus to move to more sustainable
practices and optimised operations for agricultural systems that will enable efficient use of
water resources [1]. A key aspect for efficient agricultural practices is adequate irrigation
management, which depends on accurate estimates of crop water requirements. Evapo-
transpiration (ET) is a measure of crop water requirements, which entails vapour water
movement from the land to the atmosphere in the form of evaporation from the soil and
transpiration from the plants [2]. Hence, the appropriate evaluation of evapotranspiration
is necessary to prevent excess or deficit irrigation and sustain the use of water resources
while offering the necessary agricultural commodities. This can be achieved through
models that measure and predict evapotranspiration rates, or direct measurements using
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high-performing instruments. Challenged by the complexity and high cost of directly mea-
suring evapotranspiration, numerous efforts have been deployed in developing estimation
models that can easily be applied to varied applications and growing mediums [3].

The accurate estimation of crop water requirements is of high importance in the
agricultural sector as it aids in the optimal operations of irrigation scheduling in terms of
frequency and quantity. Knowledge of evapotranspiration rates can hence support growers
to meet their cultivation targets, improve water use efficiency, increase crop yields, reduce
energy consumption, and reduce associated environmental emissions [4]. This indicates
apparent intertwined interlinkages between the energy water and food (EWF) systems
that are driven by ET estimates and measurements. The EWF nexus is a holistic approach
that aims to evaluate the inherent interdependencies between the energy, water and food
systems, and identify trade-offs and synergies between their resources [5]. Through this, the
EWF nexus approach enables the optimisation of resource consumption and the reduction
of associated system environmental burdens [6–8]. Thus, it is necessary for agricultural
food systems to adopt an EWF nexus methodology to ascertain a sustainable intensification
that can meet the growing population demand for nutritious food, conserve water and
energy resources, and preserve the environment from further degradation [9].

With regard to evapotranspiration models, the first ET model was developed by
Penman, in which only external physical drivers were considered [10]. This latter model
was further improved by Monteith, who integrated physiological characteristics [11]. Other
simplified versions of the Penman–Monteith equation were proposed, which require less
input data [12]. Since these models have been developed under specific meteorological
and physiological conditions and for specific settings (i.e., open or closed fields), it is
necessary to choose the model with the closest conditions and assumptions as the system
under study. Moreover, adapting these models to the specific growing conditions of
the evaluated system can enhance the accuracy of ET estimates. This can be achieved
through the parametrisation of observed relationships through direct measurements [13].
The vast majority of reviews conducted around evapotranspiration address the main
differences between certain empirical ET models in terms of input data, accuracy, and
limitations [3,14,15]. Others only reviewed specific measurement techniques such as
remote sensing or for assessing certain parameters such as the leaf area index [16,17].
However, there is a lack of studies that discuss the applicability of ET models to open and
closed agricultural mediums, and that provide methods and directions for ET estimate
improvement through direct measurements. As such, this review aims at responding to
this gap by aggregating ET models and measurement methods in one study, and evaluating
their applicability for different agricultural settings as well as discussing ET estimates from
an EWF nexus perspective.

The objective of this study is to review the major mechanistic and empirical models
for the estimation of evapotranspiration and evaluate their applicability for different agri-
cultural systems. The following models are considered: (1) Penman–Monteith; (2) FAO56
Penman–Monteith; (3) Stanghellini; (4) Priestley–Taylor; and (5) Hargreaves and Samani.
Moreover, this review aims at presenting different measurement systems for the estimation
of important parameters that are required by the models including leaf area index and
surface leaf temperature, along with direct ET measurement techniques. As illustrated in
Figure 1, the two review sections provide the basis for general directions to evaluate ET
rates for both open and closed (greenhouse) agricultural settings. This paper is divided
into four sections: section one discusses the importance of accurate ET estimates in the
optimisation of the energy, water and food (EWF) nexus, section two reviews mechanistic
and empirical ET models, section three discusses ET measurement systems, and section
four presents directions for accurate ET estimates depending on the application.
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Figure 1. Review methodology.

2. Research Methods

The presented review examines a series of peer-reviewed journal articles, mostly
from the year of 1948 which corresponds to the first developed ET model until 2021, ac-
cessed through recognised databases including ScienceDirect, Wiley Online Library, and
Springer, etc. Additionally, other peer-reviewed sources are also considered including
public reports, conference proceedings and book chapters in efforts to enrich the quality
of this review. This work focuses on the major evapotranspiration models and measure-
ment techniques and proposes general directions for ET estimation for open and closed
agricultural mediums. In addition, it examines the role of ET estimates in optimising the
energy, water and food nexus. Thus, the selected literature is classified into three major
categories: studies tackling (1) ET models and their applicability; (2) ET measurement
systems; and (3) the role of ET in EWF nexus optimisation. The search method used
for the identification of studies is based on searching a diverse range of terms related to
the three aforementioned categories in the keywords, title and/or abstract of the articles.
Figure 2 provides a network visualisation of the main keywords used in the search and
that co-occur in most of the chosen articles. The higher the occurrence of the term in the
title and abstract of the articles, the larger the circle and label appear. Four colours are used
in this visualisation with each representing a cluster. Clusters encompass terms that have
a high correlation with each other. The lines represent co-occurrence links between two
terms. As the number of publications where the two terms occur together increases, the
link appears stronger.
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3. The Role of Evapotranspiration Measurement in Optimising the Energy, Water and
Food (EWF) Nexus

The continuously growing population and the rising economic growth engender many
challenges in securing the intensified energy, water and food demands. The intertwined
dependence between the energy, water and food sectors makes it imperative to adopt a
holistic nexus approach in confronting these challenges [5]. Water is a crucial subsystem of
the EWF nexus through which the supply of energy (e.g., hydropower), water, and food
(e.g., agricultural irrigation) is attained. Therefore, the adequate assessment and forecasting
of water quantities in these different sectors are of high importance [18]. The agricultural
sector accounts for 3.5% to 4.8% of the total energy consumption, and 70% of the total
freshwater withdrawals. It is predicted that demand for food will increase by 60% by
2050, which will lead to an increase of more than 50% of the irrigation water requirements.
With this in mind, improved irrigation practices are indispensable to overcome challenges
related to food security [19,20].

