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Abstract: The objective of the presented study was to develop a high-temporal-resolution stochastic
rainwater harvesting (RWH) model for assessing the dual benefits of RWH: potable water savings
and runoff reduction. Model inputs of rainfall and water demand are used in a stochastic manner,
maintaining their natural pattern, while generating realistic noise and temporal variability. The
dynamic model solves a mass-balance equation for the rainwater tank, while logging all inflows and
outflows from it for post-simulation analysis. The developed model can simulate various building
sizes, roof areas, rainwater tank volumes, controlled release policies, and time periods, providing
a platform for assessing short- and long-term benefits. Standard passive rainwater harvesting
operation and real-time control policies (controlled release) are demonstrated for a 40-apartment
building with rainfall data typical for a Mediterranean climate, showing the system’s ability to supply
water for non-potable uses, while reducing runoff volumes and flows, with the latter significantly
improved when water is intentionally released from the tank prior to an expected overflow. The
model could be used to further investigate the effects of rainwater harvesting on the urban water
cycle, by coupling it with an urban drainage model and simulating the operation of a distributed
network of micro-reservoirs that supply water and mitigate floods.

Keywords: rainwater harvesting; stochastic simulation; water saving; runoff minimization;
real-time control

1. Introduction

Rainwater harvesting (RWH) has gained interest in recent years, as researchers and
engineers find that it has positive effects on urban water infrastructure even in developed
countries with functioning water supply systems [1]. Collection of water from rooftops,
before it reaches street level, yields of water in relatively good quality which can diversify
cities’ water sources [2,3]. Hence, it can enhance the sustainability of urban water use,
while reducing the abstraction and conveyance costs of the water. Moreover, with less
rainwater reaching street-level, urban drainage systems are expected to experience reduced
peak flows and runoff volumes.

As rainfall patterns, water demands and stormwater management systems vary
greatly between different climatic, socioeconomic and geographic regions, the field of RWH
modeling has developed in order to assess the expected gains from such systems prior
to installation [1]. Owing to these variations, different RWH models have been set up by
many research groups in a variety of locations around the world [4].

Traditionally, these models have focused on potable water saving, and by applying
continuous mass-balance simulations on rainwater storage tanks, strive to gain insights
into the optimal sizing of these tanks [5,6], quantify the water saving potential or the
financial viability of installing RWH systems at the examined location [7,8], or include
energy savings and carbon emission reduction [9].

Today, many research groups have shifted their focus to more elaborate and data-
intensive models, which can simulate and assess the effects of RWH implementation on
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related water infrastructure. As rainwater is collected from the impervious surface of
rooftops, storing it and preventing its continuous flow, alleviates stress on local drainage
systems [10] and reduces the recurrence of floods and damages recurrence [11]. The study
of possible effects of RWH systems on urban drainage systems in their vicinity is a field
which has gaind increasing interest since it was introduced by several research groups in
the early 2000’s [12].

The benefits of RWH systems as part of sustainable drainage networks are being
studied at two levels: volumetric runoff reduction and reduction of peak flows. Volumetric
runoff reduction is important especially in cities that have combined sewer system, as it
helps to minimize the detrimental effects of releasing a mixture of urban drainage water and
foul sewage to the receiving waterbodies through CSOs (combined sewers overflows) [13].
Volumetric approach studies usually compare runoff volumes generated in a watershed
before and after the extensive implementation of RWH systems.

The peak flow reduction approach allows for significant insights, as drainage system
design is focused on dealing with peak momentary flows rather than on the total volume
of water that is conveyed through the network. In order to yield reliable estimations of
the effect of RWH on peak flows reduction, simulations have to be conducted in a high
temporal resolution (i.e., short timesteps). While in models aimed at optimizing tank size
or assessing potable water savings daily timesteps usually suffice [6], a sub-hourly timestep
is required in order to enable the use of a simulation’s output as part of urban drainage
models [14,15]. In such high-temporal resolution, rainfall and water demand data can be
difficult to acquire and need to be synthesized or assumed to be deterministic [16].

