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Abstract: The quantitative description of relationships and propagation between different forms of
drought at multiple spatiotemporal scales in various geographical locations is informative for early
drought warning systems. This study intends to evaluate the historical hydrometeorological drought
from 1984–2015 in the Soan River Basin, which is a critical water source for the Pothwar region of
Pakistan. The reconnaissance drought index (RDI) and standardized runoff index (SRI) are used to
characterize meteorological and hydrological droughts, respectively. The spatiotemporal variations
of the RDI and SRI demonstrated that 2000 and 2010 were extremely dry and wet years, respectively.
The results further reveal that the frequency of hydrometeorological drought events was higher in a
shorter time scale (3 and 6 months), while durations featured longer timescales (9 and 12 months).
The RDI and SRI time series showed a significant decreasing trend in terms of the Mann–Kendal
and Sen slope estimator (SSE) results. Cross-correlation analysis for RDI and SRI with a time lag
acknowledged the existence of a sequence between the RDI and SRI and a positive relationship
between the two indices. The findings of this study could be helpful for better understanding drought
variability and water resource management.

Keywords: hydrometeorological droughts; reconnaissance drought index; standard runoff index;
spatiotemporal analysis; Soan River Basin

1. Introduction

Droughts are characterized by deficits of water supplies over an extended period,
including surface, ground, or atmospheric water [1]. Irrespective of the climatic situations,
droughts can occur worldwide, including in humid environments [2]. Recent droughts
have resulted in serious economic losses due to crop damage, infrastructure destruction,
and population displacement and have led to jurisdictional conflicts over water rights [3].

Drought events are projected to occur in the future with increasing frequency due to
climate change [4], so it is imperative to understand the drought phenomenon. Droughts
can be classified into different categories (e.g., meteorological, agricultural, hydrological,
and socioeconomic) depending on the consequences leading to water shortages [5]. In
general, droughts persist in regions where climatic conditions (e.g., precipitation) are
significantly below normal conditions over a period of time [6]. At early stages, droughts
are usually referred to as meteorological droughts. A meteorological drought may start
quickly as it mainly depends on the deficiency of precipitation, and if precipitation shortfall
is propagated throughout specific regions, then a meteorological drought can evolve into
a hydrological drought and then into an agricultural drought. The transition of different
drought types is defined as drought propagation [7].
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Drought index methods provide one of the most practical ways to identify droughts,
in which drought indices are derived from a variety of simple parameters to more complex
functions. The Palmer drought severity index [8] and the surface water supply index [9]
require a diverse range of data and thorough computational effort. On the other hand, the
reconnaissance drought index (RDI) and standardized runoff index (SRI) are relatively sim-
ple and effective indices that require few input parameters and can be easily calculated [10].
The RDI introduced by Tsakiris et al. [11] has been extensively used to characterize and
monitor meteorological droughts [12]. It can be used to measure the severity and oc-
currence of droughts by using precipitation and evapotranspiration data [13]. The SRI
developed by Shukla and Wood [14] is based on the standardized precipitation index and
is usually applied to characterize hydrological droughts.

A plethora of research has been found in the literature about the usage of either
the RDI or SRI to assess meteorological and hydrological droughts in different regions
of the world. For instance, meteorological drought studies were carried out using the
RDI method in the UK [13], Ethiopia [15], China [16], Malaysia [17], Turkey [18], and
Vietnam [19]; however, few studies have explained the links between meteorological and
hydrological droughts due to the inherent complexity [20]. Previous studies have mainly
focused on the characteristics and variations within these characteristics in the context
of drought propagation; however, further exploration of what meteorological drought
intensity is needed to generate a hydrological drought in a different region is needed, as
drought events are regional in nature. Moreover, the lack of understanding regarding
hydrological drought response to different meteorological drought conditions in different
regions presents an unsolved question for drought risk management. To address these
questions, it is vital to perform a comprehensive study of droughts that encompasses
large geographic areas over long periods [21]. Using the information on regional drought
characteristics, water resource management strategies can be efficiently implemented with
accurate water-based information [22].

