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Abstract: In recent years, climate change and extreme weather conditions have caused natural
disasters of various sizes and forms across the world. The increase in the resulting flood damage
and secondary damage has also inflicted massive social and economic harm. Korea is no exception,
where debris flows created by typhoons and localized heavy rainfalls have caused human injuries
and property damage in the Wumyeonsan Mountain in Seoul, Majeoksan Mountain in Chuncheon,
Sinnam in Samcheok, Gokseong in Jeollanam-do, and Anseong in Gyeonggi-do. Disaster damage
needs to be minimized by preparing for typhoons and heavy rainfalls that cause debris flow. To
that end, we need accurate prediction of rainfall and flooding through simulations based on debris
flow models. Most of the previous literature analyzed debris flows using rainfall events in the past
before debris flow occurrence, rather than analyzing and predicting based on rainfall predictions.
The main body of this study assesses the applicability of hydrological quantitative precipitation
forecast (HQPF) generated through a machine learning method named the Random Forest (RF)
method to debris flow analysis models. To that end, this study uses scatter plots to compare and
analyze the precipitation observation data collected from the areas hit by debris flows in the past,
and the quantitative precipitation forecast (QPF) and HQPF data from the Korea Meteorological
Administration (KMA). Based on the verified HQPF data, runoff was calculated using the spatial
runoff assessment tool (S-RAT) model, and the soil amount was calculated to simulate the debris
flow damage with a two-dimensional rapid mass movements (RAMMS) model. The debris flow
simulation based on the said data indicated varying degrees of flow depth, impact force, speed, and
damage area depending on the precipitation. The correction of the HQPF was verified by measuring
and comparing the spatial location accuracy by analyzing the Lee Sallee shape index (LSSI) of the
damage areas. The findings confirm the correction of the HQPF based on machine learning and
indicate its applicability to debris flow models.

Keywords: debris flow; HQPF; machine learning; S-RAT; RAMMS

1. Introduction

In recent years, Korea has seen a rapid increase in the frequency and strength of heavy
rainfall on account of changes in weather and environment brought on by climate change.
These changes have inflicted growing social and economic damage on the country. Korea’s
average annual precipitation is higher than 1200 mm, which is 1.6 times higher than the
global average of 800 mm. The water intake rate is higher than 30%, which is one of the
highest rates among the OECD countries [1]. Most of the precipitation is concentrated
around the monsoon season in summer, which has been the cause of frequent typhoon and
heavy rainfall damages. More than 65% of the Korean territory is covered in mountains. In
the case of heavy rainfall, the runoff speed rapidly increases and causes floods, landslides,
and debris flows.
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According to the Landslide Information System of the Korea Meteorological Admin-
istration (KMA), global warming has increased the frequency of heavy rainfalls and the
resulting damage by debris flows. The annual average damage area over the last decade is
226 ha, and the restoration efforts cost around KRW 43.6 billion.

Debris flow occurs when heavy rain falls on mountains and slopes, causing debris,
trees, soil, stones, and rocks to flow into the valley creek, which flow down with massive
force and inflict great damage on houses, farmlands, and roads [2].

As for debris flow cases in Korea, in July 2011, heavy rainfall in the central part of
Korea took the lives of 43 people and damaged a total area of 824 ha near the Wumyeonsan
Mountain in Seoul and the Majeoksan Mountain in Chuncheon. It was widely reported
in Korea as it was the first case of debris flow hitting a mountainous area within a city
downtown. In 2012, Typhoon Sanba damaged a total area of 491 ha and killed two people,
and heavy rainfall in 2003 in Sancheong, Gyeongsangnam-do damaged a total area of
312 ha and killed three people. Heavy rainfall in 2017 damaged a total area of 94 ha and
killed two people, Typhoon Mitag damaged a total area of 156 ha and three people in
2019, and heavy rainfall in 2020 damaged a total area of 93.25 ha and killed 16 people in
Gokseong-gun, Anseoong-si, and other areas across Korea.

Cases in other countries include: Heavy rainfall in Venezuela in 1999 that claimed
the lives of more than 20,000 and inflicted damage over KRW 180 billion; a landslide
caused by heavy rainfall in Afghanistan in 2014, which killed around 2700 people, injured
14,000 people, and destroyed more than 300 houses; a series of heavy rainfalls, floods, and
landslides in Sri Lanka that killed around 100 people and destroyed 140 houses in 2014, and
killed around 280 people and damaged 4500 houses in 2017. As such, debris flows cause
human injuries and deaths as well as property damages across the world. Causes of debris
flow include the thawing of the soil in spring, uncontrolled logging and development,
wildfire damaging the ecosystem, and many others. However, heavy rainfall remains the
main cause of debris flow [3].

The following section reviews the latest research trends on debris flow in three areas:
Simulation, precipitation forecast, and machine learning. First, [4] investigated the debris
flow site in the Daeryongsan Mountain in Gagnwon-do in July 2013 and analyzed the
behavioral characteristics of debris flows using the onsite data and the precipitation data.
The authors used a digital elevation model (DEM) and stability index mapping (SINMAP)
based on a digital map to compare the location of debris flows. The analysis showed that
the high-risk areas and the actual sites are similar in slope-type debris flows. On the other
hand, in valley-type debris flows, the debris flow sites matched the upper part of the valleys
identified based on a topographic wetness index. Kim et al. selected flow parameters of
the debris flows that hit the Wumyeonsan Mountain and used the FLO-2D model [5]. The
representation accuracy for the damage area was assessed at 63% to 85%, which makes the
FLO-2D model suitable for the analysis of the basin area damaged by debris flow. Jun et al.
analyzed the risk levels of the areas damaged by debris flows using geographic information
systems (GISs), statistical methods, and deterministic techniques [6]. The analysis found
that the statistical methods are more relevant to the determination of debris flow risk
areas than the SINMAP. As discussed above, there has been a constant flow of studies on
damages caused by debris flows, and the characteristics of debris flows analyzed with
GIS and modeling methods. However, few studies have been conducted to estimate and
analyze the scale of debris flow damage. A study that uses data from actual debris flow
sites and precipitation forecast data to analyze the scale of debris flow damage will be
conducive to preventing future damage caused by debris flow.