Although the widespread implementation of RWH system in urban environments is
by definition an addition of significant stormwater detention volume to the local drainage
system, the decentralized nature of these systems carries an inherent shortcoming when
examining their ability to mitigate peak drainage flows: during long and/or intense rain
events, reasonably sized storage tanks fill up at some point during the storm and remain
full or mostly full throughout the rest of the storm, as the demand for the stored water
is usually lower than the rainwater flows from the roof. With a full tank, any additional
rainfall immediately causes overflow [17]. A possible method of overcoming this drawback
is by releasing water from the storage tank prior to a predicted overflow, thus freeing
storage volume for the expected storm. Both empirical studies [18] and model-based
predictions [19,20] suggest that incorporating remote sensing and real-time control (RTC),
which generate controlled release policies based on rain forecasts and the water level in the
tanks, yield significant improvement in peak-flow reduction with only a minor negative
effect on potable water savings. This new approach of controlling the operation of the
RWH systems, rather than just optimizing their design, has moved the field of RWH into
the control optimization domain where multiple decentralized RWH systems are controlled
in parallel (centralized control), as demonstrated by [21]. RWH systems control is quite
similar to the field of optimal operation of multi-reservoir systems, a field which is both
well-established [22] and evolving [23]. Using knowledge and methods from the latter with
essential adaptations such as simulation timestep and reservoir volume [24] could increase
the efficiency of a network of RWH systems in saving potable water and mitigating peak
runoff flows, which often are competing objectives.

Only few RWH models capable of evaluate both water saving potential and peak flow
reduction have been set up so far for a Mediterranean climate. Muklada et al. [25] evaluated
the water saving potential of installing RWH in buildings with a varied number of residents
and roof areas while using stochastic daily rainfall input based on rainfall data from the
Israeli city of Haifa and constant demands per capita. Nachshon et al. [26] estimated the
runoff volume reduction efficiency (i.e., the reduction in annual runoff generated from
the roof, see “Efficiency Estimators” below) of buildings with RWH systems installed in
buildings in Tel Aviv city (Israel) as 0.8–80% of the annual rainfall volume. This water
could be harvested and used. However, this research focused on aquifer recharge rather
than non-potable domestic use of rainwater. Furthermore, the estimation was not backed
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up by simulations but rather adapted from previous research. RWH estimations for Jordan,
Israel’s neighboring country to the east, were made by [7,27] for different regions, including
ones having a Mediterranean climate and average annual rainfall of 500–550 mm. These
estimations used annual or monthly rainfall and demand data, and provided water supply
and financial estimation for implementing RWH, without considering runoff mitigation.

The above works used medium (daily) to large (monthly or annual) timesteps, and
thus provide only a rough approximation of the runoff mitigation ability of RWH systems,
if this issue was addressed at all. Due to the stochastic nature of both rainfall and domestic
water demands in short timescales (minutes), more detailed models are needed. Moreover,
in order to couple RWH models with urban drainage models and estimate their effect,
short timesteps are required.

The goal of this study was to develop a high-temporal resolution stochastic RWH
model as a tool for the assessment of both the water savings and runoff reduction (peak
flow and total volume) of a RWH system installed in a residential building. The RWH
model developed is a dynamic simulation model, which uses real-life rainfall and water
demand data. The model is fully parameterized and can simulate various buildings and
climatic conditions. To examine the model’s outputs and operation, short timestep rainfall
intensity and domestic water demand data from Israeli databases were used as input to
evaluate the RWH potential for a Mediterranean climate. To demonstrate the suggested
modeling framework and to evaluate its outputs, a typical Israeli multiple apartment
building was modeled and the benefits from installing a RWH system in it were evaluated
and compared with outputs from existing models with the appropriate adaptations such
as tank sizes, water demand, and rainfall data.