Considering the erratic, scant, and unstable climate and current drought situation in
Pakistan [23], drought propagation information is essential at the regional and national
scales as it could provide the appropriate and consistent information necessary for efficient
water management and the implementation of an early drought warning system. Drought
propagation information can assist in reducing economic damages with an informed
decision-making ability. There is strong evidence in the literature that the geographical
variability of drought occurrence has increased over the past few decades. Historical detec-
tion of these variations is highly important for agriculture-based countries like Pakistan. In
this context, several studies have been conducted in the region [24–28]. Ahmad et al. [29]
and Ahmed et al. [30] reported a decreasing tendency in annual drought events over the
northern, northeastern, and northwestern regions of Pakistan; however, in another study,
Reggiani et al. [31] reported an increasing tendency of these events for different subbasins
of the upper Indus basin. The Soan Basin is an important tributary of the Indus Basin and
is highly significant for its contribution to agricultural production; however, no comprehen-
sive study has been reported regarding the spatiotemporal trends of hydrometeorological
droughts. We intend to fill this gap by providing a detailed spatiotemporal analysis of
hydrometeorological drought variations in the Soan River Basin. The Soan River is one of
the major tributaries of the Indus River Basin in Pakistan. It originates from the Murree
Mountains and flows into the Indus River through the Dhoke Pathan Hydrological Station.
The present study focuses on characterizing meteorological and hydrological droughts
based on climate and hydrological data recorded in the vicinities of the Soan River Basin.
The main objectives of this study include: (1) analyzing meteorological and hydrological
drought evolution by using the RDI and SRI methods; (2) determining long-term trends in
drought indices at different time scales; and (3) investigating the relationships between
meteorological and hydrological droughts.
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2. Materials and Methods
2.1. Study Area

The Soan River is a seasonal river of Punjab, Pakistan, in the Pothwar region, which
starts from Murree Mountains, passes through the capital city of Islamabad, and then
finally joins the Indus River at Kalabagh in Mianwali District, featuring an elevation range
from 265 to 2274 m. There are two hydrological gauge stations (Chirah and Dhok Pathan)
in the watershed area of the Soan River [32]. Since the study area is in a tropical monsoon
climate, persistent floods and droughts are major natural hazards. Most areas are used for
rainfed crops, which are predominantly located in drought-prone areas. As is the case of
water-use sectors, droughts have adverse impacts on water supply, agriculture, and the en-
vironment [33]. As such, the use of scientific insights can lead to better understanding and
the ability to predict a drought as the data available in the watershed meet the requirements
of an index approach for drought analysis. Thirty-two years (1984–2015) of meteorological
(precipitations and evapotranspiration) and hydrological (streamflow) data were collected
from Pakistan Metrological Department (PMD) and Water and Power Development Au-
thority (WAPDA), respectively, at all selected stations. Geographical location of the study
area and details of target hydrometeorological stations are presented in Figure 1. The
approximate length of the Soan River is 274 km, and its geographic location is 32.6–33.9◦ N
and 72.4–73.5◦ E with a watershed area of about 6475 km2. The average annual rainfall
of the study area ranges from 492–1710 mm, with average monthly highest and lowest
temperatures between 35–41 ◦C, and 1–25 ◦C, respectively. The monsoon season, starting
in July and ending in September/October, is the main rainy season and is responsible for
70–75% of annual rainfall [34].