Critical nexus interactions are found in the supply of irrigation water requirements
for agriculture. Water and energy subsystems are closely intertwined through the use of
direct energy for pumping fresh water and desalinating water for irrigation. Inaccurate
measurements of irrigation water requirements will thus lead to inefficient use of energy
supplies [20]. Agricultural systems also consume indirect energy in the form of fertilisers,
which defines a crucial energy-food nexus [21]. For example, increased food prices have
been linked to spikes in fertiliser and fuel prices [19]. Thus, the type and amount of
fertilisers required in agricultural systems need to be carefully assessed, monitored, and
planned since assimilation of nutrients by plants varies with respect to soil moisture content
and transpiration. Moreover, in cases where ET is overestimated, excess irrigation may
lead to the leaching of nutrients to groundwater systems.

Nutrients and water, that have a close interaction, are directly responsible for the
growth of plants and can either achieve positive or negative outcomes depending on their
amounts and balance. Adequate irrigation treatments aid in nutrient availability and
their transformation into useful consumable forms. The mineralisation process of organic
nitrogen present in soils or from fertilisers is highly dependent on soil moisture amongst
other parameters. The mineralised nitrate product from the nitrification of ammonium
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increases with an increased available water content within a tolerable range as it is greatly
vulnerable to leaching losses. Hence, an adequate soil moisture content is required to ensure
the nitrification of ammonium, whereas an excess or a deficiency in water content restrains
this process [22]. Low soil moisture can affect the amount of nutrient uptake by the plants
such as sodium, potassium, calcium, magnesium, zinc, etc. This can lead to reductions
at the level of the total dry weight of leaves, stems and fruits for avocado plants [23]. On
the other hand, and for the same type of plant, excess soil moisture can also lead to severe
repercussions on the plants associated with decreased concentrations of iron and zinc at
the level of the leaves [23,24]. In accordance with these findings, citrus plants have also
witnessed reductions in nutrient intake when subject to excess soil moisture content or
excess irrigation regimes. Concentrations of calcium, magnesium and iron dropped in
the citrus seedling leaves when soil moisture was in surplus [25]. The close interaction
between nutrient efficiency and water supply makes it imperative to not only define the
nutrient ratios and amounts and set their schedule but also to adequately estimate the
necessary irrigation water and closely monitor its supply [22].

Calcium deficiency in plants is another consequence of low or high water availability
and transpiration rates. Calcium is a nutrient that is transported via the xylem and not
the phloem of the plant, which makes its movement in the different parts of the plant
primarily driven by transpiration that induces a suction action to draw water and nutrients
up. A high surface-to-volume ratio in fruits is an important parameter that promotes
transpiration and thus helps calcium transport and its accumulation in fruits. However, as
the fruit grows and becomes larger, its surface-to-volume ratio decreases and more wax
deposition occurs which reduces transpiration rates. This means that as the fruit grows, it
is more likely to witness reduced calcium flow into the fruit [26]. It has been proven that
improving plant transpiration is more effective in solving calcium deficiencies in fruits
than directly increasing calcium levels in the substrate [27]. Moreover, the effect of climate
parameters, namely low solar radiation and high humidity, have been linked to calcium
deficiencies in tomato plants perceived in leaf damage and reduced yields. These latter
parameters drive the evapotranspiration rate which needs to be assessed in advance to
predict climate variabilities and minimise their impact on crop growth and yield. In this
particular study, humidity levels need to be lowered in the food system to balance the high
solar intensity and enhance transpiration rates [28]. In this case, accurate estimations of
transpiration will help control the flow of calcium throughout the plant and counterbalance
the effect of climate stressors. Other studies revealed that excess transpiration rates were
responsible for calcium deficiencies in low-transpiring species such as cauliflower, lettuce
and cabbage plants. The high transpiration rates caused high calcium transport to the outer
leaves at the detriment of the inner leaves to receive equitable amounts of calcium [29].

