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Abstract: Satellite-based precipitation products can be a better alternative of rain gauges for hydro-
meteorological studies in data-poor regions. This study aimed to evaluate how regional and seasonal
precipitation and drought patterns had changed in the Ganga—-Brahmaputra Basin between 1983
and 2020 with PERSIANN-CDR precipitation data. The spatial pattern of winter drought, monsoon
drought, and Standardized Precipitation Index (SPI) calculated for different time scales were evalu-
ated using principal component analysis. Ganga—Brahmaputra is one of the most populated river
basins that flows through different geographical regions. Rain gauges are heterogeneously distributed
in the basin due to its complex orography, highlighting the significance of gridded precipitation
products over gauge observations for climate studies. Annual and monthly precipitation trends
between 1983 and 2020 were evaluated using the original and modified Mann—Kendall trend test, and
annual precipitation in the basin was found to be declining at a rate of 5.8 mm/year. An increasing
trend was observed in pre-monsoon rainfall, whereas precipitation exhibited a decreasing trend for
other months. Results of the Pettitt test showed precipitation time series was inhomogeneous and
changepoint occurred around 2000. Decreasing trends of SPI indicated increasing frequency and
intensity of drought events. Winter drought showed a clear spatial pattern in the basin; however,
SPIs calculated for different time scales and monsoon drought had complex spatial patterns. This
study demonstrates the applicability of satellite-based PERSIANN-CDR precipitation data in climate
research in the Ganga-Brahmaputra Basin.
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1. Introduction

Precipitation has a significant impact on the environment; vegetation health; crop
choices; and, eventually, the economy of an area. Droughts and floods caused by extreme
meteorological occurrences account for a substantial share of natural catastrophes; drought-
related risks are more devastating than other natural disasters. Accurate prediction of
precipitation trends can be useful in disaster management and future economic develop-
ment [1]. Natural disasters such as droughts, floods, and landslides occur due to change
in precipitation patterns [2]. Gauge measurements and gauge-based products are mainly
used for meteorological and climate studies worldwide. Even though in situ observation of
climate variables such as precipitation, temperature, and soil moisture are considered the
most accurate, such products are not efficient for climate studies in data-poor regions such
as the Himalayas [3]. Rain gauge measurements are also susceptible to errors due to evapo-
ration, wind, geographical coverage, and other factors. Since the past few decades, gridded
precipitation products like satellite-based and reanalysis precipitation products have be-
come available [4-8]. Satellite observations have more complete coverage, especially across
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seas, high altitudes, and isolated locations where gauge data are few or unavailable [4].
Spatio-temporal coverage of reanalysis and remote sensing-based precipitation estimates
make them better alternatives of rain gauges [4,5,9-12]. Most satellite-based precipitation
products such as TRMM [12], IMERG [5], and PERSIANN are available for a short period
of time, questioning their significance in climate studies. Although precipitation products
such as GPCP and CMAP have been available for a longer time period and they have
made significant contributions to climate studies, their capacity to capture geographical
details of precipitation events is limited due to their poor spatial and temporal resolution.
PERSIANN-CDR was created to offer long-term satellite-based precipitation data with the
rigorous spatio-temporal resolution, facilitating meteorological and trend studies [4].

Precipitation patterns around the world are changing as a result of both climate
instability and change; such patterns are different across different regions [13]. The presence
of a temporal pattern in the precipitation time series can be identified using both parametric
and non-parametric tests, but for using parametric trend tests, series must follow a normal
distribution [13]. Mann-Kendall (MK) is a nonparametric test used to determine patterns
within time-series data [14]. Sen’s slope is also a non-parametric test used to determine the
magnitude of trend in hydro-meteorological time-series data [1,15,16]. The non-normality
of the data has no effect on the non-parametric tests [17]. MK trend tests have also been used
in detecting trends in Standardized Precipitation Index (SPI) [18], Vegetation Condition
Index (VCI) [19-21], groundwater [22], and other time series data. It determines whether
time series data follow a certain increasing or decreasing trend or are random. MK trend test
and Sen’s slope have been used to characterize trends in series of precipitation and other
climatological data [13,18,23]. After 1970, there were falling trends in seasonal and annual
precipitation in India, although precipitation extremes are increasing [13]. Ahmad et al. [1]
used the MK trend test and Spearman’s rho test to calculate precipitation trends in Swat
Basin, Pakistan. No significant precipitation trends were observed for most of the stations
along the Swat River Basin [1]. Sa et al. [24] studied patterns of precipitation extremes in
Malaysia with the MK and modified MK trend test. Increasing patterns in precipitation
were observed during the northeast monsoon and a declining pattern during the southwest
monsoon. Findings indicated that significant increasing trends in 1 h maximum rainfall
is increasing the risk of flash floods over time [24]. Bera [25] studied precipitation trends
within the Ganga basin using gauge-based products. Curtis et al. [26] studied precipitation
variability in the Ganga—Brahmaputra Basin with PERSIANN-CDR data using principal
component analysis. Drought is an abnormal deficiency of water [27]; although there
are other factors such as increasing temperature and low humidity that exacerbate the
effects of drought, precipitation is the major factor that controls its occurrence. The SPI is
a versatile and easy-to-calculate drought index [28]; rainfall amount is the only required
input parameter to calculate SPI. Furthermore, it is equally useful in analyzing both wet
periods/cycles and dry periods/cycles, and it has been used in a myriad of studies to
characterize meteorological droughts [18,21,22,29,30].