Water 2021, 13, x 3 of 16 
 

2.1. Study Area 
The Soan River is a seasonal river of Punjab, Pakistan, in the Pothwar region, which 

starts from Murree Mountains, passes through the capital city of Islamabad, and then fi-
nally joins the Indus River at Kalabagh in Mianwali District, featuring an elevation range 
from 265 to 2274 m. There are two hydrological gauge stations (Chirah and Dhok Pathan) 
in the watershed area of the Soan River [32]. Since the study area is in a tropical monsoon 
climate, persistent floods and droughts are major natural hazards. Most areas are used for 
rainfed crops, which are predominantly located in drought-prone areas. As is the case of 
water-use sectors, droughts have adverse impacts on water supply, agriculture, and the 
environment [33]. As such, the use of scientific insights can lead to better understanding 
and the ability to predict a drought as the data available in the watershed meet the re-
quirements of an index approach for drought analysis. Thirty-two years (1984–2015) of 
meteorological (precipitations and evapotranspiration) and hydrological (streamflow) 
data were collected from Pakistan Metrological Department (PMD) and Water and Power 
Development Authority (WAPDA), respectively, at all selected stations. Geographical lo-
cation of the study area and details of target hydrometeorological stations are presented 
in Figure 1. The approximate length of the Soan River is 274 km, and its geographic loca-
tion is 32.6–33.9°N and 72.4–73.5°E with a watershed area of about 6475 km2. The average 
annual rainfall of the study area ranges from 492–1710 mm, with average monthly highest 
and lowest temperatures between 35–41 °C, and 1–25 °C, respectively. The monsoon sea-
son, starting in July and ending in September/October, is the main rainy season and is 
responsible for 70–75% of annual rainfall [34]. 

 
Figure 1. Study area with the locations of hydrometeorological stations and pattern of land utilizations. 

2.2. Drought Indices 
Hydrometeorological droughts in the Soan River Basin were studied using two dif-

ferent drought indices. The reconnaissance drought index (RDI) and standardized runoff 
index (SRI) were used to investigate meteorological and hydrological drought behaviors, 

Figure 1. Study area with the locations of hydrometeorological stations and pattern of land utilizations.



Water 2021, 13, 2237 4 of 15

2.2. Drought Indices

Hydrometeorological droughts in the Soan River Basin were studied using two dif-
ferent drought indices. The reconnaissance drought index (RDI) and standardized runoff
index (SRI) were used to investigate meteorological and hydrological drought behaviors, re-
spectively. The RDI [11] is a common indicator for monitoring and quantifying the severity
of meteorological drought events caused by the aggregated deficits between precipitation
and the evaporative demand of the atmosphere [35]. This index was selected due to its
simplicity and robustness, and it can be estimated at different time scales, such as with
1, 3, 6, and 12 months. The RDI can be computed in three different forms, i.e., the alpha
RDI (Equation (1)), normalized RDI (Equation (2)), and standard RDI (Equation (3)) [36],
whereas the standard RDI and alpha RDI are used for the evaluation of drought severity
and aridity classification, respectively. The RDI computation for any location begins with
an aggregated form (i.e., alpha RDI) using a monthly time step and may be calculated
for each month of the hydrological year or a complete year. Moreover, the RDI drought
index is particularly useful in semiarid and arid regions facing climate instability [11]. The
estimation of meteorological droughts was carried out using the RDI. In this study, we used
four time scales of 3, 6, 9, and 12 months. As the hydrological year starts from October and
ends in September, K-3 stands for the aggregation of the last 3 months from October, K-6
stands for the last 6 months from October, and similarly K-9 and K-12 stand for aggregation
of last 9 months and 12 months, respectively. The estimation of different forms of RDI was
explained in Tsakiris et al. [11]. The expression of the standard RDI is given as follows:

αi
0 =

12
∑

j=1
Pij

12
∑

j=1
PETij

i = 1 to N and j = 1 to 12 (1)

RDIi
n =

αi
o

αo
− 1 (2)

RDIi
st,k =

Yi
k −Yk

σYk
(3)

where RDIi
st,k is the reconnaissance drought index of the j-th hydrological month of the i-th

year and Yi
k is the natural log of the alpha RDI, while yk and σyk are the mean and standard

deviation natural log of precipitation for the k-th time scale.
The SRI was developed by Shukla and Wood [14] and has been commonly used for

characterizing hydrological drought events. The process of SRI computation also involves
distribution fitting to the streamflow data and the estimation of a probability density
function (PDF) and cumulative distribution function (CDF). These functions are then
converted into standardized distributions with zero means and unit standard deviations,
which provides the value of the SRI. The positive value of the SRI indicates the wet
condition, while the negative value represents the drought conditions. The SRI can also be
estimated at different time scales, e.g., with 1, 3, 6, and 12 month durations.