2. Methods
2.1. Model Framework

At the base of most RWH models is a simple mass balance equation which yields the
rainwater volume in the storage tank [28]:

St = MAX
{

0
St−1 + Rt − Yt − Ot − CRt

(1)

where t is the current timestep; S is volume of water stored in the tank; R is inflow
from rainfall; Y is yield or demands satisfied by rainwater; O is overflow; and CR is the
controlled release flow of water from the tank (see below “real-time control (RTC)”). The
model solves this equation for each timestep. The calculation method of inflows (Rt) and
yields (Yt) usually differentiate models from each other. Inflows are a function of rainfall
and collection surface. Rainfall data are unique for each location, and could be used as-is
if their attributes (timestep and number of records) is sufficient (e.g., [20]). Rainfall data
could also be synthesized [16], or generated stochastically [25].

Yields are a function of water demands and the current volume of water in the tank.
Yields could serve both indoor demand (toilet flushing, laundry) [29] and/or irrigation [10].

The algorithm of the presented model is described below, and its flowchart is presented
in Figure S1 of the Supplementary Material. The model was coded and run with MATLAB
by Mathworks.

In a timestep with recorded rain, a conceptual depression losses tank fills up (Figure 1).
This “tank” simulates the wetting and depression losses of the rooftop. It gains volume
by rainfall and loses it by evaporation, both are inputs from the meteorological database.
When the depression loses tank is filled, the main rainwater tank begins to receive inflows
minus some system loses which represent first flush and leakages from the building’s
gutter system. Inflow Rt to the main rainwater tank is given by:

Rt = MAX
{

0
(DLt−1 + Dt − DLmax)× (1 − η)× Aroo f

(2)
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where DL is the depression losses tank depth (m); Dt is rain depth (m); DLmax is the
maximum depth of the depression losses tank (m); η is gutter system losses (−); and Aroof

is the roof area (m2).
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Figure 1. Modeling framework of a rainwater harvesting system. The conceptual depression losses
tank needs to overflow to initiate inflows to the main rainwater tank. The rainwater tank is gaining
water when Rt > 0, and lose water due to overflows, yield (demands) or controlled release (if the
latter is modeled).

The intended use simulated in this study is toilet flushing, as this necessitates minimal
treatment (if at all), but other uses (e.g., laundry) can also be simulated. Independently
from rainwater fluxes, a demand module creates toilet flushing usage pattern and supplies
from the rainwater tank if enough water is available, and partially or fully by potable
water otherwise.

The YAS (yield after spillage) approach was chosen as it was found to be more conser-
vative for assessing the water yield for a given storage tank volume [28,30]. According to
YAS, if inflows from the roof plus the existing rainwater volume in the tank before demands
exceed the capacity of the rainwater tank, overflow occurs. This overflow equals to:

Ot = Max
{

0
St−1 + Rt − Smax

(3)

where Smax is the tank capacity.
When Ot > 0, St is set to Smax, and the timestep is completed after demands are fulfilled.
By default, the program simulates full rain seasons (i.e., one simulation run is a run

over a full rain season). Nevertheless, the model can simulate any length of rainfall data
and could also be used to simulate specific rain events.

The single-building model allows simulations of a customizable number of apartment
(and the consequential number of residents) and roof area. For tank design purposes,
simulations of different tank sizes for the same building (same roof area and same number
of apartments) are available in order to examine the RHW system performance as a function
of the storage tank volume.

For long-term performance assessment, it is possible to simulate a succession of
randomly selected rain seasons with changing demand patterns, which are derived by
a stochastic generator (see below). All the water fluxes presented in Figure 1 were logged
to enable any desired post-simulation analysis.
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2.2. Efficiency Estimators

To evaluate the RWH system performance for potable water saving and runoff reduc-
tion, three efficiency estimators are calculated: water-supply efficiency (WSE), peak-flow
reduction (PFR) and overall overflow volume reduction efficiency (VRE).

WSE is the fraction of demands satisfied by rainwater from the overall annual de-
mands. WSE is calculated for each simulated year by summing the yields and demands of
all timesteps [10,25]:

WSE =
∑ Yt

∑ dt
(4)

where dt is the is water demand of the designated use (toilet flushing in this study) for
timestep t.