Individuals and communities relying on farming and agriculture are more vulner-
able to changes in precipitation. Such vulnerable communities also need long recovery
periods from extreme climate events such as droughts and floods. Altering precipitation
patterns can have a direct impact on food production and availability, vegetation health,
groundwater storage, etc. Ganga—Brahmaputra is one of the most populated river basins,
and agriculture is the main occupation of the people living there. Climate extremes such
as floods and droughts are common in this region [31]. Understanding the precipitation
trends in Ganga—-Brahmaputra Basin is critical for the long-term water management.

This research aims to study annual and seasonal precipitation trends in the Ganga-—
Brahmaputra Basin with the original and modified MK test. Standardized Precipitation
Index (SPI) was calculated with PERSIANN-CDR precipitation data, and MK trend test was
used to evaluate the trend of droughts in the basin. Spatial patterns of winter, monsoon,
and SPIs calculated at four time scales were studied with principal component analysis.
This is the first analysis using PERSIANN-CDR precipitation data to study monthly precip-
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itation trends, drought trends, and spatial patterns of drought in the Ganga—Brahmaputra
Basin. The next section of this article provides background information on the Ganga-
Brahmaputra Basin, PERSIANN-CDR precipitation data, and methods. The third section
presents the findings, which are further discussed in the next section. This paper ends with
a conclusion and potential future research directions.

2. Materials and Methods
2.1. Study Area

Ganga—Brahmaputra (GB) is considered to be one of the largest trans-boundary river
basins flowing through different geographical regions. It is located in the subtropical
region from 10 °N to 30 °N. The elevation ranges from sea level (0 m) to Everest (8848 m).
Both Ganga and Brahmaputra rivers originate from the Himalayas. After following their
due course, the rivers flow through China, Bangladesh, Bhutan, India, and Nepal. Heavy
rainfall from June to September is the main source of water in the GB basin, which accounts
for more than 80% of annual precipitation [29,31]. The upper mountainous region is less
populated, whereas the lower region is relatively populated because of relatively plain
agricultural land. In monsoon Asia, moisture flows from the Bay of Bengal and the Arabian
sea to the Indian subcontinent because of the temperature difference between land and sea.
Deforestation in the Brahmaputra watershed has resulted in increased siltation levels, flash
floods, and soil erosion in critical downstream habitat [32]. The Brahmaputra (Yarlung
Tsangpo) originates from Northern China and flows to Bangladesh through India, whereas
the Ganga originates from Southern India. Major tributaries of the Ganga River are Kosi,
Gandaki, Yamuna, Ghagra, Kali, etc., whereas Lhasa, Nyang, Parlung Zangbo, Teesta, etc.
are some major tributaries of the Brahmaputra River. The southeastern basin receives
more annual rainfall as compared to other regions. Location, along with average annual
precipitation and elevation of GB basin, are shown in Figure 1.
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Figure 1. Location of Ganga—Brahmaputra River Basin with average annual precipitation (a) and elevation (b).