Second, as for previous literature on precipitation forecast, [7] used the REGIONAL
Data Assimilation Prediction System (RDAPS) data on the upstream area at the Soyang-
gang Dam from the KMA and a model used by the Korea Water Resource Corporation
(KOWACO) to analyze dam inflow and accuracy. An analysis of the RDPAS accuracy
confirmed the high accuracy of the quantitative and qualitative analysis of RDAPS and
the average precipitation observed by automatic weather stations (AWS). The RDAPS-
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KOWACO model also produced highly accurate river runoff analysis results. Lee et al.
proposed a short-term precipitation forecast method using the space distribution and
an adjective model and applied it to Seoul [8]. Jung et al. used ground weather data
measurements and a multi-layer neural network to propose a short-term precipitation
forecast model, and the model was shown to offer better results than the existing models
in terms of relevance and errors [9]. Kim et al. developed a short-term precipitation
forecast model that considers non-linear correlations using the artificial neural network
method, based on the wide-area automatic weather observation data from radiosondes and
the predicted precipitations in the analyzed areas [10]. Verification using the Gamcheon
Basin showed that the proposed model offers better results than predictions only based
on ground weather data. Kim et al. sought to overcome the limitations of the existing
linear extrapolation method incapable of simulating the growth and extinction of rainfalls
by proposing a short-term precipitation forecast model based on radiowave speed and
radar reflectivity using the reflectivity data of weather radars and multi-term regression
equations [11]. Yoon et al. found that the simulation results of two-dimensional analyses
of flooded areas using radar-predicted precipitation and ground-observed precipitation
produced similar results [12]. The author concluded that flood damage could be prevented
and reduced using prediction data with a similar level of accuracy to radar-predicted
precipitation. Precipitation radars offer high space and time resolutions, which are useful
for observing precipitation in mountainous areas, narrow areas, and steep slopes. The
radar creates prediction data in the grid format, which makes the data highly useful for
a distribution-type model. However, precipitation forecast using radars needs further
research with regard to its uncertainty and quantification method. Along with studies
on prediction using radars, more research seems to be needed on accurate and quanti-
tative prediction using the fast-advancing machine learning methods, various models,
and algorithms.

Third, machine learning is an area actively researched across various fields including
video recognition, text recognition, stock price prediction, demand prediction, and others.
In the field of meteorology, an increasing number of studies connect machine learning with
flooding, famine, and other disasters. Kim et al. corrected ground precipitation data and
radar precipitation data using an artificial neural network, and simulated runoff volumes
by applying non-corrected radar precipitation data and corrected radar precipitation data
to the quasi-distributive Modclark model, and compared the results with actual runoff
data [13]. Jung et al. used the Okcheon station in the upstream part of the Daecheong
Dam along the Geumgang River to study the observation data-based prediction of river
level using deep learning algorithms [14]. The authors used TensorFlow and built long
short-term memory (LSTM) and a multiple regression linear model to predict the water
level in the target area. Choi et al. developed a prediction function for rainfall damage in
the Seoul Capital Area (SCA) using machine learning methods (random forest, support
vector machine, and decision making trees) [15]. The data on damage caused by rainfalls
were defined as dependent variables, and the meteorological observation data were used as
independent variables. The analysis showed that the support vector machine demonstrated
the highest level of prediction power. Ham et al. developed a method to predict El Niños
using the convolutional neural network (CNN), one of the deep learning technologies [16].
The training data were taken from the data from 1871–1873, which were used to verify
the events between 1984 and 2017. The resulting accuracy was higher than 66.7%, and the
author expected that the model would be applicable to El Niño predictions in the future.
Fox et al. [17] predicted the hydrologic disturbance indexes using a Random Forest (RF)
model at locations of fish communities in rivers [17]. Lee et al. used machine learning
methods called Light GBM and XGBoost for hydrological precipitation correction, and
analyzed five major rainfall cases between 2017 and 2018 in Seoul, Gangneung, and other
areas [18]. The findings on the five rainfall cases clearly showed the correction effect of the
two machine learning methods on the space distribution patterns of the rainfalls. Yen et al.
used the echo state network (ESN) model and the DeepESN model to predict precipitation
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using rainfall, pressure, and humidity as parameters between 2004 and 2014 [19]. The study
found that the correlation coefficients obtained with DeepESN produced superior results.

Disaster damage needs to be minimized by preparing for typhoons and heavy rainfalls
that cause debris flow. To that end, we need accurate prediction of rainfalls and flooding.
The KMA currently uses the ensemble prediction method to predict future precipitation.
The ensemble prediction is designed to overcome the limitations of deterministic prediction
based on single-figure forecasts, and predicts the future in probabilistic terms with diverse
models with different initial conditions, physical processes, and boundary conditions [20].
The KMA provides rain forecasts in various formats including short-term, medium-term,
and long-term forecasts, neighborhood-level forecasts, national forecasts, and special
forecasts. Many researchers in Korea tackled the prediction method using radars and
satellites that provide information on non-measured areas and evenly distributed data.
However, as their use is limited by the lack of accuracy, radar and satellite data are used
after correction based on accurate ground data.

This study analyzes runoffs and debris flows in areas actually hit by debris flows
by producing hydrological quantitative precipitation forecast (HQPF) using a machine
learning-based prediction model and assesses its applicability to damage scale analysis.
This study also reviewed precipitation forecast methods and the relevant parameters, and
designed an HQPF algorithm. As for the machine learning method, this study calculated
precipitation forecasts using the Random Forest (RF) method, which creates multiple train-
ing data from a single dataset and creates multiple decision-making trees through multiple
learning and combines them to improve prediction power. It also verified the calculated
HQPF with statistical indexes and scatter plots. Based on the collected precipitation data
and topological data, runoff volumes were calculated using the spatial runoff assessment
tool (S-RAT) model, and a soil volume calculation equation was used to calculate possible
soil volumes. The calculations were applied to a two-dimensional rapid mass movements
(RAMMS) model to simulate the scale of debris flow damages. Then, this study conducted
a Lee Sallee Shape Index (LSSI) analysis on the damage area results to verify the precipita-
tion forecast accuracy and the model’s applicability. Figure 1 shows the research flow of
this study.

