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Supplementary S1 An illustrated example of similar chemical structure of CECs 

with similar photodegradation performance 

 

Figure S1. CECs with a similar chemical structure Estrone (a), 17α-Ethynylstradiol (b), 17β-Estradiol (c), 

Estriol (d), Levonorgestrel (e), Testosterone (f). 

 

These CECs have similar chemical structure and hence likely to have similar 

degradation performance. X. Ma. et al. reported that Estrone (E1), 17β-estradiol 

(E2) and 17α-ethinyl estradiol had similar degradation performance using UVC/ 

H2O2 system [1]. The kOH∙ (L.mol−1.s−1) of 17β-Estradiol, Estrone, 17α-

Ethynylestradiol and 17α-Estradiol were also reported to be similar ~ 6.0× 109 [2], 

indicating that the photodegradation performance by OH∙ system should be 

similar. It is however noted that 17α-ethinyl estradiol has a minute higher 

photodegradation performance than Estrone (E1), 17β-estradiol (E2) and Estriol 

(E3), due to presence of the ethynyl group, which absorbs UV light easily[3]. 

Nonetheless, the chemical structure of CECs can be used as a screening tool to 

access the suitability of different UV processes for its degradation. 

 

 

 

 

 



 

Supplementary S2 Bond dissociative energy and their corresponding threshold 

wavelength 

 
Table S1. Bond dissociative energies and corresponding light ‘threshold’ wavelength. 

Bond ∆𝑬𝟐𝟗𝟖𝒌(𝒌𝑱 𝒎𝒐𝒍−𝟏)  λD (nm) Reference 

n-C3H7-H 407 294 [4] 

C6H7-H 428 279 [4] 

C6H7-Cl 393.2 (94Kcal 𝑚𝑜𝑙−1) 315* [5] 

C6H7-OH 428 (110Kcal 𝑚𝑜𝑙−1) 279 [4] 

H3C- CH3 349 343 [4] 

H3C-Cl 340 352 [4] 

H3C-C(O)CH3 328 365 [4] 

HO-OH 211 568 [4] 

HOCH2–H 402.1 298* [5] 

1,4-dioxyl-H 383.8 324* [5] 

*estimated values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary S3 Standard Reduction Potentials in Aqueous Medium for 

degradation of organic compounds  

 

Table S2: Standard reduction potentials of various oxidizing agents in aqueous medium for degradation of 

organic compounds, adapted from Bard et al. (1985) [6]. 

Oxidizing agent 
Reduction Reaction 

Standard Potential 

(Eo) (V vs SHE) 

Hydroxyl radical (•OH) • 𝑂𝐻 +  𝐻+ + 𝑒− → 𝐻2𝑂 2.80 

Sulphate radical (SO4-•) 𝑆𝑂4
−• + 𝑒− → 𝑆𝑂4

2− 2.60 

Ozone (O3) 𝑂3 +  2𝐻+ + 2𝑒− → 𝑂2 + 𝐻2𝑂 2.075 

Persulphate  𝑆2𝑂8
2− + 2𝑒− → 2𝑆𝑂4

−• 2.01 

Hydrogen peroxide (H2O2) 𝐻2𝑂2 + 2𝐻+ + 2𝑒− → 2𝐻2𝑂 1.763 

Hydroperoxyl radical 

(HO2•) 

𝐻𝑂2
• + 3𝐻+ + 3𝑒− → 2𝐻2𝑂 

𝐻𝑂2
• + 𝐻+ + 𝑒− → 𝐻2𝑂2 

1.65 

1.44 

Chlorine (Cl2) 𝐶𝑙2 +  2𝑒− → 2𝐶𝑙− 1.358 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary S4 Cost Comparison of various light driven AOPs discussed in this review  

 

𝐸𝐸/𝑂 =  
𝑃×𝑡×1000

𝑉×60×𝑙𝑜𝑔
𝐶𝑂
𝐶𝑡

  

Where:  

P = the power input of the UV-lamp, magnetic stirrer, pump, ozone generator (kW)  

t = treatment time (min)  

V = the volume of the effluent (L)  

CO = initial concentration of contaminant  

Ct = concentration of pollutant at time t 

 

Using EEO allows comparison between systems using different wavelengths and polychromatic spectra. For oxidants (Cl2, H2O2 etc. 

and catalysts (TiO2, ZnO etc.), EEO can also be applied as the stored electric energy for the treatment processes [7]. Factors that affect 

EEO values include oxidant dose, treatment capacity and the recalcitrant nature of the contaminant. 

 

Table S3: Cost analysis of various light driven AOPs. 