PFR is the reduction of the maximum roof runoff per simulated year when RWH is
implemented. In other words, PFR compares the maximum flow of water from the roof
with and without the RWH system. As it is possible that the RTC module will trigger
a controlled release while overflow occurs (see “real-time control”), the sum of both flows
for each timestep is taken into consideration when calculating PFR [24]:

PFR = 1 − max(Ot + CRt)

max(Ot, Smax = 0)
(5)

where max(Ot + CRt) is the maximum sum of overflow and controlled release for a specific
timestep from the storage tank recorded in a certain year, and max(Ot, Smax = 0) is the
maximal recorded overflow for the same year where the tank volume (Smax) is 0, i.e., the
maximum roof runoff (with no RWH system).

VRE is the reduction of the annual runoff volume generated from the roof. VRE
also quantifies the efficiency of the RWH system for using the available annual rainwater
(identical to RUE: rainwater use efficiency in [25]). For example, a VRE of 1 means that
all annual rainwater volume was supplied, and none overflowed or were released to the
urban drainage system:

VRE = 1 − ∑(Ot + CRt)

∑ Rt
(6)

2.3. Real-Time Control (RTC)

A RTC module was set up based on [20]. The module enables examining different
strategies of controlled release from the storage tank: the residual volume of water to be left
in the tank is the decision parameter α. The model allows several values to be examined in
parallel, from 0 (complete emptying of the tank) to 1 (no intentional water release).

Twice a day, at 12:00 and 24:00, the RTC module obtains a forecast for the total
predicted amount of rain for the next 24 h. For the current simulation purposes, it was
assumed that the forecast is 100% accurate as it is derived from the rainfall data. It should
be noted that this could be changed in the future to allow for uncertainty and errors in
rainfall forecasts. Based on this forecast, the module determines whether overflow from
the storage tank is predicted during the next 24 h, i.e., the expected rainfall volume (Rt)
plus the current volume of water in the tank (St) exceed the overall tank volume. If so, the
module simulates the opening of a valve (conceptually installed at the bottom part of the
tank) for releasing water in a controlled manner. The release flowrate is a function of the
current water level in the tank and the orifice’s cross-sectional area:

QCRt = Cd × A ×
√

2 × g × h (7)

where QCRt is the controlled release rate of flow, Cd is the coefficient of discharge, A is the
orifice’s cross-sectional area, g is the gravitational acceleration and h is the height of water
column above the orifice.



Water 2021, 13, 2415 6 of 15

The total volume of the released rainwater CRt is calculated by implementing the
numerical midpoint method and multiplying the resulting controlled release flow with the
timestep duration.

If inflows are smaller than the controlled release, QCR declines with time, as the height
of the water above the release valve decreases. To investigate different release policies,
a release decision parameter α ranging from 0 to 1 is introduced, and the valve will remain
open and release water until the following term is satisfied:

St ≤ Smax × α (8)

or until the next forecast predicts no overflow in the following 24 h.
In this manner, high α values mean favoring water supply over runoff mitigation, as

more water is kept in the tank and available for supply, but less free volume is available for
receiving the roof runoff and preventing overflows from the tank.

2.4. Water Demand

Excluding irrigation, toilet flushing is the most significant non-potable domestic water
consumer [31,32]. Toilet flushing demand data was adapted from [33], and includes water
demands from 15 households for a period of 3 weeks each. Measurements were taken
at 1-s temporal resolution and are classified by water appliance. Data were aggregated
to 10-min temporal resolution to fit the timestep of the model. The modeling framework
was built under the assumption that Israeli households rarely irrigate during winter (see
Section 2.5 below), let alone during and shortly after rain events. As such, demands from
the rainwater tank were set to include only toilet flushing.

2.5. Meteorological Data of the Case Study

As one of the goals of the model is to assess RWH effects on urban drainage flows, the
model must rely on sub-hourly input data both for inflows (rainfall) and outflows (water
demands). The Israeli Meteorological Service’s (IMS) longest recording rain gauge of sub-
hourly timesteps is located at Bet Dagan meteorological station at Israel’s central coastal
plain (32.0 N, 34.8 E), and could be seen to represent the rainfall patterns of the country’s
major urban center. The Israel coastal has a hot-summer-Mediterranean climate (Csa under
the Köppen climate classification), with precipitation occurring only from September to
May, and mainly from November to March. Summer (June to August) is literally dry.
During winter, rain events are sporadic with long dry periods between consecutive events.