Precipitation deficiencies have affected crop yields [33], hydroelectricity genera-
tion [34], groundwater storage [35], etc. in the Ganga—Brahmaputra Basin and its tributaries.
The effects of change in precipitation patterns on water supplies and farming can differ
throughout the basin [34]. The 2008 winter drought in western Nepal affected winter crops,
and the impact of the drought was worsened by the late arrival of the 2009 monsoon [36];
wheat and barley yields decreased by nearly half as compared to previous years. 2006
and 2009 droughts had a significant detrimental impact on the groundwater storage in the

Ganga—Brahmaputra Basin [35].
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2.2. Precipitation Data

Precipitation is one of the key components of the hydrological cycle. The Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks—Climate
Data Record (PERSIANN-CDR) provides daily rainfall estimates at a spatial resolution of
0.25 degrees in the latitude band 60S—60N from 1983 to the near-present and is also prepared
and distributed by the Center for Hydrometeorology and Remote Sensing [4,37]. This
dataset provides a high-quality climate data record (CDR) of precipitation. PERSTANN-
CDR is prepared using the PERSIANN algorithm and is adjusted with GPCP products [4].
PERSIANN-CDR is generated from the PERSIANN algorithm using GridSat-B1 infrared
data. It is adjusted using the Global Precipitation Climatology Project (GPCP) monthly
product to maintain consistency of the two datasets at 2.5° monthly scale throughout the
entire record [4]. More than three decades of precipitation data is required for climate
studies as suggested by WMO. PERSIANN-CDR was developed so that a long-term
satellite-based precipitation product with robust spatiotemporal resolution can be used
in climate studies. This product is generated to ease and facilitate climate change and
trend research, having been used in different drought monitoring studies [4]: it depicts
a similar drought pattern as derived with gauge precipitation products in China [38].
PERSIANN-CDR precipitation data can be downloaded and visualized from the CHRS
data portal.

2.3. Methods
2.3.1. Mann-Kendall Trend Test

Mann-Kendall (MK) is a rank-based nonparametric test to detect trends in time series
data [14]. MK test statistics is mathematically defined as

S =Y Y sen (X - X)) M)

where 7 is the size of time series data, and X; and X are data in ith and jth times, respec-
tively (i <j). sgn(X; — X;) can have three different values: —1if X; — X; <0, 0if X; — X; =0,
and +1 if Xj — X; > 0. For large datasets, S statistics is normally distributed with zero mean.
If E(S) is the mean and V(S) is the variance of S, standard normal test statistics are defined
as [13]

S+1 ;

S if $<0

Z=0, ifS=0 @
Sl if$>0

Vv

Positive value of a Z-score indicates an increasing trend and vice versa. There can be
autocorrelation and seasonality in most of the time-series data such as precipitation. The
original MK test does not account for autocorrelation. Various modified MK tests have
been developed that account for serial autocorrelation and seasonality in trend analysis,
one being the pre_whitening_modification_test [39,40]. Yue and Wang [39] proposed a
modified MK test that used pre-whitening to account for and eliminate the effects of serial
autocorrelation in time series data. Effect of autocorrelation in precipitation time series
is studied with the MMK test. MK and MMK trend is implemented in python package
pyMannKendall [40].

2.3.2. Sen’s Slope

The Theil-Sen approach is commonly used to determine the gradient or rate of
transition of climate time series data [24,39]. Slopes between all data points are calculated
in a time series data as
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where X; and X; are data in ith and jth times, respectively. A positive slope indicates an

increasing trend and vice versa. For x numbers of data in time series, N = x (x — 1)/2
estimates of the slope are obtained. Sen’s slope S; is the median value of slope estimates.

Ss = median (slope;) 4)

2.3.3. Pettitt’s Test

Pettitt’s test is applied to detect change point in time series data [41]. It can detect
a significant change in the time series without knowing the exact time of occurrence of
change [42,43]. Test statistics for Pettitt’s test is described as

K7 = max|U; | (5)

where ,
n .
U :Zi:1 Zj:t—i—l sign (X; — X;) (6)

For significant statistic, the change point of series is at Kr. Pettitt test in python is
implemented with package pyHomogeneity [44].