The RDI and SRI are based on monthly time series of precipitation and streamflow
data. The cumulative sums of precipitation and streamflow for 3, 6, 9, and 12-month time
scales were used to calculate RDI-3, SRI-3, RDI-6, SRI-6, RDI-9, SRI-9, RDI-12, and SRI-12,
respectively. For example, the cumulative sum for October while calculating RDI-3 and
SRI-3 was obtained by adding the previous two months (i.e., August and September) of
data to the October data. Similarly, for November, September, and October, data were also
added. For RDI-6 and SRI-6, the cumulative sum was obtained by adding six months from
May to October. Moreover, the time series were fitted to a gamma probability distribution
and the cumulative probability distribution of the series data was transformed into the
normal distribution [37].
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The RDI values from each meteorological station (9 in total) were computed over differ-
ent time scales and then spatially averaged using the inverse distance weighted method [38].
These average RDI values were used to determine the meteorological dry and wet periods of
the study area. The SRI was obtained based on the monthly streamflow data recorded at the
two gauging stations (local names Chirrah and Dhok Pathan). Since the RDI and SRI were
calculated similarly, the same criteria could be used to categorize the drought classification for
the RDI and SRI. The drought thresholds defined in this study were the following: extreme
wet (1.50 ≤ index), moderate wet (1 ≤ index ≤ 1.49), slight wet (0 ≤ index ≤ 0.99), weak
drought (−1.0 ≤ index < 0), moderate drought (−1.49 ≤ index < −1.0), severe drought
(−1.99 ≤ index < −1.50), and extreme drought (index ≤ −2.0). These two indices were
calculated and discussed in conjunction to establish the links and transitions between
meteorological and hydrological droughts.

2.3. Trend Analysis

For trend analysis of the RDI and SRI values at different time scales, the commonly
used statistical approaches, i.e., Mann–Kendall testing [39] and Sen slope estimation [40],
were employed. The Mann–Kendall (M–K) test is a non-parametric statistical technique
to study the significant variations of time series data. The M–K test statistic (S) and
standardized statistics (Zmk) were computed as follows:

S =
n−1
∑

q=1

n
∑

p=q+1
sgn(xp − xq) (4)

Zmk =


S−1√
var(S)

i f S > 0

0 i f S = 0
S+1√
var(S)

i f S < 0

 (5)

where n is the sample size (number of the data values), xp and xq are the data values in
corresponding time series p and q, respectively, sgn is the sign functions, and var(S) is
the variance of S. Given confidence level α, the sequential data would be supposed to
experience a statistically significant trend if |Zmk| > Zmk(1− α/2), where Zmk(1− α/2) is
the corresponding value of p = α/2 when following the standard normal distribution.

Besides the M–K test, Sen’s slope estimator method, developed by Sen [40], is also a
non-parametric method to discover a trend in time series data. This method estimates the
slope of a regression line that fits time series data based on a least squares estimate. The
slope estimates of all data pairs were obtained from the following equation:

SSE =

{
d(n+1)/2 i f n is odd

1
2

[
dn/2 + d(n+2)/2

]
i f n is even

(6)

(
di =

xp − xq

p− q
, i = 1, 2, 3...., n and p > q

)
(7)

where di is a slope estimate of the time series data and n is the number of all data pairs for
which p is greater than q.

A positive value of the SSE indicates an increasing trend, whereas a negative value
represents a decreasing trend of the time series data.