The case study weather input includes rainfall measurements of 22 winter seasons
from Bet Dagan weather station in 10-min timesteps; 20 consecutive seasons from 1999
until 2019 plus the 1993–1994 and 1994–1995 winters, and the corresponding evaporation
data in daily timesteps, with the latter used to simulate wetting loses (see modeling
framework above).

Missing records were infilled using neighboring weather stations (if available) or
linear interpolation, so that the cumulative 10-min timestep rain depth would sum up to
the measured daily rain depth.

The annual average rainfall of the dataset was 507 mm, slightly below the long-term
average of the Bet Dagan station (524 mm). The 25–75 percentiles were 405 and 595 mm,
respectively, with median value of 479 mm (Figure 2a). The 22 recorded seasons had, on
average 21.5 rain events per season, where a rain event is defined as rainfall of at least
1 mm with 24 h of preceding dry weather. The average rain event in the recorded dataset
had 23.5 mm falling in 32.5 h. The average dry period between consecutive rain events
(excluding the long dry summer) lasted 160 h, or 6.67 days (Figure 2c).
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Figure 2. Rainfall data from Bet Dagan (Israel) meteorological station (a) Box plot of annual rainfall.
(b) Frequency distribution and empirical cumulative distribution function (CDF) of rain events depth.
(c) Frequency distribution and empirical CDF of dry periods (within the rainy season).

2.6. Stochastic Modelling Framework

To produce rainfall and demand inputs using the available data, a stochastic approach
was taken using sampling with replacement; randomly choosing one dataset for each rain
season and for each day of the simulation.

At the beginning of each simulated year, a random dataset representing one rain
season (from the meteorological data described above) is selected from the pool of available
data. This rain season’s records will be used for the entire simulated year alongside its
corresponding evaporation data.

To produce sufficient demand data series in an appropriate temporal resolution at
a household-scale, a method of generating stochastic water use patterns was adapted
from [34]. Using sampling with the replacement of each apartment in the modeled building
enables simulating long time periods with short timesteps, while producing demand
patterns which correspond with realistic diurnal patterns of toilet flushing.

Given that most people have daily routines, residential water demand, and toilet
flushing in particular follow a diurnal pattern [35,36]. To produce this typical shape while
using the available demand data, each apartment of the modeled building was assigned
randomly to one of the 15 households from Shteynberg’s measured data [33]. Then, for
each modeled apartment, a whole day of toilet flushing demands was drawn randomly
at the beginning of each simulated day (00:00 h) from the relevant real-life data. This
random drawing was repeated for each apartment at the beginning of each simulated
day. In this way, even if the modeled building is larger than 15 apartments (the number
of households in the real-life database) and some apartments in the simulated building
are assigned the same real-life household, each day of demands of the entire building is
different, demands are not degenerated into deterministic values, and the overall diurnal
pattern is kept. As the demand patterns on weekdays and weekend days differ, at 00:00 h
the model determines whether the upcoming day is weekday or weekend day (Friday or
Saturday in Israel) and draws an appropriate day of demands for each apartment.

This manner of drawing datasets ensures the integrity of the data as well as its unique-
ness; while each recorded year of rain data is used several times during the simulation,
it meets different set of demands each time. The same principle is applied to the smaller
loop of drawing demands; the daily demand dataset i for apartment j in Shteynberg’s
data is used several times during each simulation for different apartments in the modeled
building, but each time it combines with different demand datasets to produce a unique
day of demands for the entire modeled building.

The example of a generated demand pattern for a 40-apartment building is presented
in Figure 3. Although the demands for each 10-min timestep are erratic (as would be the
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case in a real building), smoothing the raw data with a 3-h moving average reveals a typical
residential diurnal pattern of toilet flushing [35,36]. The average consumption for toilet
flushing is 33 L/(person·d), which corroborates the average value in [36].
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Figure 3. Two days of toilet flushing demands for 40 apartments created by the stochastic water
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3. Results and Discussion

In this section, the model’s output is presented, and possible analyses of the output are
demonstrated, including rainwater tank volume examination, creating efficiency curves,
and investigating possible controlled release policies (RTC). The parameters used in the
simulations are presented in Table 1.