2.3.4. Standardized Precipitation Index (SPI)

Standardized Precipitation Index is a simple, statistically relevant, and meaningful
drought index as SPI can be related to groundwater and reservoir storage [45]. The SPI has
been recognized as the standard index that should be available worldwide for quantifying
and reporting meteorological drought. The SPI can be created for differing periods of 1
to 48 months, using monthly input data. SPI calculated for shorter time scales is used to
study drought events impacting vegetation and soil moisture, and SPI calculated for longer
time scales is more useful in studying impacts of droughts in surface and groundwater [46].
McKee [28] proposed the definition of drought based upon standardized precipitation,
known as SPI. It has been used worldwide with different drought studies [11,18,30,47,48].
Precipitation at the desired location is fitted to probability distribution and transformed to
normal distribution while calculating SPI, thus average SPI is zero [28]. The probability
density function for Gamma distribution is defined as

1
80 = g

X le™*/B x>0 (7)

where x is precipitation amount, « > 0 is a shape parameter, § > 0 is a scale parameter,
x > 0 is the amount of precipitation, and I'(x) is the gamma function. The maximum
likelihood estimation is one of the most commonly used approaches to estimate parameters
in probability distribution functions [29]. Maximum likelihood function is defined as

1 1A
zxf4A(1+ 1+3) (8)

p= €)

where A = In(X) — %(x), and 7 is the number of months [29].

| R

2.3.5. Principal Component Analysis

In order to study the spatial pattern of drought, we used principal component analysis
of SPI (PCA) for different time scales. PCA is essentially a data-reducing technique that
generates linearly independent and uncorrelated variables that explain the majority of
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variance of original variables; it aims to explain majority of variance in data with relatively
fewer variables than those in the original dataset [47,49,50]. PCA is used in a number
of meteorological and climatological studies. When working with a multidimensional
dataset, the user desires to reduce its dimension while minimizing knowledge loss for
better explaining, analyzing, and interpreting the data and their structure [46,49]. PCA can
be used in identifying spatial patterns of drought. PCA projects original data to a new space
and reduces the dimensionality of data. Spatial pattern of drought is identified and studied
by different researchers [18,29,42]. Kaiser-Meyer-Olkin Measure Sampling Adequacy and
Bartlett’s test of sphericity are performed to identify whether PCA is applicable for SPI
values or not [51]. Principal components and loadings are extracted using SPSS software.

3. Results
3.1. Precipitation Trends
3.1.1. Annual Precipitation Trends and Change Points

Annual precipitation trend was analyzed with MK and modified MK trend test for the
whole basin and in three different elevation regions: 0-200 m, 200-2000 m, and 2000+ m.
Precipitation exhibited decreasing trend in the basin with both MK and MMK trend tests
with an approximate slope of —5.08 mm//year, which is about 0.45% of total average annual
precipitation in the basin. A large negative slope of —11.6 mm/year was observed in the
low elevation region, wherein average annual precipitation was also higher as compared to
other regions. Average annual precipitation below 200 m was declining at the rate of 0.67%
per year. Proportional to average precipitation amount, the average annual precipitation in
the region above 2000 m was declining at the lower rate of 2.21 mm per year, which was
about 0.25 percent of the average annual precipitation in that region. Annual precipitation
in region with an elevation between 200 to 2000 m was declining at the rate of 4.45 mm per
year (0.37%).

Precipitation trend was studied for all 2416 pixels of GB basin with both MK and
MMK trend test. With the original MK test, the significant increasing trend was observed
in only 82 out of 2416 pixels, while decreasing trend was significant in 1109 pixels. With the
modified MK test, increasing and decreasing trends were significant in 44 and 841 pixels,
respectively. After accounting for autocorrelation in precipitation time series, the smaller
number of pixels showed a significant trend. Results of the Pettitt’s test showed the
occurrence of change point in time series data, indicating the series was inhomogeneous.
Change point for low elevation region occurred after 2004; average annual precipitation
decreased from 1816 to 1573 mm. Change point for region with elevation 200—2000 m
occurred at around 1999, and mean annual precipitation dropped from 1256 to 1137 mm.
In higher altitude region, the change point occurred at around 2004, and mean annual
precipitation decreased from 912 to 846 mm. When average precipitation for the whole
basin was considered, change point occurred at around 2000, and the average annual
precipitation decreased from 1333 to 1200 mm. Wang et al. [36] studied the cause of winter
drought in western Nepal; frequent drought events after 2000 in this region are related to
the decadal variation of Arctic Oscillation, warming of the Indian Ocean, and increased
loading of anthropogenic aerosols. According to Wang and Gillies [52], during warm QDO
(quasi-decadal oscillation) phases in the central Pacific, regions along Nepal receive below
average monsoon precipitation. The severity of 2008 winter drought was exacerbated
due to below normal 2009 monsoon. These aforementioned factors can be reasons for the
decrease in annual average precipitation in the basin and the occurrence of change point
around 2000. Change points in average annual precipitation in the whole basin and in
different elevation regions are shown in Figure 2.
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Figure 2. Change points in annual precipitation time series in whole basin and in three elevation regions.