Furthermore, cross-correlations between the RDI and SRI values with varying lag
times between the two series were calculated to evaluate the relationships between the me-
teorological and hydrological droughts. These cross-correlations were identified using the
Pearson correlation coefficient (r) [41]. The estimate of this Pearson correlation coefficient
was obtained using the following equation:

r = ∑ (xi−x)(yi−y)√
∑(xi−x)2∑(yi−y)2

(8)
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where r is the Pearson correlation coefficient, Xi and Yi are RDI and SRI values at the time
i, respectively, and n is the number of paired values of X and Y. As discussed previously,
hydrological droughts usually develop from meteorological droughts. To analyze the
delay in drought propagation, the monthly SRI values at a given time scale were lagged
behind the RDI values in monthly increments from zero lag up to a lag of 12 months. Their
cross-correlations (r-values) were then computed using Equation (6). Cross-correlation
analysis was performed using the R package “astsa”. Additionally, Excel 2019, ArcMap
10.3.1, MATLAB R2016b, and Adobe Illustrator CC 2018 were used for spreadsheets/data
arrangement, multivariate interpolation, statistical analysis, and figure presentations,
respectively.

3. Results and Discussions
3.1. Spatiotemporal Analysis of Hydrometeorological Droughts

The spatiotemporal variations of RDI values obtained using the inverse distance
weighting interpolation method during the study period of 32 years from 1984 to 2015 are
depicted in Figure 2a,b. Figure 2a shows results from 1983 to 1999 and Figure 2b from
2000–2015. The overall extreme drought events occurred continuously from 1998 to 2001,
while 2000 was the driest year during the study period. Drought patches were further
observed randomly during 1985, 1994–1997, and 2002–2007. The year 2010 was reported
as the extreme wet year. Additionally, the spatiotemporal variations for the driest year
were further elaborated in Figure 3. Figure 3a,b show that extreme drought events were
observed in the southwest of the watershed for RDI-3 and RDI-9, respectively. Figure 3c,d
demonstrate that extreme drought events also occurred in the southwest and northeast
parts of the watershed for RDI-6 and RDI-12, respectively.

The frequency, intensity, duration, and severity of hydrometeorological droughts are
depicted in Figures 4 and 5 when using the RDI and SRI series for different reference
time scales. Figures 4 and 5 show the fluctuations in the wet and dry periods for the Soan
River Basin during 1984–2015. Frequency and intensity of occurrence were comparatively
higher at short time scales (RDI and SRI-3 and -6), while the duration and severity were
longer and more severe at longer time scales of 9 and 12 months. Moreover, it was further
observed that fluctuations in the frequency of drought events in RDI-3 were higher than
those of SRI-3, while frequency fluctuations between RDI-6 and SRI-6 were relatively lower,
as SRI-6 tended to be more stable than RDI-6. The durations and severities of drought
events seemed increase as the time scale increased. For instance, drought duration became
longer for the time scales of 9 and 12 months for both the RDI and SRI, which increased
the drought severity. Additionally, the highest drought intensity occurred in a short time
scale for both RDI-3 and RDI-6 and was noted as −2.75. The highest drought intensity
was −2.5 and −2.3 for SRI-3 and SRI-6, respectively. The highest drought duration was
observed in long time scale for both RDI and SRI, and a stable drought was observed
during 1996–2002 with a drying episode during 2001 for RDI and SRI at 9 and 12 months.
Furthermore, three to four major drought events were recorded on longer time scales of 9
and 12 months for both RDI and SRI, which lasted at least for one year with an intensity
ranging from moderate to extreme drought. In conclusion, a consistent cycle of wet and
dry episodes over the river basin is obvious and requires more consistent long-term data to
better attribute the changes in drought dynamics.
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3.2. Trend Analysis of Hydrogeological Droughts