Figure 1. Research flow chart of hydrological cycle change in North Korea.
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2. Theoretical Background
2.1. Machinge Learning (Random Forest)

Machine learning is regarded as a sub-field of artificial intelligence (AI). In machine
learning, a computer learns as a human would using programs and algorithms, and uses
what it learns to develop technologies and make decisions. The RF method improves
prediction power by creating a large number of decision-making trees [21]. The decision-
making tree model makes predictions by creating and learning training data from one
dataset. On the other hand, the RF model produces multiple training data from a single
dataset, and creates multiple decision-making trees through multiple learning. The results
from this learning are combined to improve prediction power [22]. In cases where the target
variable is a continuous variable, and there are m explanatory variables, m/3 variables
are randomly selected from each division to create a tree [23]. The observations not used
in the individual decision-making tree learning process are called out-of-bagging (OOB)
observations, which are used to estimate prediction probabilities and confirming cause
variables. The prediction probability of OOBi observations Pk(xi), for each observation xi
belonging to Category k (0 or 1) is defined as shown in Equation (1).

p̂k(xi) =
∑j∈OOBi

I | ŷ
(
xi, tj

)
= k

| OOBi |
, for k = 0, 1 (1)

where I (1 or 0) is an indicator function 1 when the value in the parentheses is true, and
0 when the value is 0, and ŷ

(
xi, tj

)
represents the forecast category. tj means the jth decision-

making tree. OOBi is the set of decision-making trees used to predict the category of
observations in xi. In other words, it is the percentage of the number of decision-making
trees predicted to be in k, against the total number of decision-making trees used to predict
xi [24]. Figure 2 shows the concept of random forest.

Figure 2. Concept of random forest.

2.2. Spatial Runoff Assessment Tool (S-RAT)

The S-RAT model is a distribution-type precipitation-runoff model designed to simu-
late temporal and spatial changes in runoff volumes in an area by dividing the target area
into grids, and to calculate the conceptual water balance at an interval for each grid [13].
The S-RAT model calculates the infiltration and direct runoffs in each grid using the SCS
curve number (CN) method. The CN data are generated and calculated by providing a soil
map and a land use map.

S(i, j) = 254
(

100
CN(i, j)

− 1
)

(2)
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where S(i, j) is potential water volume; CN(i, j) is CN for each grid.

Pn[t, (i, j)]
P[t, (i, j)]

=
F[t, (i, j)]
HS(i, j)

(3)

where F[t, (i, j)] is water content of the stormwater storage tank (mm); HS(i, j) is capacity
of the stormwater storage tank.

I[t, (i, j)] = P[t, (i, j)]− Pn[t, (i, j)] (4)

W[t, (i, j)] =
F[t, (i, j)]

Hs
(5)

I[t, (i, j)]−W[t, (i, j)] =
dF[t, (i, j)]

dt
(6)

where W[t, (i, j)] is runoff beneath the surface, Pn[t, (i, j)] (mm) is direct runoff, and Hs
is a non-dimensional constant/conceptual parameter. Equation (7) represents a weight
conservation control equation of the stormwater storage tank using Equations (2)–(6).
Equation (7) can be analyzed using the fourth order Runge–Kutta method.

dF[t, (i, j)]
dt

= −F[t, (i, j)]
Hs

− E[t, (i, j)] + P[t, (i, j)]{1− F[t, (i, j)]
HS(i, j)

} (7)

where E[t, (i,j)] is the effective evapotranspiration.
The applicability of the S-RAT model can be confirmed through paper [25].
Figure 3 shows a diagram of the grid type water balance calculation concept.

Figure 3. Grid type water balance calculation concept diagram [13].

2.3. Debris Flow Simulation

Debris flow means debris, sand, pebbles, and other floating materials flowing down
a slope on account of rainfall. Climate change and the resulting extreme weather events
have increased the damage inflicted by debris flows, and a wide range of software has been
developed and released to help simulate the occurrence, progress, and damage volume of
debris flow.

2.3.1. Two-Dimensional Rapid Mass Movements (RAMMS) Model

Unlike other models that only provide static data on debris flows, the RAMMS model
is a dynamic model capable of providing dynamic analysis results over time. It offers
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analysis debris flows, rockfalls, or avalanches on a DEM. The basic equation of the model
is based on the Vollemy–Salm method, and expressed as shown in Equation (8).

S = µN + (1− µ)C− (1− µ)Cexp
(
−N

C

)
+

ρgU2

ξ
(8)

where S is frictional force (N), C is cohesiveness to the floating materials, µ is viscosity
coefficient, g is gravitational acceleration (m/s2), ρ is density (kg/m3), U is flow rate (m3/s),
and N is vertical stress (Mpa) against the active plane. C is the flow material with cohesive
force, and S becomes 0 when N = 0, and U = 0. An increase in C increases the friction force,
which increases shearing stress and weakens the debris flow or avalanche [26]. RAMMS
employs a Voellmy-fluid friction model(9). This model divides the frictional resistance into
two parts: A dry-Coulomb type friction (coefficient µ) that scales with the normal stress
and a velocity squared drag (coefficient ξ).

S = µρHg cos∅+
ρgU2

ξ
(9)

where ρ is the flow density, g gravitational acceleration, ∅ the slope angle, H the flow
height, and U the flow velocity. This model has found wide application in the simulation
of mass movements, especially snow avalanches. The Voellmy model has been in use in
Switzerland for a long time and a set of calibrated parameters is available.

Equation (10) is the impact force equation used in the RAMMS model.

P = 0.5CdρU2 (10)

where P is impact force (Kpa), Cd is drag coefficient, ρ is density (kg/m3), and U is speed
(m/s). Figure 4 represents a schematic interpretation of the RAMMS Model [27].

Figure 4. A schematic interpretation of the RAMMS Model.

2.3.2. Calculation of Soil Volume

Debris flow simulation using the RAMMS model requires a number of input data
including a DEM, peak runoffs, and soil volume. The density of debris flow has a great
effect on soil volume and debris flow damage. Debris flow takes one of the following three
forms depending on the river bed slope—stony debris flow, immature debris flow, and
turbulent water flow—and the following formula is applied [28,29].

Stony debris flow occurs; tan θw > 0.138.

C∞ =
tan θw

(ρs − ρw)(tan Φ− tan θw)
(11)
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Immature debris flow occurs; 0.03 < tan θw ≤ 0.138.

C∞ = 6.7[
tan θw

(ρs − ρw)(tan Φ− tan θw)
]
2

(12)

Turbulent water flow with bed load transport occurs; 0.03 < tan θw ≤ 0.03138.

C∞ =
(1 + 5tan θw)tan θw

(ρs − ρw)

(
1− α0

2 τ∗c
τ∗

)(
1− α0

2
√

τ∗c
τ∗

)
(13)

α0
2 =

2[0.425− (ρs/ρt)tan θw/(ρs/ρt − 1)]
1− (ρs/ρt)tan θw/(ρs/ρt − 1)

(14)

τ∗c = 0.04× 101.72tanθw (15)

where C∞ is soil and sand density, ρs is plastic density (g/cm3), ρw is water density (g/cm3),
Φ is internal frictional angle (◦), θw is water surface slope (◦), τ∗c is non-dimensional
threshold shear stress, τ∗ is non-dimensional shear strength.