Results of MK and MMK in the whole basin and different elevation regions are shown
in Table 1. Slope of the annual precipitation trend is shown in Figure 3. Eastern and
central regions of the basin along the Ganga River are dominated by decreasing trends,
and no significant trends in precipitation were observed in the southwestern and northern
regions of the basin. Significant increasing trends were observed in a small region of the
western basin. A rapid decline of more than 25 mm of precipitation per year was observed
around Bangladesh.

W¢E
Pakistan

Bangladesh

Myanmar (Burma)

—— Major Rivers [0 -15--10
Slope - -10--5

mm/year s Thailand

<5 s
[ 1-25--20 | EBU
[ -20--15

Figure 3. Trend of annual precipitation in GB basin.
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Table 1. Average annual precipitation trends in Ganga-Brahmaputra Basin (p < 0.05).
Original MK Test Modified MK Test Pettitt’s Test
Region

Trend z Slope Trend z Slope Change Year
Whole Basin Decreasing —3.847 —5.807 Decreasing —22 —5.80 2000
0-200 m Decreasing —4.32 —11.63 Decreasing -25 —11.6 2004
200-2000 m Decreasing —251 —4.45 Decreasing -2.0 —4.45 1999
2000+ m Decreasing —2.06 —-2.21 Decreasing -21 —-2.21 2004

3.1.2. Monthly Precipitation Trends

After observing significant decreasing trends in average annual precipitation in most
of the basin, we studied precipitation trends for each month using the MK trend test.
Precipitation trends were different for all months. MK trend test was used to study trends
in precipitation for all 2416 pixels of PERSIANN-CDR precipitation data. For January, a
significant decreasing trend was observed in 201 pixels with decreasing trend in 1760 pixels.
On the other hand, a significant increasing trend was observed in only six pixels. Similar is
the precipitation trend in February, wherein a decreasing trend was observed in 1438 pixels,
out of which a significant decreasing trend was observed in 151 pixels, whereas a significant
increasing trend was observed in only 1 out of 2416 pixels. For December, a significant
decreasing trend was observed in 242 of the 138 locations and an increasing trend was
observed in only five pixels. For these three months of winter, we can say from the
MK trend test that precipitation was in a decreasing trend in the majority of locations,
whereas the trend was significant in only few of the locations. The scenario in trends was
somewhat different for the month of March than that of winter. A significant increasing
trend was observed in 314 pixels, and significant decreasing trend was observed in 68 pixels.
Overall, around 67 percent of the basin exhibited an increasing trend. In April, a significant
decreasing trend was observed in 59 locations, whereas a significant increasing trend was
observed in 364 pixels. The basin is dominated by an increasing trend, with positive trends
in more than 80 percent of pixels. Similarly, for the month of May, significant decreasing
and increasing trends were observed in 70 and 161 pixels, respectively. No significant
trends in precipitation were observed for other locations. Positive trend was observed
in more than 60% of pixels. From trends in these three months, spring/pre-monsoon
precipitation was increasing in the Ganga-Brahmaputra Basin.

Monsoon precipitation accounts for a large amount of annual precipitation in the
Ganga—Brahmaputra Basin. The monsoon starts in June lasts until September. Most of the
agricultural activities depend upon monsoon precipitation in this basin. For the first month
of monsoon, 262 pixels exhibited a significant decreasing trend, whereas a significant
increasing trend was observed in only 27 pixels. A decreasing trend was observed in
63 percent of locations. A total of 484 pixels exhibited a significant decreasing trend for the
month of July. A significant increasing trend was observed in 143 pixels. Although not
significant, a decreasing trend was observed for more than half the pixels. A significant
decreasing trend was observed for 426 of 2416 pixels for the month of August, with very
few significant increasing trends in only 11 pixels. More than 75 percent of pixels exhibited
decreasing trends. Monsoon precipitation was dominated by decreasing trends in the basin,
which can cause adverse effects on farming and the livelihood of people. In September,
a significant decreasing trend was observed in 515 pixels, and the increasing trend was
significant for only two pixels. In October, only 51 pixels exhibited a significant decreasing
trend, and a significant increasing trend was observed in only six pixels. No significant
trend was observed in most regions of the basin. Similarly, for November, significant
increasing and decreasing trends were observed in 173 and 78 pixels, respectively. Thus,
from monthly trend tests, we observed a decrease in monsoon precipitation, whereas an
increasing trend was observed in spring. For winter, a significant decreasing trend was
observed in fewer locations, even if a decreasing trend prevailed in the majority of the
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region. The percentage of pixels exhibiting significant increasing and decreasing trends
with both MK and MMK trend tests is shown in Figure 4.