Mann–Kendall testing was performed for the RDI and SRI time series for 1984–2015
and the null hypothesis of trend absence was tested. Given the condition that if probability
threshold value p is less or equal to the significance level (α = 0.05), the null hypothesis will
be rejected. Rejecting the null hypothesis detects the existence of a significant trend in the
time series. On the contrary, the null hypothesis will be accepted if the probability threshold
is greater than the significance level. Accepting the null hypothesis indicates the absence of
a significant trend. Furthermore, negative and positive values of the Mann–Kendal trend
show the decrease and increase in the trend in the time series. Results of Mann–Kendal
analysis reveals that the null hypothesis was rejected for all of the time series except RDI-9
(i.e., RDI-3, RDI-6, RDI-12, SRI-3, SRI-6, SRI-12), indicating the existence of a significant
trend in all-time series. The RDI-9 still follows a consistent negative Mann–Kendal trend
indicating a decreasing drought severity with a relatively lower probability (significance
bound >90%). Sen’s slope estimator (SSE) revealed the magnitudes of slopes in the RDI and
SRI time series. The SSE analysis revealed a downward trend for all RDI and SRI series.
Furthermore, the highest and lowest slope magnitudes were observed RDI-9 and SRI-6,
respectively. The results of Mann–Kendal and SSE were presented in Table 1, and overall,
the results revealed the tendency to increase hydrometeorological droughts in recent years.
While the decreasing trend employs a decrease in drought severity over time and wetting
trend. The increase in mean precipitation and extreme events could be potential drivers
of such trends and further studies are required to accurately verify this [24,42,43]. The
findings of our study are consistent with those of [36–39].
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Table 1. Z-values of the M–K test (ZM–K) and Sen’s slope estimator (SSE) of the RDI and SRI series during 1984–2015
(values in bold represent statistically significant trends at a 5% significance level).

Test Value RDI-3 RDI-6 RDI-9 RDI-12 SRI-3 SRI-6 SRI-9 SRI-12

ZM–K
Z −3.7355 −2.2912 −1.7558 −2.8748 −4.0737 −4.8948 −3.1840 −2.5310
p 0.0002 0.0219 0.0791 0.0040 0.0000 0.0000 0.0015 0.0114

SSE SS −0.0017 −0.0009 −0.0007 −0.0026 −0.0023 −0.0028 −0.0021 −0.0015

3.3. Hydrometeorological Correlations

Figure 6 shows the area-averaged temporal evolution of the RDI and SRI when
computed at time scales of 3, 6, 9, and 12 months. The correlation analysis revealed a
positive relationship between the hydrometeorological droughts (RDI and SRI) in all time
scales. The lowest and highest correlations were found with time scales of 3 (RDI-3 and
SRI-3) and 12 (RDI-12 and SRI-12) months. The co-variability of the indices reveals that
both the indices have exhibited similar dynamic variability over the study period indicating
the wet and dry episodes consistently. The quantified relationship in terms of correlation
was relatively higher for 3 months (0.72), followed by 12 months (0.65), and 9 and 6 months
afterward, which was found to be significant with 95% confidence. The dynamic variability
further shows intensified wetting in the early study period, followed by an extreme dry
episode and relatively moderate wetting afterward. The cross-correlation revealed that
the RDI series could be used to predict hydrological drought events. Our results align
with those of Nalbantis and Tsakiris [44] and Wu et al. [16], who also reported a strong
correlation between the RDI and SRI.
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Figure 7 shows the changes in the linear correlation coefficients (r-values) between
the RDI series and corresponding SRI series that were lagged compared to the RDI series
in months. The highest correlations between the RDI and SRI series for all reference time
scales were evident at the zero-lag state, with a consistent decrease obvious at higher lags.
The sensitivity of the drought indices and precipitation relationship was driven by the
choice of the index time scale. At 3 and 6 months, the drought and precipitation lagged
correlation exhibited a dynamic relationship with a relatively weaker correlation than the
rest of the indices. The strength of the correlation was relatively higher for 9 and 12 months,
implying that precipitation had relatively higher impacts on these two indices than the
first two. The overall positive relationship is indicative of two aspects of the precipitation
relationship with the drought indices, where the first is the direct impact on replenishing
the soil moisture deficit and the ample availability of water for irrigation in the upstream
storage reservoir. Over time, the relationship was driven by an increased atmospheric
evapotranspiration demand that depleted soil moisture and reservoir storage. Wu et al. [45]
also found that the correlation improved as the RDI series was compared with the SRI
series of the following month. Moreover, a low correlation between the RDI and SRI was
found at lagged months. These results likely occur as both the volume and variation of
river discharge are determined by the local meteorological conditions and are affected by
the underlying landscape characteristics. The size of the drainage area plays an important
role that leads to hydrologic delays in the form of soil moisture, groundwater, and even
surface streamflow routines. Nalbantis and Tsakiris [44] also showed that a delay of one
month between the two drought indices was too large for their test basin with an area
of about 350 km2; however, a month-long lag was too small for the Seyhan and Ceyhan
River Basins with a total area of approximately 43,840 km2 [37]. Moreover, estimates of
propagation based on the correlation of drought indices can be influenced by droughts
and wet extremes. In addition, reservoir operation or seasonal irrigation activities can
also affect the statistical relationship between drought indices. Irrigation activities mainly
influence hydrological droughts by streamflow and groundwater consumption, which
usually leads to a decrease in the streamflow and groundwater levels. The high percentage
of cropland in a catchment may also increase evapotranspiration and reduce the water
yield capacity, thus intensifying a hydrological drought. This finding is in line with that of
a previous study [46].
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3.4. Discussions