The possible runoff soil volume at max precipitation was calculated using the equation
proposed by the National Institute for Land Infrastructure Management [30].

Pv =
103RTA

1− λ
×
(

C∞

1−C∞

)
× fr (16)

fr = 0.05(logA− 2.0)2 + 0.05 (17)

where Pv is possible soli runoff (m3), RT is 24-h cumulative precipitation (mm), A is basin
area (km2), λ is prosity, fr is runoff correction rate.

3. Analysis and Results
3.1. Selection of Analysis Areas

This study analyzed debris flow damage in areas damaged by debris flows in 2019 and
2020. The selected areas were Samcheok, Gangwon-do (October 2019, Event I), Anseong,
Gyeonggi-do (August 2020, Event II), and Gokseong, Jeollanam-do (August 2020, Event
III). In Event I, Sinnam Village in Samcheok was hit by heavy rainfall measuring 484 mm
over 24 h, during which debris flow damaged 65 houses, destroyed 52 houses, and killed
one person. In Event II, Namsan Village in Anseong was hit by heavy rainfall measuring
244 mm over 24 h, during which debris flow destroyed five houses and killed one person.
In Event III, Seongdeok Village in Gokseong was hit by heavy rainfall measuring 494 mm
over 24 h, during which debris flow destroyed five houses and killed five people. The
locations and site photographs of Events I, II, and III are as shown in Figure 5.

3.2. Correction and Verification of Precipitation Forecast Using Machine Learning

Rainfall is a non-linear event, which is not readily available for linear analysis. To
overcome this limitation, this study used the RF machine learning method to improve
precipitation forecast accuracy. The precipitation forecast correction mechanism was devel-
oped in three stages: Pre-processing (extracting forecast factors to be used as input data
for machine learning); machine learning (using the input data for machine learning); and
post-processing (generating precipitation forecast by correcting the precipitation produced
through machine learning) [18]. The number of decision trees was set at 300, and the
default values were used for the other parameters. The input data for machine learning
included the AWS and automated surface observing system (ASOS) data from the KMA,
and the forecast data extracted from the KMA’s Local Data Assimilation Prediction System
(LDAPS) using the linear interpolation method. Figure 6 shows a schematic diagram of the
machine learning process.
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Figure 5. Analyzed areas. (a) Samcheok, Gangwon-do, (b) Anseong, Gyeonggi-do, (c) Gokseong, Jeollanam-do.

Figure 6. Schematic diagram of machine learning.

The precipitation observations used in this study consisted of the raw data from
KMA AWS and the T/M observation stations at Flood Control Offices. The precipitation
forecast data from the KMA were used for the QPF, and the precipitation data corrected
and produced through the machine learning process were used for the HQPF. Then, before
calculating precipitation forecasts for the debris flow damage areas, precipitation forecasts
were calculated and verified for the AWS near the damage areas. The AWS were Gungchon
for Event I, Samjuk Elementary School for Event II, and Okwa Toll Gate for Event III. The
location of the station is listed in Figure 7, and the AWS data, QPF, and HQPF are listed
in Figure 8.

The accuracy of the HQPF was verified using three indicators and a scatter plot. The
three indicators were: Mean absolute error (MAE), normalized peak error (NPE), and peak
timing error (PTE). A value of MAE or NPE closer to 0 means less errors, and a PTE value
close to 0 indicates closeness to the peak precipitation time.

MAE =
1
n

n

∑
i=1
|Oi − Ei| (18)

NPE =
Pe − Po

Po
(19)

PTE = Te
max − To

max (20)
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where Oi is observed precipitation, Ei is corrected precipitation, n is the number of data, Pe
and Po are precipitation forecast and peak pre-forecast, respectively, and Te

max and To
max

is time when the corrected precipitation and peak precipitation forecast occurs.

Figure 7. Location of the Station. (A) Gungchon station, (B) Samjuk Elementary School station, and
(C) Ogwa Tollgate station.

Figure 8. Cont.
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Figure 8. Precipitation Forecast at Nearby Precipitation Observation Stations. (a) Hyetograph of Gungchon Station,
(b) 24-hour cumulative rainfall of Gungchon Station, (c) Hyetograph of Samjuk Elementary School Station, (d) 24-h
cumulative rainfall of Samjuk Elementary School Station, (e) Hyetograph of Okwa Tollgate, and (f) 24-h cumulative rainfall
of Okwa Tollgate. In each graph, black means AWS Rainfall, blue means QPF, and red means HQPF.

Table 1 shows the three verification results for QPF and HQPF of Events I, II, and III.
Across all events, HQPF show better correction results than QPF.

Table 1. Statistical Verification of QPF and HQPF (Events I, II, and III).

Verification
Event I Event II Event III

QPF-AWS HQPF-AWS QPF-AWS HQPF-AWS QPF-AWS HQPF-AWS

MAE 11.78 5.65 10.57 4.1 20.03 5.93

NPE −0.73 −0.38 0.27 0.47 1.2 0.2

PTE 0 0 −6 0 8 4

Figure 9 shows the scatter plot to identify the correlation between QPF and HQPF
against the AWS precipitation data. The value of the determinant factor R2, which increases
at low data disparity and decreases at high data disparity, was 0.6188 for QPF and 0.8733
for HQPF on the scatter plot of the Gunchon AWS in Event I. In Event II, the value was
0.0001 for QPF and 0.9278 for HQPF. In Event III, the value was 0.0004 for QPF and 0.883 for
HQPF. The findings confirm that, across all events, HQPFs were corrected better than QPF.

Based on the finding that the HQPFs were corrected better than the QPFs and closer to
the AWS, this study simulated the runoff volumes and debris flows by calculating the QPF
and HQPF of the actual damage areas. Figure 10 shows the 24-h cumulative precipitation
and the precipitation map of the QPF and HQPF of the actual damage areas in Events I, II,
and III.