Upgrading agricultural food systems often comes at the expense of higher water
and energy supply. Agricultural greenhouses are a good example of yield improvement
systems, that provide a closely controlled microclimate. Temperature and humidity are
some of the main microclimate parameters that can be controlled and monitored through
the deployment of adequate technology systems (e.g., heating, cooling, and ventilation)
which require substantial amounts of energy for their operation. These parameters are
crucial drivers of plant evapotranspiration rates and thus irrigation requirements [30,31].
CO2 enrichment is another yield improvement and water reduction practice in agricultural
greenhouses. CO2 can be procured either through purchasing commercial or industrial CO2
or internally producing it using gas burners. This induces additional energy requirements
and expenditures to greenhouse operations [32]. The effect of higher CO2 concentrations
has been witnessed in evapotranspiration reductions due to the shrinking of stomata
openings in plant leaves which control gas exchange between the plant and atmosphere
(i.e., water vapour and CO2). Thus, it is important to account for this parameter in
evapotranspiration estimates and irrigation water requirements [33,34]. Not assessing
evapotranspiration based on the new microclimate settings will lead to the inefficient use
of these technologies and the wasteful utilisation of energy and water resources.
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4. Evapotranspiration Mechanistic and Empirical Models

Evapotranspiration entails the combination of two different processes; the vaporisation
of liquid water from surfaces known as evaporation and that from plant tissues called
transpiration and their vapour removal to the atmosphere. The evaporation process occurs
at different water surfaces such as lakes, rivers, soils and vegetation and requires enough
solar energy for the vaporisation of the liquid water. The vapour water removal from the
water surface to the atmosphere is driven by the vapour pressure difference between the
water vapour in the water surface and that in ambient air [2]. The transpiration process
involves the movement of water from the soil to the plant leaves and its evaporation to
the atmosphere through stomata openings within the leaves. Transpiration is an essential
mechanism for plant growth and development as it enables the transportation of important
nutrients and minerals through the different parts of the plant and provides the plant with
the necessary cooling load for its survival. Both evaporation and transpiration processes are
driven by meteorological conditions, mainly solar radiation, air temperature and humidity,
and wind speed. The transpiration process is additionally influenced by crop characteristics
and cultivation methods [2,15].

Potential evapotranspiration (ETp) refers to the maximum amount of water that can
be removed from a surface with an abounding water supply via both evaporation and
transpiration. Contrary to reference evapotranspiration, potential evapotranspiration is
the maximum level of evapotranspiration that can be reached from a surface under ideal
conditions. Potential evapotranspiration is more applicable for analysing water demand of
large areas such as water reservoirs, while reference evapotranspiration is best suited for
crop assessments because it is more precise and accounts for crop-related changes. Evapo-
transpiration models can be classified into four main levels of description: mass transfer,
temperature-based, radiation-based, and combination-based models that encompass both
aerodynamics and energy balance. The mass transfer-based ETp models are founded only
on aerodynamics. Temperature-based models involve only temperature as an input such
as the Hargreaves and Samani model. Radiation-based models consider energy balance
such as the Priestley–Taylor equation for ETp calculations. Both aerodynamics and energy
balance can be aggregated in combination models such as the Penman–Monteith model for
ETp and the FAO56 modified Penman–Monteith model for ETo assessments [35]. Available
evapotranspiration models are either analytical where they are fully based on physical
laws, mechanistic where they use physical laws to predict estimates based on causality
relationships such as the original Penman–Monteith model, or empirical (statistical) where
they are based on correlations developed from experimental observations such as the Har-
greaves model [36–38]. Empirical models are favored for their simplicity but lack physical
significance and regional accuracy [39]. When there are enough accurate available input
data, the use of mechanistic approaches is more suitable than empirical models [14].

4.1. Penman–Monteith Equations

The original Penman–Monteith equation combines the mass transfer with the surface
energy balance and is able to estimate the potential evapotranspiration rate based on
meteorological data and crop physiological characteristics. This equation accounts for
the surface resistance, which entails the resistance of water vapour movement through
the leaf stomata and soil surface, along with the aerodynamic resistance which describes
the resistance of vertical water vapour diffusion from the leaf to the surrounding air
(Equation (1)) [2].

λET =
∆(Rn − G) + ρaCp

(es−ea)
ra

∆ + γ
(

1 + rs
ra

) (1)

where ∆ is the slope of the saturation vapour pressure, Rn is the net solar radiation, G is
the soil heat flux, ρa is the mean air density at isobaric conditions, Cp is the specific heat of
air, es − ea represents the vapour pressure deficit, γ is the psychometric constant, and rs
and ra represent the surface resistance and aerodynamic resistance respectively.
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The net solar radiation can be measured using different instruments including ra-
diometers, pyranometers and solarimeters. In cases where net radiation data are not
available, estimates can be calculated from the incoming net shortwave radiation (Rns) and
outgoing net longwave radiation (Rnl) as presented in Equations (2)–(4) [2].

Rn = Rns − Rnl (2)

Rns = (1− a)Rs (3)

Rnl = σ

(Tmax,K4+Tmin,K4

2

)
(0.34− 0.14

√
ea)

(
1.35

Rs

Rso
− 0.35

)
(4)

where Rs is the solar or shortwave radiation (MJ m−2 day−1), a is the albedo coefficient,
σ is the Stephan–Boltzmann constant, Tmax,K

4 and Tmin,K
4 are the max and min absolute

temperatures during a 24 h period, ea is the actual vapour pressure (kPa), and Rs/Rso is the
relative shortwave radiation.