Table 1. Parameters of the simulated RWH system.

System Losses Depression Losses Num of Apts. Roof Area Orifice Diameter (RTC) Simulation Timestep

10% 0.5 mm 40 840 m2 1 cm 10 min

3.1. Storage Tank Sizing

For the simulated building, the WSE (water supply efficiency) demonstrates a logistic
growth pattern, showing that increasing the tank size above 30 m3 carries little benefit.
PFR (peak-flow reduction) values grow linearly and are scattered along the y axis from
0 to 1. The VRE (volume reduction efficiency) values suggest that a significant portion of
the annual rainfall could be harvested and used even with relatively small tanks.

One of the common uses of RWH models is to evaluate different system designs,
mainly the sizing of rainwater tanks. The modeling framework allows simulating different
tank volumes for the same building and demand patterns. A 40-apartment building with
a roof area of 840 m2 was modeled. The model was executed for 100 randomly selected
rain seasons. WSE, PFR, and VRE were calculated (Figure 4).

Mean annual demands were summed to 1930 m3/year, and the mean annual rainwater
volume harvested (i.e., annual rain X roof area minus depression losses minus transfer
losses; Equation (2)) was 341 m3. This corresponds with [7], who estimated the annual
available rainwater volume from a 850 m2 roof in an areas of Jordan with average rainfall
of 500 mm per year to be 360 m3.
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The WSE shows typical saturation growth curve, with the marginal utility diminishing
as the storage tank size increases. For a 50 m3 storage tank, the median WSE reaches 0.18
(25–75 percentiles from 0.16 to 0.22) of the total annual demand (including the rainy winter
and the dry summer), which corresponds with the findings of [29] on RWH feasibility in
apartment buildings. Another simulation was conducted on a building with 16 apartments
with a roof area of 400 m2, similar to a building modeled by [25]. The results show similar
correlations between WSE and tank volume, with WSE reaching a maximum value of 0.19
with a tank volume of 35 m3 or above. Muklada’s results showed a maximum value of 0.2
for WSE for the same tank volume while also supplying rainwater for laundry. It should
be noted that in Muklada’s study demand data were deterministic, and the model was
executed on a daily timestep. These differences could have caused the difference in the
maximum WSE between the current study and Muklada’s findings.

A building with 16 apartments and a 800 m2 roof was simulated to check the model’s
correspondence with the findings of Palla et al. [37], who examined the WSE of RWH
systems in Catania, Italy (590 mm mean annual rainfall). According to Palla et al. a building
with a 50 m3 tank and similar annual rainwater volume to annual demands ratio would
reach WSE of 0.4, while the present model estimated a WSE of 0.35. This difference could
be explained by the fact that rainfall in Israel characterized by short and intense storms,
scattered mainly from November to March. This is causes more frequent overflows and
less rainwater availability to satisfy demands. The modeled building with a 50 m3 tank
is able to collect 75% of the annual rainwater while the rest overflows, compared with
a building with the same attributes in Catania, which is expected to collect more than 90%
of the annual rainfall according to Palla et al.

In comparison to the limited growth of WSE values, PFR median values (Figure 4b) in-
crease linearly with increasing modeled storage volume. This difference could be explained
by the fact that the annual rainfall is able to supply a limited fraction from the total annual
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toilet flushing demands. However, it is possible (although probably not economically
viable) to install a tank large enough to hold all the annual rainfall and decrease overflow
to 0, thus resulting in a PFR value of 1.

Like WSE, VRE shows logistic growth with increasing tank size (Figure 4c). It was
demonstrated that even the smallest 5 m3 tank is capable to capture 54% of the annual
rainfall. Therefore, 50 m3 tanks can collect 95% (median value, 25–75 percentiles from 89%
to 99%) of the annual rainfall, and all tank sizes larger than 25 m3 enable the use of at least
80% (median value) of the annual rainfall, or in other words, an at least 80% reduction of
the annual overflow volume.