(a) Percent of pixels with significant trends (MK)
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(b) Percent of pixels with significant trends (Modified MK)
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Figure 4. Percentage of pixels with significant increasing and decreasing trends.

Figure 5 shows the slope of the monthly precipitation trend across the basin. In
January, a high negative slope was observed in the northeastern region of the basin. The
case was similar for February, wherein a significant decreasing trend was observed in the
eastern basin. For March and April, pre-monsoon months, a positive trend was observed
in the majority of the basin, except for the eastern region and some parts of the upper
basin. Positive slope was observed in the western and northeastern parts of the basin
for the months of May and June, whereas the central basin was dominated by negative
slope. A mixed pattern of positive and negative slopes was seen throughout the basin for
July, with significant decreasing trends. High negative slope and significant decreasing
trends were observed in the central basin, along the Ganga River for the month of August.
This was similar for the month of September, wherein the whole basin was dominated
by negative slope, with higher negative slopes in the central and lower basins. Positive
slope was seen in the northwestern part of the basin and high negative slope in the
southeastern region of basin for the month of October. The overall basin was dominated by
the negative slope. For November, positive slope was observed in the western basin and a
high negative slope in the southeastern region. December was dominated by a negative
slope, with a strong negative slope in the northwestern basin. Changes in precipitation
patterns had a direct influence on cropping patterns and crop yields. Managing agriculture
according to precipitation variation is a significant social problem [53]. Although most of
the southern basin has the potential to be irrigated, a large portion of the basin does not
have irrigation facilities [34]; moreover, droughts and changes in precipitation patterns
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make agriculture in unirrigated areas more vulnerable. According to Ahmad et al. [33],
precipitation fluctuations can cause up to 39 percent variations in wheat production and up
to 75 percent variations in rice production in regions with no artificial irrigation facilities in
the Ganga-Brahmaputra Basin [33].

Slope(mm/month)

<-5 -5--4 -4--3 -3--2 -2--1 -1-0 0-1 1-2 2-3 >3
Figure 5. Monthly precipitation trends across the Ganga—Brahmaputra Basin.

3.2. Standardized Precipitation Index
3.2.1. Trend Analysis of SPI/Drought
Standardized precipitation index was calculated for the Ganga-Brahmaputra Basin

with PERSIANN-CDR precipitation at four time scales. To analyze the trends of drought
in the basin, we performed the MK test and modified MMK test with the SPI at different
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time scales. Decreasing trend in SPI was observed at majority locations, which implies
an increase in drought events throughout the basin. Figure 6 shows trends in SPI for
different time scales: 1, 3, 6, and 12 months. Triangles facing upward show an increasing
trend, and those facing on the side show a decreasing trend in SPI. Solid triangles indicate
significant trends. For 1 month SPI, 43 out of 66 locations exhibited decreasing trend, out
of which a significant trend was observed in 33 locations. On the other hand, a significant
increasing trend was observed in only five locations. Short-term droughts were increasing
in the eastern and northern basin, whereas increasing trends in SPI were observed in the
southwestern basin, which indicated decreasing drought events in that region. For 3 month
SPI, 74% of locations, 49 out of 66, had decreasing trend in SPI. The spatial distribution
of trend showed a similar pattern as that of 1 month SPI. A significant decreasing trend
was observed in 35 locations, and a significant increasing trend in seven locations. A
total of 44 out of 66 locations had a decreasing trend for 6 month SPI, out of which a
significant trend was observed in 34 locations. A significant increasing trend was observed
in 10 locations, which mostly lay in the southwestern basin. A significant decreasing trend
was observed at 39 locations for SPI 12 and a significant increasing trend at 17 locations.
From the MK test, decreasing trend of drought was observed in the southwestern region
of the basin, which lies in India. On the other hand, an increasing trend of drought was
observed in the Himalayas, southern China, Bhutan, Bangladesh, and northeastern India.

B

[__|
Precipitation
Annual (mm)

Decreasing

~ Increasing
4 Significant Increasing

v  Significant decreasing 481 (d)

Figure 6. (a) Trends of 1 month SPI, (b) trends of 3 month SP], (c) trends of 6 month SPI, (d) trends of 12 month SPI.