The aerodynamic resistance can be expressed following the logarithmic wind profile
as shown in Equation (5). Where zm represents the height at which wind speed is measured
(m), zh is the height at which humidity is measured (m), zom is the roughness length of
momentum transfer (m), zoh is the roughness length corresponding to heat and vapour
transfer (m), d is the height (m) above the ground at which zero wind speed is attained
and can be estimated as 2/3 of the obstacle’s height (crop height), k is the Von Kármán
constant (∼0.41), and uz is the wind speed at height z (m s−1). The roughness lengths
included in this equation represent corrective coefficients that consider the effect of the
surface roughness of the canopy on the wind profile. The roughness lengths can also be
estimated as approximately one-tenth of the crop height [2].

ra =
ln
(

zm−d
zom

)
ln
(

zh−d
zoh

)
k2uz

(
s m−1

)
(5)

The surface resistance can be estimated through a simplified equation that combines
the bulk stomatal resistance corresponding to the well-illuminated leaf rI (s m−1) and
the active leaf area index LAI as shown in Equation (6). The well-illuminated leaf area
corresponds to the upper part of the canopy that generally receives the most sunlight. The
leaf area index LAI represents a dimensionless measure of the upper side area of the leaf
per unit area of the soil underneath it. This measure depends on the plant type and density
along with the growing stage. The active LAI deals with the leaf area that directly receives
sunlight and contributes to the photosynthesis process, which is generally the upper part
of a dense canopy. The bulk stomatal resistance represents the average resistance of a leaf
and is highly dependent on the type of crop, climatic conditions and soil and irrigation
water conditions [2]. It is one of the most important variables that depict the effect of
crop management practices and climate conditions at the leaf level. For example, with
water stress conditions such as increased water salinity, increased stomatal resistance is
perceived which directly mirrors in reduced plant growth and reduced evapotranspiration
rates [40]. Other models provided a more detailed estimation of this parameter, whereby
variabilities in climatic conditions were integrated such as the Stanghellini model which is
further discussed in the next section [41]. On the other hand, field-based measurements
can provide more accurate estimates of stomatal resistances by means of measurement
systems such as a leaf porometer [40].

rs =
rI

LAIactive

(
s m−1

)
(6)

The FAO56 Penman–Monteith is considered as the standard method for estimating
reference evapotranspiration (ETo) along with the crop evapotranspiration (ETc) by asso-
ciating a crop coefficient (Kc) to ETo. The reference evapotranspiration model is defined



Water 2021, 13, 2523 8 of 19

according to a hypothetical clipped grass crop of 0.12 m height, 70 s m−1 surface resis-
tance, and 0.23 albedo, grown under sufficient irrigation water conditions as shown in
Equation (7). T represents the mean temperature of the air taken at a 2 m height. All
weather data values are required to be collected at a 2 m height from the ground or need
to be converted to this height for use in this model. This model is a simplification of
the original Penman–Monteith equation with the introduction of assumptions specific to
clipped grass as the crop under study.

ETo =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(7)

ETc = kcETo (8)

The crop coefficient is a representation of the physical and physiological character-
istics of the crop under study relative to the reference crop, including the ground cover,
canopy properties and aerodynamic resistance. The effect of these characteristics is what
makes up the crop coefficient Kc, which can either be estimated in a single coefficient or
divided into two separate effects represented by the dual-crop coefficient. The dual-crop
approach consists of distinctively accounting for two different coefficients in the estimation
of ETc; the basal crop coefficient (Kcb) which accounts for the crop transpiration and the soil
evaporation coefficient (Ke) which represents the evaporative losses from the soil surface
(Equation (9)). The dual-crop coefficient is particularly of interest for specific applications
such as when real-time irrigation scheduling is required or when high-frequency irriga-
tion is applied [2]. The FAO56 Penman–Monteith model was developed for open-field
applications. However, this model entails limitations when applied to closed agricultural
mediums, such as greenhouses, due to the non-logarithmic profile of wind inside these
mediums, whereby the significantly low wind speed inside (close to 0) leads to a loga-
rithmic value of the aerodynamic resistance that tends to infinity. It is thus preferable to
directly measure the aerodynamic resistance [42].

ETc = (kcb + ke)ETo (9)

4.2. Stanghellini Model

The Stanghellini model revised the Penman–Monteith equation in order to have an
applicable estimation of evapotranspiration for greenhouse settings (Equation (10)). This
model includes the impact of the leaf area index (LAI) on the evapotranspiration rate, in
which the exchange of energy from multiple layers of the canopy are considered [41,43].

Eλ =
δ Rn +

(
2LAIρaCp

re
VPD

)
γ
(

1 + δ
γ + ri

re

) (10)

where λ is the latent heat of vaporisation, δ is the slope of the saturation vapour pressure
curve, Rn is the net solar radiation, LAI is the leaf area index, ρa and Cp are, respectively,
the air density and specific heat capacity, VPD is the vapour pressure deficit, γ is the
psychometric constant, and ri and re are the canopy internal and external resistances
respectively.

The net solar radiation term (Rn) in the Stanghellini model is described using an
empirical equation that encompasses short and long wave radiation characteristics on a
multi-layer canopy as shown in Equation (11). This equation also considers radiation fluxes
from greenhouse surface components such as soil covering, cladding material and heating
pipes [15,43].

Rn = 2 LAI
[

0.07Is −
0.16ρaCp(Th − T0)

rR

]
(11)
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where Is is the shortwave irradiance, Th is the apparent radiation temperature, T0 is the
leaf surface temperature, and rR is the radiation resistance. The radiation resistance (rR) is
expressed in Equation (12), and involves the ambient air temperature Ta and the Stefan-
Boltzman constant σ [15,43].

rR =
ρaCp

4σ(Ta + 273.15)3 (12)

The external or aerodynamic resistance re for the Stanghellini model is defined as
shown in Equation (13).

re =
ρaCpl
λaNu

(
s m−1

)
(13)

Nu = 0.37
[

Gr + 6.92Re2
]0.25

(14)

where l represents the characteristic dimension of a leaf (m), λa is the thermal conductivity,
ρa and Cp are the air density (kg m−3) and air specific heat capacity (J kg−1·C−1). Nu is
the Nusselt number and is expressed using the Grashof number (Gr) and the Reynolds
number (Re) as shown in Equation (14).