S/N Process Pollutant [CEC] 

(mg/L) 

Reacting 

Volume (L) 

Treatment  

time (h) 

EEO (kWh m-

3) 

Degradation 

rate (%) 

References 

1 UV/TiO2 Tris-(2-chloroisopropyl) 

phosphate in synthetic 

wastewater 

1 0.15 0.667 0.000038  [8] 

2 UV/PS Brilliant Green in 

synthetic wastewater 

24.13 0.15 2.48 5.4 99.99 [9] 

UV/PMS 3.16 6.8 99.99 

UV/H2O2 3.6 7.8 99.99 

3 UV/TiO2 

(Pilot) 

Real pharmaceutical 

effluent 

COD = 3680 5 2 6.12 80% COD [10] 

4 UV/Cl2 7.708 0.2 0.0833 0.4595 100 [11] 



UV/NH2Cl Iopamidol in synthetic 

wastewater 

0.0833 0.4272 100 

UV/ClO2 0.0833 1.1789 100 

UV/H2O2 0.0833 0.3965 100 

5 UV/TiO2  Saccharin in synthetic 

wastewater 

5 0.15 0.75 134.4 54 [12] 

UV/TiO2 (LED) 0.5 8.2 100 

6 UV (LP) Various trace organic 

compounds in synthetic 

wastewater 

0.1 0.03 varied 0.09 - 15.90 90 [13] 

UV (MP) 0.09 - 12.22 90 

7 UV/Cl2 28 PPCPs in 

real/synthetic 

wastewater  

0.001 each 0.75 varied 0.017 - 2.26 

(synthetic 

wastewater) 

0.048 - 4.53 

(real 

wastewater) 

90 [14] 

UV/H2O2 0.17 - 2.38 

(synthetic 

wastewater) 

0.22 - 8.09 (real 

wastewater) 

90 

8 UV Synthetic wastewater 

with 4 micropollutants 

1.00 each 1.2 0.333 65.5 - 499 90 [15] 

UV/H2O2 49.5 - 322 90 

UV/O3 4.75 - 65.3 90 

UV/O3/H2O2 5.28 - 44.1 90 

9 UV/O3/TiO2 Synthetic wastewater 

with various VOCs 

COD: 2100 - 

2300 mg/L 

15 2 280 66 [16] 

O3 1.667 150 29 

UV/O3 0.25 35 43 

UV/O3/H2O2/Ti

O2 

1 247 43 

O3/H2O2 1 106 32 

UV/O3/H2O2 1 156 46 



10 O3 Groundwater/surface 

water/sec effluent with 

micropollutants 

0.001 each 9.4 0.333 0.3 33 - 99 [17] 

Electro-

Peroxone 

0.21 68 - ~100 

UV/O3 2.13 76 - ~100 

11 O3 Synthetic drinking 

water with PPCPs 

10.00 each 1.6 0.167 7.79 - 13.10 66 - 82 [18] 

UV/O3 8.99 - 14.02 80 - 100 

UV/O3/TiO2 

 

 

 

4.40 - 7.01 100 

12 UV/H2O2 Tertiary wastewater 

effluent 

Varied 

(0.021 - 

1.813) 

21 0.0084 0.3741 - 0.8259 Not discussed [19] 

UV/Cl2 0.1157 - 7.3390 

UV/O3 0.2145 - 0.3521 

UV/O3/H2O2 0.2854 - 0.3625 

UV/O3/Cl2 0.2443 - 0.5371 

13 UV/Fenton 

(UVA) 

Synthetic water with 

valproic acid  

50.00 2 2 26.5 100 [20] 

UV/Fenton 

(UVC) 

17 100x` 

UV/Fenton 

(Solarbox) 

* 89.7 

14 Solar/Fenton Synthetic water with 5 

PPCPs 

< 0.1 each 22 Not 

discussed 

0.85 90 [21] 

Solar/Fenton 0.82 90 

UV/H2O2 15.63 1.37 90 

UV/PDS 1.3 90 

15 UV-Fenton Synthetic water with 

carbamazepine 

78.2 33 2 19.18 76.2 [22] 

Solar/Fenton 0.432 4.39 82.5 

UV/Fenton 6 19.73 79.7 

16 Fenton TOC =  0.5 1 - 55.61 [23] 



UV/Fenton Synthetic water with 

pesticides 

50 – 250 

mg/L 

4 63.76 

Solar/Fenton - 58.32 

UV/TiO2/H2O2 5 233 21.54 

17 Fenton Textile wastewater COD =  

1130 mg/L 

0.5 

 

1 0.89 90 [24] 

UV/Fenton 2.33 52.75 90 

Solar/Fenton 72 0.45 90 

* The solar box with simulated sunlight was excluded from the cost computation, since solar boxes are energy intensive and does 

not fully represent the cost potential of natural sunlight.
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