3.2. Efficiency Curves

Another possible use of the model is to create efficiency curves for expected WSE, PFR
and VRE as was suggested by [38] and adapted by [39]. These curves enable the assessment
of the efficiency estimators’ values for a wide range of buildings, and examining the effects
of different tank designs in an accessible manner. For the efficiency curves presented
here, 100 different apartment buildings with roof areas of 400 to 900 m2 and an apartment
number of 30–60 were modelled under similar 100 rain-season simulation, resulting in
100 PFR, WSE and VRE results per building. Contour plots of the mean values of the
estimators were charted as a function of storage tank volume and the normalized roof area
(roof area (m2) divided by mean annual demands (m3); Figure 5).
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These curves can be used to estimate the benefit of installing RWH systems in differ-
ent buildings. To demonstrate this, let our designated building be the abovementioned
40-apartment building with a roof area of 840 m2, and an estimated annual toilet flushing
water use of 1930 m3 (the latter can be estimated by multiplying the number of tenants
by the expected annual water use for toilet flushing per capita). This building has a roof
area to annual demand ratio of 0.45 m−1. For the purpose of this demonstration, the main
objective of installing the RWH system in this building is to reduce the expected peak flow
from the roof by 40%. By examining the PFR curves, it can be deducted that a rainwater
tank of 35 m3 would reduce the annual peak flows by 40% (on average) and would be
able to supply about 17% of the annual toilet flushing water demand (WSE). If the desired
PFR is 0.5, a tank of 45 m3 would be needed for the same building. A tank of such volume
would supply 18% of the annual demand for toilet-flushing, and reduce by 90% the annual
overflow volume (VRE) of the system.

3.3. RTC Policies

Except for a policy of completely emptying the storage tank prior to expected over-
flows, applying RTC improves PFR significantly with minor impacts on WSE.
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For the same 40-apartment building and simulation parameters used for tank design
purposes, different values of release decision parameter α were examined (see Section 2.3
above)for a 20 m3 tank. The simulation included 100 years, and a total of 11 systems were
simulated. Each RWH system was modelled with similar rain seasons and supplied water
to the same building with identical demands, with the only difference being the value of α
(α = 0, 0.1, 0.2,. . . , 1).

The results show that setting α to 0, meaning complete discharge of stored water prior
to a storm where overflow is predicted to occur, carries significant impact for the WSE, with
only 5% of demands (median value) satisfied by rainwater (Figure 6a). Slightly increasing
α to 0.1 (water is released from the tank until storage is 10% of the full tank capacity) more
than doubled the supply efficiency to 11% (median value). For an α between 0.1 and 1, the
median values of WSE increase linearly with α, peaking at 14% of demands when α = 1; no
water is released prior to rain events.
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Figure 6. WSE, PFR, and VRE as a function of release parameter, α, for the modeled building with
a 20 m3 tank. WSE and VRE decline as more water is released from the tank (smaller α), while PFR
increases as more storage is available for incoming roof runoff. (a) WSE, (b) PFR, (c) VRE.

In comparison, after a significant decrease of the median PFR (39% decrease) when
increasing α from 0 to 0.1 (from 0.67 to 0.41), there is only a 32% drop in PFR values when
α increases from 0.1 to 1 (the maximum possible value), where the PFR median is 0.28.
This phenomenon could be explained by the fact that PFR refers to the maximum values of
overflow for a simulated year, which are a result of one specific maximal rain event per
rain season that cannot be contained other than by complete discharge of the tank.

Setting α to 0 significantly diminishes the system’s rainfall use efficiency, as the VRE
drops to 0.4, meaning that only 40% of the available water is used while 60% is released
or overflows to the urban drainage system as the tank is fully emptied when overflow is
expected. Increasing α to only 0.1 is enough to raise VRE substantially, to 0.57 (median
value), and a further increase in α results in linear growth of VRE up to 0.75, with no
controlled release (α = 1).