As for the internal resistance, Stanghellini proposed a parametrisation equation that
can properly estimate the canopy internal resistance in greenhouse settings. This equation
suggests that the internal resistance of a leaf is a function of a minimum possible internal
resistance (rmin) which is related to physiological aspects of the leaf in addition to the
independent effect of climate parameters on the minimum internal resistance as shown in
Equation (15). This method also assumes that the behavior of the leaf internal resistance is
similar to that of the canopy [43].

ri = rmin r̃i(Is) r̃i(T0) r̃i(CO2) r̃i(VPD) (15)

where r̃i represents the relative increase in internal resistance rmin when climate parameters
such as shortwave radiation (Is), leaf surface temperature (T0), CO2 concentration and
vapour pressure deficit (VPD) vary. r̃i functions are defined through the parametrisation
Equations (16)–(20).

The effect of shortwave radiation:

r̃i(Is) =
Is + C1

Is + C2
(16)

Is is the mean irradiance which entails the mean flux received per unit leaf area. An
important observation was made by relating the irradiation to the leaf area because as
the leaf area increases the available irradiation per unit area decreases which leads to
an increase in leaf internal resistance. Is is expressed by Equation (17), where As is the
coefficient of shortwave radiation [43].

Is =
As Is

2 LAI
(17)

The effect of surface leaf temperature:

r̃i(T0) = 1 + C3(T0 − Tm)
2 (18)

where Tm represents the temperature at which minimum internal resistance is achieved.
The effect of CO2 concentration:

r̃i(CO2) = 1 + C4(CO2 − 200)2 (19)

The effect of vapour pressure deficit:

r̃i(VPD) = 1 + C5(VPD)2 (20)
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Parameters C1–C5 were determined by an optimisation model that produced the
best-fit combination of parameters for the observed internal canopy resistance for three
consecutive days as summarised in Table 1.

Table 1. Internal resistance parameters for the Stanghellini model.

Coefficient Daytime Value Nighttime Value

C1 (W m−2) 4.30 -
C2 (W m−2) 0.54 -

C3 (K−2) 2.3 × 10−2 0.5 × 10−2

C4 (vpm−2) 6.1 × 10−7 1.1 × 10−11

C5 (kPa−2) 4.3 5.2
Tm (◦C) 24.5 33.6

rmin (s m−1) 82 658.5

Similar to the Stanghellini model, [44] derived an evapotranspiration model for green-
house settings that incorporated a canopy area index (CAI) as a simplification of the irradi-
ance term instead of the net solar radiation empirical calculation proposed by Stanghellini.

4.3. Priestley-Taylor Model

The Priestley–Taylor model is useful when parameters defining the aerodynamic
resistance are unavailable. This method offers a dimensionless coefficient α that can
replace the aerodynamic resistance term in the Penman–Monteith equation (Equation (21)).
Priestley and Taylor suggested that an average value of 1.26 for α is fairly reasonable [45,46].
Another study developed an adaptation equation for α based on the daily mean vapour
pressure deficit as presented in Equation (22) [12].

ETp =
1
λ

∆
Rn − G
∆ + γ

α (21)

α′ = 1 + (α− 1)VPD (22)

However, limitations of the original Priestley–Taylor method under advective condi-
tions are perceived as underestimates of evapotranspiration rates [14]. Advective condi-
tions occur when atmospheric properties of air such as vapour and heat are transported
to the crops by wind movement. Hence, the elimination of the aerodynamic resistance
parameter restricts the spatial applicability of this model [47]. Moreover, studies uncov-
ered interactions between the α coefficient and other climatological and physiological
parameters such as soil moisture content, solar radiation, atmospheric stability, etc. For
example, as the surface resistance or aridity of the region increases, the coefficient α in-
creases [48,49]. Other studies intended to calibrate the Priestly–Taylor model on the basis
of the PM model. [48] found that an α value of 1.26 is low for the region under study and
suggested a value of 1.82 for cold climates and 2.14 for arid climates to achieve better ET
estimates. Moreover, Priestley–Taylor modified versions have been suggested in the litera-
ture, whereby the equations accounting for a crop coefficient and varying alpha coefficients
based on surface temperature were developed and included in the initial model [50].

4.4. Hargreaves and Samani Model

The lack of available meteorological data and issues related to their quality and
accuracy, especially in developing countries, can pose limitations in the use of certain ET
models such as the Penman–Monteith [48]. The Hargreaves and Samani model represents
an equation through which the global solar radiation at the surface, Rs, is estimated
through air temperature values (Equations (23) and (24)). This equation can be used to
estimate ET values when net solar radiation data is unavailable or questionable in terms of
accuracy [2,51,52].

Rs = kRS
√

Tmax − TminRa (23)
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ET0 = 0.0023
(

Tmax + Tmin
2

+ 17.8
)√

Tmax − TminRa (24)

where Ra is the extra-terrestrial solar radiation, Tmax and Tmin are the maximum and
minimum air temperatures respectively, and KRS is an empirical adjustment coefficient
which depends on the site location. KRS takes a value of 0.16 °C−0.5 for interior regions
and 0.19 °C−0.5 for coastal regions. KRS is fitted to Rs/Ra versus (Tmax − Tmin), and usually
increases with increasing temperature.