3.3. Debris Flow Prediction Using Debris Flow Simulation
3.3.1. The Collection and Input Data Construction of Runoff Simulation

We used the basic topographical data using the precipitation data and the DEM, the
land cover, and the soil map. Figure 11 shows the flow direction, roughness, and curve
number data from the DEM, LC, soil map, and S-RAT model for Events I, II, and III. A to
D in the soil group is classified according to infiltration rate and other properties (Type
A—soils with high infiltration rates, even when thoroughly wetted and consisting chiefly
of deep, well-drained to excessively drained sands or gravels; Type B—soils with moderate
infiltration rates when thoroughly wetted and consisting chiefly of moderately fine to
moderately coarse textures; Type C—soils with slow infiltration rates when thoroughly
wetted and consisting chiefly of soils with a layer that impedes downward movement
of water, or soils with moderately fine to fine textures; Type D—soils with very slow
infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a high
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swelling potential). 1 to 7 in the roughness group is the matrix of the Strickler roughness
for the hillslope (Ksv). For the curve number group, the modified curve number method
is used.

Figure 9. Scatter Plots of the Correlation between AWS-QPF and AWS-HQPF (Events I, II, and III).
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Figure 10. Hyetograph of the Study Area. (a) Hyetograph of Sinnam Village, (b) 24-h cumulative rainfall of Sinnam Village,
(c) Hyetograph of Namsan Village, (d) 24-h cumulative rainfall of Namsan Village, (e) Hyetograph of Sungdeok Village,
(f) 24-h cumulative rainfall of Sungdeok Village. In the bar graphs of (a,c,e), blue is QPF Rainfall and red is HQPF Rainfall.
In the solid line graphs of (b,d,f), blue is QPF and red is It means HQPF, and the dots marked for each hour mean the
accumulated rainfall for that time.

3.3.2. Runoff Volume Calculation (S-RAT)

We used the input data to simulate precipitation and runoff using the S-RAT model
(Figure 12).

Using the QPF, the peak runoff of Event I (Sinnam Village, Samcheok) was 4.32 cm as
of 3 October 2019, 00:00; the total runoff was 45.6 cm. For the HQPF, the peak runoff and
the total runoff were simulated at 16.40 cm and 90.18 cm, respectively.

Using the QPF, the peak runoff of Event II (Namsan Village, Anseong) was 1.46 cm as
of 2 August 2020, 01:00, the total runoff was 4.85 cm. For the HQPF, the peak runoff and
the total runoff were simulated at 0.64 cm and 5.16 cm, respectively.
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Using the QPF, the peak runoff of Event III (Seongdeok Village, Gokseong) was 1.1 cm
as of 7 August 2020, 15:00, the total runoff was 10.4 cm. For the HQPF, the peak runoff and
the total runoff were simulated at 0.92 cm and 11.25 cm, respectively.

3.3.3. Calculation of Soil Volume

This study calculated the soil volumes using the runoff volumes based on the runoff-
rainfall analysis and the soil density calculated with the equation proposed by NILIM. The
plasticity density (ρs), water density (ρw), internal frictional angle (Φ), and average slope
(θ) were used to calculate the soil density (C∞). The calculated C∞, porosity (λ), basin area
(A), runoff correction rate (fr), and 24-h cumulative HQPF (Rt) were used to calculate each
possible soil runoff volume (Pv) (Table 2).

Figure 11. Cont.
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Figure 11. GIS Input Data for the S-RAT. (a–f) S-RAT input data of Event I Sinnam Village, (g–l) S-RAT input data of Event
II Namsan Village, (m–r) S-RAT input data of Event III Sungduk Village.

Table 2. Input variables required to calculate soil runoff volume.

Event I Event II Event III

Solid density (ρs) 2.6 g/cm3 2.6 g/cm3 2.6 g/cm3

Liquid density (ρw) 1 g/cm3 1 g/cm3 1 g/cm3

Internal friction angle (Φ) 30 30 30

Average slope (θ) 11 12.96 10.76

Equilibrium sediment concen-tration (C∞) 0.32 0.41 0.31

Porosity (λ) 0.45 0.45 0.45

Cumulative rainfall (Rt) 415 mm 157 mm 448 mm

Basin Area (A) 0.883 km2 0.163 km2 0.106 km2

Runoff correction rate (fr) 0.26 0.439 0.493

Soil runoff volume (Pv) 84,644 m3 14,479 m3 18,837 m3
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Figure 12. Runoff-Rainfall Graphs of QPF and HQPF. (a) is the Runoff-Rainfall graph of Event I Sinnam Village, (b) is the
Runoff-Rainfall graph of Event II Namsan Village, (c) is the Runoff-Rainfall graph of Event III Sungduk Village. Where the
blue bar graph is QPF Rainfall, the red bar graph is the HQPF rainfall, the blue solid line is the QPF runoff, and the red solid
line is the HQPF runoff.

In Event I, the soil density (C∞) was 0.32, the 24-h cumulative HQPF was 415 mm, and
the possible soil runoff was 84,644 m3 for HQPF. In Event II, the soil density (C∞) was 0.42,
the 24-h cumulative HQPF was 157 mm, and the possible soil runoff was 14,479 m3 for
HQPF. In Event III, the soil density (C∞) was 0.28, the 24-h cumulative HQPF was 448 mm,
and the possible soil runoff was 18,837 m3 for HQPF.

3.3.4. Debris Flow Simulation

The peak runoff of the HQPF and the possible soil runoff volume (Pv) calculated with
the S-RAT model and the soil volume equation were used to simulate debris flow with
the RAMMS model (Table 3). In the RAMMS modeling process, the default value was
used for the drag coefficient. In Event I, the max height was 2.43 m, the max pressure was
42.68 kPa, and the max velocity was 4.62 m/s. In Event II, the max height was 0.66 m, the
max pressure was 18.05 kPa, and the max velocity was 3 m/s. In Event III, the max height
was 1.32 m, the max pressure was 34.19 kPa, and the max velocity was 4.13 m/s. The
damage areas in Events I, II, and III were 62,550 m2, 56,325 m2, and 46,750 m2, respectively.
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Table 3. Debris Flow Simulation Results Using the RAMMS Model.

Event I Event II Event III

Max Height 2.43 0.66 1.32

Max Pressure 42.68 kPa 18.05 kPa 34.19 kPa

Max Velocity 4.62 m/s 3 m/s 4.13 m/s

Damage Area 62,550 m2 56,325 m2 46,750 m2

Displacement detection using GPS is not readily applicable to actual sites on account
of the cost of installing automatic measuring instruments across the slope, the need for
continuous maintenance, and the difficulties with management. The horizontal precision
is ±1 cm and the vertical precision is ±2 cm, which is not sufficient to measure landslide
displacements showing sensitive behaviors in millimeters [31]. For this reason, in this
study, a damage area was defined by an area with a maximum flow depth of 3 cm or deeper.
Figures 13–15 show the debris flow simulation results for Events I, II, and III based on the
RAMMS model, projected on the Arc Map 10.7 satellite map.