Spatiotemporal variations of the RDI revealed that 2000 and 2010 were observed as
extremely dry and wet years, respectively, with extreme drought events occurring in the
northeastern and southwestern parts of the Soan River Basin. The analysis further revealed
that for both the RDI and SRI, drought events occurred more frequently in a shorter time
scale but lasted for a longer duration with a longer time scale. This demonstrated that
the severity of drought increased with time scale for both RDI and SRI. Furthermore, the
occurrences of RDI and SRI were correlated, and a similar trend was also detected, where
r2 was observed as 0.37, 0.61, 0.64, and 0.66 for RDI-3 and SRI-3, RDI-6 and SRI-6, RDI-9
and SRI-9, and RDI-12 and SRI-12, respectively. Moreover, the Mann–Kendal and SSE
tests detected a significant decreasing trend for all RDI and SRI time series (confidence
of 95%), except RDI-9 (confidence of 90%), which also exhibited a decreasing trend with
relatively lower confidence. Cross-correlation between RDI and SRI was performed with a
time lag, which also acknowledged the sequence between RDI and SRI and illustrated that
meteorological drought events could be used to predict hydrological droughts in relatively
small watersheds.

For further studies, it is suggested to use hydrometeorological drought indices in
different regions worldwide to develop more comprehensive drought monitoring and
prediction systems. The difference between the RDI and SRI trends could exist due to evap-
otranspiration or lag time between rainfall and runoff, which could predict propagation
from meteorological to hydrological droughts. Basin characteristics such as soil moisture,
land use, and the relations between streamflow and groundwater could also influence
drought propagation.

4. Conclusions

This study has investigated meteorological and hydrological droughts in the Soan
River Basin of Pakistan and their relationships. The analysis of both drought indices
was performed based on the monthly values of the RDI and SRI from 1984 to 2015. The
RDI and SRI, together with their classifications, could be used as reliable tools in the
assessment of meteorological and hydrological drought evolution in both space and time.
The Mann–Kendall test suggested that the occurrence of hydrometeorological droughts has
increased in recent years. Sen’s slope estimator also revealed a decreasing slope magnitude.
The relationship between meteorological and hydrological droughts indicated a time lag
between the two droughts, which can be useful information in determining future potential
hydrological droughts when precipitation data are available. The study has offered a
framework for the exploration of meteorological and hydrological droughts.
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