These constants limit the model to specific sites and can engender overestimations of
ET rates which in turn can lead to excess irrigation. Hence, several studies investigated
the validity of the Hargreaves model under various locations and suggested calibration
parameters, which helped in reducing the overestimation of ET values [53]. For example, a
calibration conducted by [54] decreased the overestimation of ET by 16.3%.

5. Evapotranspiration Measurement Techniques
5.1. Leaf Area Measurements

Leaf area index measurement techniques are divided into two main categories: direct
and indirect. The direct measurement systems entail destructive approaches from harvest-
ing leaves. Indirect leaf area measurement systems are non-destructive techniques through
which the leaf area is estimated by assessing how the canopy intercepts radiation [55].
Leaf area estimates are important because they reflect the transpiring surface size. This
estimate can be integrated into the models discussed previously to depict variations in the
internal resistance and net radiation within the multi-layered canopy. Ceptometers are a
cost-effective tool that draws an estimate of the leaf area index (LAI) by measuring the
photosynthetically active radiation (PAR) above and below the canopy. Several studies
investigated the accuracy of the ceptometry technique against destructive methods and
concluded that it provides good accuracy for LAI measurements of uniform canopies [56].
Another tool for indirect LAI measurement is via hemispherical photography. This tech-
nique involves the study of canopies via fisheye shaped lenses located downward (looking
up) or upward (looking down) the canopy. It provides information about the size, den-
sity, position and distribution of gaps detected in the canopy. However, this technique
necessitates extensive post-processing of each image independently which can lead to
errors [17,57]. The leaf area meter such as the LAI-2200C proposed by Licor is another tech-
nique, which measures the interception of blue light from below and above the canopy [57].
Image-based remote sensing techniques can also be considered as an indirect measurement
of LAI, which are based on estimating LAI from empirical relations between LAI and
vegetative indices [58].

5.2. Leaf Temperature Measurements

Estimating surface leaf temperature can enhance model-based estimates of ET rates.
Leaf temperature and the temperature gradient between the leaf surface and the ambient
directly impacts the rate of transpiration. Under ideal conditions, the temperature at the
leaf surface is lower than that of the ambient. The opposite, either higher leaf temperature
or equal to the ambient, is an indication of crop stress and unsuitable growing conditions.
Hence, it is crucial to have an estimate of surface leaf temperature as it defines the satu-
ration water vapour concentration within the stomata which represents an indication of
gas exchange between the leaf and the atmosphere [59]. Thermocouples are thermoelec-
tric systems based on converting a temperature signal into an electric signal. The main
advantages of this system are its low cost, simple operation, light weight, and fast response
as compared to other more complex measurement techniques [60]. However, the main
disadvantage of this system is the direct contact with the leaf surface, in which the thermo-
couples can absorb solar radiation and heat from the leaf by conduction. These problems
lead to significant errors in leaf temperature estimates [61]. Infrared thermometers are also
used for leaf temperature measurements and consist of infrared temperature sensors that
measure the infrared energy emitted by a specific spot on the leaf surface and transform
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it into a measurable electrical signal. The major advantages of this method, apart from
being contactless, are quick response and high accuracy. However, the infrared method
is sensitive to the environment in which dust and steam can significantly influence its
precision [60]. Thermal infrared imaging is another leaf temperature measuring system
that contains an optical system and is considered a remote sensing technology. This system
entails temperature measurements at multiple points on the leaf surface, as opposed to
spot infrared thermometers. The infrared camera uses infrared detectors that are sen-
sitive to wavelengths between 7–14 µm to capture infrared energy and converts it into
two-dimensional thermographic image visualisations. These cameras are able to evaluate
temperature gradients over large temporal and spatial scales contrary to thermocouples,
which can help identify variations in ET across large crop areas. Impacts of some param-
eters such as the leaf surface emissivity and the longwave radiation can engender some
inaccuracies in temperature measurements. Although most integrated software accounts
for a correction factor for these variables, it is mostly based on indoor controlled conditions
such as in laboratory settings. Some software can also have fixed corrective factors which
cannot be changed by the users depending on their outdoor conditions. Other software can
combine user-inputted corrective parametrisations, however, it is usually challenging to es-
timate these factors due to the complex settings and dynamic environmental variables [62].
Moreover, thermal cameras hold high acquisition costs, which limit their use in agricultural
applications [60].

5.3. Eddy Covariance Systems

The eddy covariance is considered as one of the techniques for the direct measurement
of evapotranspiration. The eddy covariance is comprised of two sections: an anemometer
that directly measures wind speed and direction, and an infrared gas analyser (IRGA) that
measures gas concentrations in the air such as water vapour. The simultaneous evaluation
of changes in vertical air velocity and water vapour concentration in the air is what enables
the measurement of evapotranspiration in the form of a vertical flux of water vapour. The
eddy covariance technique has been applied to open field applications including field
crops, forests, water bodies, and grasslands, etc. [63]. The eddy covariance method entails
challenging operations as it involves high-frequency measurements along with complex
processing of simultaneously collected data. Moreover, the validation of ET estimated by
this system with other methods is quite challenging due to the large scale, highly variable
area and open boundary layer of the volume studied which does not achieve energy
balances [64].

5.4. Weighing Lysimeters

Weighing lysimeters directly measure evapotranspiration by evaluating changes in
the mass of the soil and crop. They necessitate that the soil structure and composition, the
physiological characteristics of vegetation (e.g., height), and the climatic conditions of the
growing medium inside the lysimeter are similar to the ones outside the lysimeter. The
high economic cost and intensive installation and maintenance requirements of lysimeter
systems limit its application on various parts of the agricultural system to perceive spatial
evapotranspiration variations, which restricts measurements to be taken on only one or
few parts of the land under study. However, a significant advantage of lysimeters is that
they provide simultaneous information on percolation of excess irrigation and soil-water
retention that no other methods provide [64].