Figure 13. Results of RAMMS using HQPF—Event I. (a–c) are the Max Height (m), Max Pressure (kPa), and Max Velocity
(m/s) in the modeling results of the debris flow in Sinnam Village, respectively.
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Figure 14. Results of RAMMS using HQPF—Event II. (a–c) are the Max Height (m), Max Pressure (kPa), and Max
Velocity (m/s) in the modeling results of the debris flow in Namsan Village, respectively.

3.4. Verification of the Applicability of the HQPF Data Using Actual Damage Data

This study compared the flow damage scale data for each event based on the RAMMS
model using the LSSI method. The LSSI method calculates the cross areas of measurement
data corresponding to the reference data, thereby measuring the accuracy of spatial loca-
tions [32]. It divides the intersection area of two data group by the area of their union to
calculate values in the form of standardized indexes in order to measure the correspon-
dence of the spatial locations of the two groups of data. An index has a value between
0 and 1. A value closer to 1 indicates a higher level of correspondence between the two
data groups, whereas a value closer to 0 indicates a low level of correspondence. In other
words, the LSSI method offers a highly efficient way to measure the location accuracy
of the reference data and the measurement data, to identify the spatial correspondence
between the two. Hua et al. calculated LSSI indexes by comparing the city scope predicted
in a urban growth simulation of coastal areas in China based on the slope, land cover,
exclusion, urban growth, transport, and hill shade (SLEUTH) model, and the calculated
city scopes [33]. It is difficult to achieve an LSSI index of 1, which means a perfect spatial
correspondence. By comparing the predicted scopes with the city scopes after final cor-
rection, an LSSI index of 0.48 was achieved. Choi et al. compared the inundation patterns
of the urban flooding model and the flood tracking model using the LSSI based on the
flood trace map [34]. When the LSSI range is 40% or more, it is marked as excellent (40%
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or more—excellent; 30% or more—good; 20% or more—fair; 10% or more—poor; 5% or
more—fail). Jung et al. investigated errors in cadastral maps and continuous cadastral
maps using the LSSI index [32]. While the researchers failed to achieve a high LSSI value,
the LSSI method proved to be useful.

The actual damage areas for Event I were identified based on the landslide investi-
gation report in 2019 [35]. For Event II, the drone photographs taken by Kwon Wu-seong
were used [36], and the damage areas for Event III were based on the drone photographs
of the site by Jang Jeong-pil at the time of the event [37] (Figure 16).

Figure 15. Results of RAMMS using HQPF—Event III. (a–c) are the Max Height (m), Max Pressure (kPa), and Max
Velocity (m/s) in the modeling results of the debris flow in Sungduk Village, respectively.

Figure 16. Cont.
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Figure 16. Damaged area in the literature. (a) is the 2019 Landslide Investigation Report, (b) is drone video and photos
taken by Kwon Wu-seong, and (c) is the status of each debris flow area referring to the article by reporter Jin Chang-il of
the JoongAngIlbo.

The damage areas calculated based on the RAMMS model were compared, defined
as areas with a maximum flow depth of 3 cm or deeper. Table 4 shows the LSSI analysis
results of the damage areas calculated using the RAMMS model. Figure 17 is a projection of
the damage areas based on the HQPF and the actual damage areas projected on an Arc map.
The LSSI result for Event I was 48.55%, which indicates a high degree of correspondence
between the analyzed damage areas with the actual damage areas. The results for Events II
and III were 44.70% and 44.88%, respectively, also indicating high levels of correspondence
with the actual areas.

Table 4. LSSI analysis of damage area calculated through RAMMS.

Event I Event II Event III

Actual Damage Area (A) 61,120 m2 31,873 m2 39,135 m2

Analysis Damage Area (B) 62,550 m2 53,851 m2 46,750 m2

A∩ B 40,439 m2 26,482 m2 26,605 m2

A∪ B 83,296 m2 59,242 m2 59,279 m2

LSSI = (A∩B)
(A∪B) × 100(%) 48.55% 44.70% 44.88%

Figure 17. Cont.
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Figure 17. LSSI analysis results. In (a–c), the area marked in blue is the HQPF Analysis Damage Area, and the area marked
in red is the actual damage area. And the area marked with a yellow checkered pattern means the part where the HQPF
Analysis Damage Area and the actual damage area intersect.

4. Conclusions

This study analyzed flow damage inflicted on Sinnam Village in Samcheok in October
2010, and Nansam Village in Anseong and Seongdeok Village in Gokseong in August 2020.
HQPFs were generated by applying machine learning to precipitation data from KMA
AWS near the damage sites, and the HQPFs were compared with the AWS data and the
QPF. The data were applied to the damage areas after verification to generate HQPF. Then,
the S-RAT model was used to calculate the damage areas, flow depths, and other damage
scale parameters using the runoff volumes, soil volumes, and debris flow model for each
event. The debris flow simulation results were also compared with the actual damage areas.
The following paragraphs summarize the findings and conclusions of this study.

This study sought to create HQPFs of areas damaged by debris flow using machine
learning. The calculated HQPFs were compared with QPFs, and the applicability of the
HQPFs were verified by conducting a statistical QPF-AWS and HQPF-AWS verification
and using a scatter plot for all three events.

The runoff volume for each event predicted in each area was calculated using the
S-RAT model, and the calculated peak runoff and the soil volume were used along with
the RAMMS model to analyze flow damage. The findings of the flow damage analysis
based on the model are as follows. In Event I, the max height was 2.43 m, the max
pressure was 42.68 kPa, and the max velocity was 4.62 m/s. In Event II, the max height
was 0.66 m, the max pressure was 18.05 kPa, and the max velocity was 3 m/s. In Event
III, the max height was 1.32 m, the max pressure was 34.19 kPa, and the max velocity
was 4.13 m/s. The damage areas in Events I, II, and III were 62,550 m2, 56,325 m2, and
46,750 m2, respectively. The LSSI results indicated high levels of correspondence between
the damage areas analyzed through the debris flow simulation using HQPF and the actual
damage areas, with an average LSSI value of 46%.

The analysis of the runoff volumes and the flow damage using precipitation data con-
firmed that the HQPFs were well corrected. The debris flow analysis revealed differences
in damage patterns and scales depending on the volume and pattern of rainfall, and the
HQPFs seem to be applicable to the RAMMS model.