As VRE accounts for water losses due to overflows and controlled release, further
examination of these flows was conducted. For each value of α, each loss (overflows and
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controlled release) was summed annually and the fraction of each from the total water
losses (overflows plus controlled releases) was calculated. To achieve this the simulation
was executed for the 40-apartment building with a RWH tank of 20 m3 and run for 100 years
(as before).

For the simulated building, equilibrium (i.e., equal overflow and controlled release
volumes, Figure 7) was observed at α values of 0.7–0.8, where the median values of VRE,
PRF and WSE were 0.7, 0.3, and 0.13, respectively. When α = 1 the VRE, PFR and WSE
medians were 0.75, 0.28 and 0.14 respectively. When α is reduced to 0.5, 65% of the total
water losses are through controlled release, while 35% is through overflow (median values),
and the median values of WSE, PFR and VRE are 0.13, 0.34 and 0.65, respectively.
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In general, when excluding the complete discharge policy (α = 0), PFR is more sensitive
than WSE to changes in α. When reducing α from 1 (no controlled release) to 0.1, the WSE
median drops by 23% from 0.137 to 0.106, while PFR increases by 48%, from 0.276 to 0.408.
This difference in sensitivity is further enhanced when examining a mid-range α value.
For example, when applying RTC and setting α = 0.3, the PFR median value increases by
45% in comparison to α = 1 (no controlled release) from 0.275 to 0.4, respectively. Under
this RTC policy, the WSE median value decreases by 15% (from 0.137 to 0.116). When
considering that the mean annual demands for the modeled building are 1930 m3/year, this
decrease reduces the total volume of supplied rainwater by 40 m3. When setting α = 0.3,
the VRE median value decreases by 19% (from 0.75 to 0.61).

These findings correspond with those of [20], who found that implementing controlled
release could have significant effects on PFR, with minor impact on WSE, and estimated
a decrease of 10% in WSE when using a real-time controlled orifice to handle overflows
from rainwater tanks. Such results from applying a simple RTC policy suggest that
more sophisticated policies should be explored as they can potentially yield even better
dual objectives performance of RWH systems for reducing potable water demand and
minimizing overflows to urban drainage systems.
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4. Conclusions

A high-temporal resolution stochastic RWH model aimed at assessing potable water
savings and runoff reduction was developed using real-life water demand and rainfall data.
The presented model does not include tank size optimization, as such process requires
a cost–benefit analysis which was beyond the scope of this study. Such a cost benefit
analysis addressing the dual benefit of RWH, supplying water while reducing drainage
flows, is expected to be site specific with a high dependency on the characteristics of the
local drainage system and the urban watershed.

Model attributes include:

• The model enables simulation of various buildings (varying in the number of apart-
ments and dwellers), collection surface (roof) areas, rainwater tank volumes and time
periods; from single rain events up to multi-seasonal simulations

• Model inputs (rainfall and demands) are used in a stochastic manner (sampling with
replacement), which maintains their natural pattern while generating realistic noise
and temporal variability. In this way, creating rainfall and demand data series does
not require rigorous data analysis on the one hand, and does not degenerate input
data to constant or deterministic values on the other.

The model could be used for:

• Estimating the short term benefits such as runoff reduction for specific storms, as
well as long term evaluations of peak runoff flow reduction, overall annual overflow
volume reduction, and rainwater supply efficiencies.

• Comparing the performances of different tank sizes under the same conditions
• Drawing design curves for a range of tank sizes and roof areas for specific rainfall data
• Inspecting different RTC policies and their effects on the system’s efficiency.

This modeling framework can serve as the basis for studying the effects of RWH on
urban drainage, as it could be easily adjusted to simulate different buildings or residential
clusters. The influences of different system design, spatial distributions of the rainwater
tanks, or different and more elaborate controlled release policies could be estimated when
the suggested model is coupled with a drainage model of the desired urban watershed.
Future work will include developing such combined RWH harvesting—Drainage models
for several case studies, where overflows from the presented framework will serve as part
of the input for the drainage models.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13172415/s1, Figure S1: A Flowchart of the stochastic model of a single building RWH
system. T—True; F—False.
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