5.5. Gas Exchange Measurement Systems

Gas exchange measurement systems enable direct and accurate estimates of ET rates
by tracing the absorption of gases through an infrared light source (infrared gas analyser
IRGA). The latest advancements of these systems operate under open chambers that
evaluate differential gas exchanges through estimating the difference in gas concentrations
(i.e., H2O and CO2) between the input and output of the chamber [65]. These systems
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can also estimate CO2 exchanges at the stomata level, which can be crucial in estimating
the impact of increased CO2 concentrations in the air on the internal resistance and on
the evapotranspiration levels [66]. Higher CO2 concentrations can be caused by increased
greenhouse gas emissions or linked to CO2 enrichment practices in greenhouse settings.
Particularly in the latter application, evaluating the effect of varying CO2 concentrations is
of high importance to determine the ideal CO2 concentration that needs to be injected for
optimal outputs in terms of yield and evapotranspiration levels [67].

5.6. Remote Sensing

Remote sensing revolves around the observation and measurement of parameters
without physical contact with the subject under study. Remote sensing data can be retrieved
from satellite technologies and provide information about biophysical parameters that
can assess evapotranspiration such as the type and density of the vegetation and the
surface albedo [16,68]. Several approaches have been developed in the literature for
estimating evapotranspiration from remote sensing data, from which two general methods
have been widely used in the agricultural field. One method uses radiometric surface
temperature to separate latent heat from sensible heat. The second approach is based
on vegetation indices (VI), taken from surface reflectance, that can estimate basal crop
coefficients on spatial scales. Vegetation indices from satellite remote sensing include leaf
area index (LAI) and the normalised difference vegetation index (NDVI) which can be
included within the surface resistance estimation in the Penman–Monteith model [69,70].
The radiometric temperature can be adjusted to determine aerodynamic temperatures
through semi-empirical or empirical models that incorporate spatial distribution in surface
roughness lengths. This can be included in the Penman–Monteith equation to estimate ET
rates. As for the basal crop coefficient, it can be used to estimate crop evapotranspiration
from the reference evapotranspiration [69,71]. ET estimates from remote sensing data offer
a large spatiotemporal distribution, which makes it a prevailing method in large scale and
climate impact mapping applications [72]. However, challenges remain to obtain reliable
estimates in regions with cloud cover and dust. Various studies tackled the reconstruction
of missing data in these regions by means of different methods such as cloud removal
and gap filling, but the linearity of these models still poses some limitations [73]. Remote
sensing data are also used in data-driven models which estimate evapotranspiration rates
by different data forcing methods such as machine learning, regression, neural networks,
etc. The data-driven models can also be coupled with physical models to parametrise
certain subprocesses dealing with uncertainty [74].

6. General Directions for Evapotranspiration Estimates

Evapotranspiration models differ in terms of application, inputs needed and time-step
as summarised in Table 2. The mechanistic and empirical models can also be coupled with
direct and indirect measurements depending on the application and available measurement
systems as illustrated in Figure 3. The original Penman–Monteith equation is considered a
powerful model for the estimation of evapotranspiration as it combines both the aerody-
namic and surface resistances. However, limitations of this model occur in the calculation
of the surface resistance which entails intensive data collection and modeling. With the
FAO56 simplified Penman–Monteith model, the surface resistance term is replaced by a
fixed term following a reference crop and standard conditions. However, the simplification
of the surface resistance term can reduce the accuracy of ET estimates. The Priestley–Taylor
model is a good model for potential evapotranspiration calculation when aerodynamic data
are unavailable, hence requiring fewer input data. However, underestimates of ET rates
have been reported using this model under advective conditions. Similarly, the Hargreaves
and Samani model requires less input data and is primarily beneficial when meteorological
data are unavailable especially net solar radiation. However, the integration of an empirical
constant in this model can lead to overestimations of ET rates and weaken the accuracy of
this model.
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Table 2. Summary of evapotranspiration models (adapted from [46]).

Evapotranspiration Model Application Reference Crop Time Step Inputs

Penman–Monteith Open field Clipped grass and
Alfalfa Daily and hourly

Solar radiation, air
temperature, relative

humidity, and wind speed.

Stanghellini Greenhouse Tomato Hourly
Solar radiation, air

temperature, relative
humidity.

Priestley–Taylor Open field - Daily Air temperature and solar
radiation.

Hargreaves and Samani Open field - Daily Air temperature.
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Several studies compared existing mechanistic and empirical models, especially for
greenhouse applications as summarised in Table 3. [15] compared ET estimates from
the Penman–Monteith and Stanghellini models and that of direct ET measurements for
greenhouse settings. Findings of this study showed an enhanced ET prediction with the
Stanghellini model with a model efficiency (R2) of 0.872 as compared to 0.481 achieved
through the Penman–Monteith model [15]. Overestimations of the evapotranspiration rates
were observed, and few studies explained the potential cause of these overestimations in-
cluding the challenging parametrisation of the canopy and aerodynamic resistances and the
somewhat non-homogeneous microclimate data collected in greenhouse environments [13].
The Penman–Monteith model assumes homogeneity in collected climatic data which can
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be appropriate for open field settings but can rather introduce discrepancies for ET esti-
mates in greenhouse mediums. [75] investigated the use of the Penman–Monteith model in
greenhouses by comparing its ET estimate to direct measurements. The findings of this
study demonstrated that the location of climatic parameters collected has a large impact on
ET estimates. This study further suggests the adaptation of the Penman–Monteith model
to greenhouse conditions, whereby if temperature and humidity measurements are taken
inside the canopy rather than on top of the canopy, the ET model shows improved accuracy
for greenhouse applications [75]. This method can be applied by adopting accurate mea-
surement systems for the estimation of leaf surface temperatures such as thermocouples,
infrared thermometry and infrared thermal imaging.