This study showed that machine learning offers an effective way to correct qualitative
hydrological precipitation data, and also confirmed the applicability of HQPFs to debris
flow analysis using the RAMMS model. Numerous studies have analyzed debris flows
using past rainfall events. However, few studies have used precipitation forecasts to
analyze debris flows and predict damages. The calculation of corrected precipitation
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forecasts and debris flow analysis based on debris flow models allows for the prediction
of, and preparation against, possible damages in areas with debris flow risks. The authors
will advance the prediction factors and machine learning methods further to predict and
analyze debris flows highly affected by precipitation, and assess the applicability to debris
flow simulation models other than the RAMMS model.

Author Contributions: All the authors contributed to the conception and development of this
manuscript. C.-H.O. contributed to Coneptualization, Formal analysis and original writing. K.-
S.C. contributed to the formal analysis, survey of the previous research. J.-R.C. contributed to the
development of prior research and methodology. C.-M.G. contributed to the development of the
methodology and the software part. B.-S.K. suggested idea of study and helped in analyzing the
results and reviewed the writing. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by a grant (20010162) of Regional Customized
Disaster-Safety R&D Program funded by Ministry of Interior and Safety (MOIS, Korea). This paper
work (or document) was financially supported by Ministry of the Interior and Safety as Human
Resource Development Project in Disaster Management(C2001644-01-01).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, S. Long-term Comprehensive Water Resources Plan (2001~2020): Report = Water Vision 2020; Ministry of Construction and

Transportation: Sejong City, Korea, 2000.
2. National Institute of Forest Science. Things to Know About Landslides; National Institute of Forest Science Research Data No. 584.

2014. Available online: http://know.nifos.go.kr/book/search/DetailView.ax?sid=1&cid=163018 (accessed on 1 August 2021).
3. Nam, D.H.; Lee, S.H.; Jeon, G.W.; Kim, B.S. A Study on the Debris Flow Movement and the Run-out Calculation Using the

Coupling of Flood Runoff Model and Debris Flow Model. Crisisonomy 2016, 12, 131–143. [CrossRef]
4. Choi, Y.N.; Lee, H.H. Characteristic Analysis and Prediction of Debris Flow-Prone Area at Daeryongsan. J. Korean Assoc. Geogr.

Inf. Stud. 2018, 21, 48–62.
5. Kim, S.E.; Baek, J.C.; Kim, G.S. Run-out Modeling of Debris Flows in Mt. Umyeon using FLO-2D. J. Civ. Environ. Eng. Res. 2013,

33, 965–974.
6. Jun, G.W.; Oh, C.Y. Study on Risk Analysis of Debris Flow Occurrence Basin Using GIS. J. Korean Soc. Saf. 2011, 26, 83–88.
7. Yun, W.J.; Kim, J.H.; Bae, D.H. Application on the Coupled Short-Term Precipitation-Stream Flow Forecast. J. Korea Water

Resour. Assoc. 2004, 2004, 308–312.
8. Lee, J.D.; Bae, D.H. A Study on the Short-term Forecast Method Using Land-Gauge Data. J. Korea Water Resour. Assoc. 2009,

2009, 1167–1171.
9. Jung, J.S.; Kim, K.S. Rainfall Nowcasting with Multi-later Neural Network. J. Korean Soc. Environ. Technol. 2000, 1, 95–100.
10. Kim, G.S. Forecast of Areal Average Rainfall Using Radiosonde Data and Neural Networks. J. Korea Water Resour. Assoc. 2006, 39,

717–726. [CrossRef]
11. Kim, G.S.; Kim, J.P. Development of a Short-term Rainfall Forecast Model Using Sequential CAPPI Data. J. Civ. Environ. Eng. Res.

2009, 29, 543–550.
12. Yoon, S.S.; Bae, D.H.; Choi, Y.J. Urban Inundation Forecasting Using Predicted Radar Rainfall: Case Study. J. Korean Soc.

Hazard. Mitig. 2014, 14, 117–126. [CrossRef]
13. Kim, B.S.; Yun, S.G.; Yang, D.M.; Gwon, H.H. Development of Conceptually Grid Based Hydrological Model. J. Korea Water

Resour. Assoc. 2010, 43, 667–679. [CrossRef]
14. Jung, S.H.; Lee, D.E.; Lee, K.S. Prediction of River Water Level Using Deep-Learning Open Library. J. Korean Soc. Hazard. Mitig.

2018, 18, 1–11. [CrossRef]
15. Choi, C.H.; Kim, J.S.; Kim, D.H.; Lee, J.H.; Kim, D.H.; Kim, H.S. Development of Heavy Rain Damage Prediction Functions in the

Seoul Capital Area Using Machine Learning Techniques. J. Korean Soc. Hazard. Mitig. 2018, 18, 435–447. [CrossRef]
16. Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep Learning for ENSO forecasts. Nature 2019, 573, 568–572. [CrossRef] [PubMed]
17. Fox, J.T.; Magoulick, D.D. Predicting hydrologic disturbance of streams using species occurrence data. J. Sci. Total Environ. 2019,

686, 254–263. [CrossRef] [PubMed]

http://know.nifos.go.kr/book/search/DetailView.ax?sid=1&cid=163018
http://doi.org/10.14251/crisisonomy.2016.12.8.131
http://doi.org/10.3741/JKWRA.2006.39.8.717
http://doi.org/10.9798/KOSHAM.2014.14.3.117
http://doi.org/10.3741/JKWRA.2010.43.7.667
http://doi.org/10.9798/KOSHAM.2018.18.1.1
http://doi.org/10.9798/KOSHAM.2018.18.7.435
http://doi.org/10.1038/s41586-019-1559-7
http://www.ncbi.nlm.nih.gov/pubmed/31534218
http://doi.org/10.1016/j.scitotenv.2019.05.156
http://www.ncbi.nlm.nih.gov/pubmed/31181513


Water 2021, 13, 2360 23 of 23

18. Lee, Y.M.; Ko, C.M.; Shin, S.C.; Kim, B.S. The Development of a Rainfall Correction Technique based on Machine Learning for
Hydrological Applications. J. Environ. Sci. Int. 2019, 28, 125–135. [CrossRef]

19. Yen, M.H.; Liu, D.W.; Hsin, Y.C.; Lin, C.E.; Chen, C.C. Application of the deep learning for the prediction of rainfall in Southern
Taiwan. Sci. Rep. 2019, 9, 12774. [CrossRef]

20. Korea Meteorological Administration. Forecast Technologies in Your Hands; Korea Meteorological Administration Forecast Bureau:
Seoul, Korea, 2012; p. 17. Available online: http://www.kma.go.kr/down/e-learning/hands/hands_17.pdf (accessed on 15
August 2021).

21. Yoo, J.E. Random forests: An alternative data mining technique to decision tree. J. Educ. Eval. 2015, 28, 427–448.
22. Choi, C.H.; Park, K.H.; Park, H.K.; Lee, M.J.; Kim, J.S.; Kim, H.S. Development of Heavy Rain Damage Prediction Function for

Public Facility Using Machine Learning. J. Korean Soc. Hazard. Mitig. 2017, 17, 443–450. [CrossRef]
23. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
24. Houtao, D.; Runger, G.; Tuv, E. System monitoring with real-time contrasts. J. Qual. Technol. 2012, 44, 9–27.
25. Nam, D.H.; Ha, H.J.; Kim, B.S. Validation of Flood Runoff Sumulation Using Distributed Hydrologic Models. J. Korean Soc.

Hazard. Mitig. 2020, 20, 173–184. [CrossRef]
26. Nam, D.H.; Kim, M.I.; Kang, D.H.; Kim, B.S. Debris Flow Damage Assessment by Considering Debris Flow Direction and

Direction Angle of Structure in South Korea. Water 2019, 11, 328. [CrossRef]
27. Hussin, H.Y.; Quan Luna, B.; Van Westen, C.J.; Christen, M.; Malet, J.-P.; Van Asch, T.H.W.J. Parameterization of a numerical 2-D

debris flow model with entrainment: A Event study of the Faucon catchment, Southern French Alps. Nat. Hazards Earth Syst. Sci.
2012, 12, 3075–3090. [CrossRef]

28. Takahashi, T.; Nakagawa, H.; Satofuka, Y.; Kawaike, K. Flood and sediment disasters triggered by 1999 rainfall in VeneZuela: A
river restoration plan for an alluvial fan. J. Nat. Disaster Sci. 2001, 23, 65–82.

29. Hutter, K.; Svendsen, B.; Rickenmann, D. Debris flow modeling:A review. Contin. Mech. Thermodyn. 1994, 8, 1–35. [CrossRef]
30. National Institute for Land and Infrastructure Management (NILIM). Manual of Technical Standard for Establishing Sabo Master Plan

for Debris Flow and Driftwood; Technical Note of National Institute for Land Infrastructure Management No. 364; NILIM: Tsukuba,
Japan, 2016; pp. 25–32. Available online: http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0904pdf/ks0904.pdf (accessed on 1
August 2021).

31. Chae, B.G.; Song, Y.S.; Choi, J.H.; Kim, G.S. The Current Methods of Landslide Monitoring Using Observation Sensors for
Geologic Property. J. Sens. Sci. Technol. 2015, 24, 291–298. [CrossRef]

32. Jung, G.H.; Jun, C.M.; Ko, J.H.; Park, Y.R. A Study on the Error Detection of Attached Cadastral Maps Using GIS. Proc. Korean Soc.
Surv. Geod. Photogramm. Cartogr. Conf. 2007, 12, 47–55. Available online: https://www.koreascience.or.kr/article/CFKO2007164
19439853.jsp-kj=SSMHB4&py=2012&vnc=v27n6&sp=588 (accessed on 15 August 2021).

33. Hua, L.; Tang, L.; Cui, S.; Yun, K. Simulating Urban Growth Using the SLEUTH Model in a Coastal Peri-Urban District in China.
Sustainability 2014, 6, 3899–3914. [CrossRef]

34. Choi, J.H.; Jeon, J.H.; Kim, T.H.; Kim, B.S. Comparison of inundation patterns of urban inundation model and flood tracking
model based on inundation traces. J. Korea Water Resour. Assoc. 2021, 54, 71–80.

35. Korea Forest Service. 2019 Landslide Cause Investigation Results Report; Korea Forest Service: Daejeon, Korea, 2019; pp. 28–53.
36. Kwon, W.S. Oh My Photo 2020. The Scene of the ‘Disastrous Anseong Juksan-Myeon Landslide’ Seen with a Drone. Available

online: http://www.ohmynews.com/NWS_Web/OhmyPhoto/2020/at_pg.aspx?CNTN_CD=A0002664401 (accessed on 15
August 2021).

37. Jin, C.I. JoongAng Ilbo. Gokseong Landslide Disastrous for 5 People . . . Residents: “Soil Collapsed at the National Road Expansion
Construction Site”. Available online: https://www.joongang.co.kr/article/23844086#home (accessed on 15 August 2021).

http://doi.org/10.5322/JESI.2019.28.1.125
http://doi.org/10.1038/s41598-019-49242-6
http://www.kma.go.kr/down/e-learning/hands/hands_17.pdf
http://doi.org/10.9798/KOSHAM.2017.17.6.443
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.9798/KOSHAM.2020.20.1.173
http://doi.org/10.3390/w11020328
http://doi.org/10.5194/nhess-12-3075-2012
http://doi.org/10.1007/BF01175749
http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0904pdf/ks0904.pdf
http://doi.org/10.5369/JSST.2015.24.5.291
https://www.koreascience.or.kr/article/CFKO200716419439853.jsp-kj=SSMHB4&py=2012&vnc=v27n6&sp=588
https://www.koreascience.or.kr/article/CFKO200716419439853.jsp-kj=SSMHB4&py=2012&vnc=v27n6&sp=588
http://doi.org/10.3390/su6063899
http://www.ohmynews.com/NWS_Web/OhmyPhoto/2020/at_pg.aspx?CNTN_CD=A0002664401
https://www.joongang.co.kr/article/23844086#home

	Introduction 
	Theoretical Background 
	Machinge Learning (Random Forest) 
	Spatial Runoff Assessment Tool (S-RAT) 
	Debris Flow Simulation 
	Two-Dimensional Rapid Mass Movements (RAMMS) Model 
	Calculation of Soil Volume 


	Analysis and Results 
	Selection of Analysis Areas 
	Correction and Verification of Precipitation Forecast Using Machine Learning 
	Debris Flow Prediction Using Debris Flow Simulation 
	The Collection and Input Data Construction of Runoff Simulation 
	Runoff Volume Calculation (S-RAT) 
	Calculation of Soil Volume 
	Debris Flow Simulation 

	Verification of the Applicability of the HQPF Data Using Actual Damage Data 

	Conclusions 
	References