On another note, the consideration of the leaf area index factor and the net solar
radiation empirical equation in the Stanghellini model explain the improvements in evapo-
transpiration estimates for greenhouse environments, where the multi-layered leaf aspect
of the plant canopy is considered. Moreover, the inclusion of the effects of microclimate
variations in the internal canopy resistance provides a better estimate for ET rates in green-
houses. This consideration offers many benefits that can also be applied to open field
agricultural systems, with the appropriate parametrisation, whereby effects of climate vari-
ations can be examined on the stomatal level and included in the evaluation of the canopy
internal resistance. Detailed studies have also successfully proven that the Stanghellini
model gives accurate estimates for unheated greenhouses with natural ventilation [76],
and for cooled greenhouses with natural ventilation and high pressure fogging [41].

Table 3. Studies comparing evapotranspiration models.

Study Aim Conclusion

[15]

Comparison between four
evapotranspiration models against direct

ET measurements for greenhouse
settings: Penman, Penman–Monteith,

Stanghillini, and Fyn models.

The Stanghellini model has the best
model performance for ET

predictions.

[77]
Comparison between Penman–Monteith
and Stanghellini for greenhouse grown

tomato crops.

The Stanghellini model has a better
estimate due to the LAI, net radiation

and stomatal resistance
considerations.

[41]
Comparison of three evapotranspiration

models for two crops grown in
greenhouses with cooling.

Overestimation of ET by the
Penman–Monteith model.Need for

parameter adjustments for
Penman–Monteith and Stanghellini

models.

[3]
Comparison of six evapotranspiration
models in an open field agricultural

system.

Direct methods such as the original
Penman–Monteith model propose

better estimates than indirect
methods such as the FAO56 model.

[78]
Comparison of the Penman–Monteith,

Priestley–Taylor and Hargreaves models
for a specific location.

The Priestley–Taylor and Hargreaves
models underestimate ET values.

The Penman–Monteith model is recognised as the basis for all ET mechanistic and
empirical models. The FAO56 simplified Penman–Monteith was developed as a standard
for irrigation management and can be considered as a general method for ET estimates
under open field conditions. On the other hand, if accurate ET estimates depicting the
effect of climate variations (such as increased ambient CO2 concentrations) or growing
conditions (such as salt stress) on the leaf level, the original Penman–Monteith is advis-
able. Instead of adopting the FAO56 assumptions related to internal and aerodynamic
resistances, direct measurements of the stomatal and boundary layer resistances can be
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conducted and integrated into the original Penman–Monteith equation [40,79]. These
measurements can also be used to calibrate existing models to specific climatological and
growing practices [13]. Measurement systems include weighing lysimeters, eddy covari-
ance and gas exchange systems that can estimate ET rates, however, these systems are
associated with high capital and maintenance costs. Moreover, other measurements such
as surface leaf temperature and leaf area index are recommended by means of different sys-
tems [36]. However, the economic cost related to the acquisition and maintenance of direct
measurement systems can curtail their use by profit-based agricultural organisations. These
systems are mainly used for research purposes to develop parametrisation improvements
into existing ET models based on the location and its meteorological conditions, the type of
crop grown, and growing conditions and practices [3]. Finally, the Stanghellini model is the
best-adapted model for greenhouse settings. It is also advisable to adapt this model to the
greenhouse’s architecture (e.g., screen material, land covering, roof shape), specific growing
conditions (e.g., ventilation, cooling, heating), type of irrigation (e.g., hydroponics), crop
type, etc. Hence, there exists a trade-off between the high economic cost of acquiring direct
measurement systems and improving the accuracy of ET estimates.

7. Conclusions

This review presents five major evapotranspiration (ET) models, describes their un-
derlined assumptions and evaluates their applicability for open and closed agricultural
systems. This study also highlights the importance of parameter measurements that enter
in the estimation of the evapotranspiration such as leaf area index (LAI) and surface leaf
temperature, in addition to direct and indirect evapotranspiration measurements. Direc-
tions for estimating evapotranspiration rates are proposed based on the reviewed models
and measurement techniques for both open and closed agricultural settings. In general,
the FAO56 Penman–Monteith equation presents a simplified and fairly accurate estimate
for open field ET estimations. The Priestley–Taylor and Hargreaves models are a suitable
approach where the extensive data requirements of other models are unavailable. The
Stanghellini model best describes the evapotranspiration flux exchanges in greenhouses,
whereby the multi-layered canopy aspect is considered along with a microclimate-based
internal resistance estimate, and an LAI-based net solar radiation calculation. Adaptation of
these models to climate variations and growing practices (e.g., irrigation type and schedul-
ing) is necessary for improved accuracy and optimal supply of irrigation requirements.
Additionally, adequate evapotranspiration measurements provide nexus opportunities
that alleviate major trade-offs within the energy, water and food sectors for agricultural
applications.
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