3.2.2. Monsoon and Winter Droughts

Monsoon usually starts in April and lasts up to September. Thus, 6 months SPI in
September was considered to observe monsoon drought and 3 months SPI in February
was considered to observe winter drought. Figure 7 shows frequency and spatial extent
of winter and monsoon droughts in the Ganga—Brahmaputra Basin over the study period.
From the figure, it is evident that droughts increased in spatial extent and in frequency.
Severe winter drought occurred in 1992, when 97% of the region was under drought
(SPI < —1). Severe winter droughts occurred in 2006 and 1999, when 70% and 56% of the
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basin were under drought, respectively. Other significant winter droughts occurred in
2001, 2018, 2009, 2016, 2010, and 2017, when more than 30% of region was under drought.
Monsoon droughts have increased significantly in recent years. In the 2009 drought, over
65% of the entire basin was under drought. Another severe monsoon drought occurred
in 1992, when 47% of the region was under drought. Other monsoon drought years were
2002, 2006, 2014, and 2015.

Monsoon and winter droughts
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Figure 7. Winter and monsoon droughts in the Ganga—Brahmaputra Basin.
3.2.3. Spatial Patterns of Drought
To study the spatial patterns of drought, we extracted principal components for SPIs
at different time scales. Variance explained by principal components of SPI for each time
scale are summarized in the Tables 2 and 3. For all time scales, 8-10 components explained
75 percent of the total variance of the SPI time series. Variance was distributed to number of
principal components, showing complex drought pattern in GB basin. For spatial patterns
of winter and monsoon drought in the GB basin, 3 months SPI in February and 6 months
SPIin September were used to perform principal component analysis. Variance distribution
for monsoon drought was similar to 12 months SPI as a large proportion of annual rainfall
occurs in monsoon.
Table 2. Percentage of variance explained by loadings without rotation.
PCs PC1 PC2 PC3 PC4 PC5 PCé6 PC7 PC8 PC9 PC10
SPI12 30.64 21.33 7.265 5.93 5.102 3.963 2.425 2.285 2.033 1.833
SPIe 31.383 20.086 5.755 5.405 4.409 3.980 2.523 2.361 1.925 1.809
SPI3 32.844 19.466 5.642 4.725 3.981 3.693 2.637 2.299 2.130 1.780
SPI1 32.679 19.899 5.897 4.531 3.788 3.249 2.641 2.319 1.916 1.664
SPI winter 88.855 6.352 2117
SPI monsoon 28.268 20.730 8.296 6.512 5.161 4.093 3.139 2.826 2.491 2.101

Spatial patterns of loadings for 12 months SPI are shown in Figure 8. PC1 explains
30.64% of total variance for SPI112. It had good correlation for the majority of basin with
high positive loadings in the central region. The second principal component had positive
loadings in the western basin. Loadings were heterogeneously distributed for the third
principal component with significantly less positive loadings. Rotated loadings provided
further localized areas of drought variability (Raziei et al., 2009). First rotated loading
also had positive values over the central basin and had negative values over the western
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basin. The second and third rotated components had positive loadings in southwestern
and southeastern basins, respectively. Overall, SPI calculated for a 12 month time scale
exhibited a complex spatial pattern.

Table 3. Percentage of variance explained by loadings with varimax rotation.

PCs PC1 PC2 PC3 PC4 PC5 PCé PC7 PC8 PC9 PC10
SPI 12 16.342 14.524 12.429 11.531 6.760 6.402 3.617 3.238 3.052 2.891
SPI6 15.016 13.277 12.618 11.838 6.527 5.890 4.009 3.555 3.360 2.584
SPI3 15.406 12.980 11.461 9.748 7.362 5324 5.139 4.030 3.528 3.469
SPI1 14.886 11.552 11.213 9.881 8.619 6.745 4.944 4.553 4.166 2.025
SPI winter 74.324 12.191 10.809

SPI monsoon 15.469 13.261 11.785 11.383 7.059 6.836 4.885 4.774 4.029 3.149

PC2 PC3
@) (b) ©
RPC1 RPC2 RPC3

(d)

Loadings (f)
-1 -08 -06 -04-02 0 02 04 06 08 1
(e) T [ [ .

Figure 8. Loading patterns of three principal components of 12 month SPI (a—c) and rotated loadings (d—f).

For winter drought, first two principal components explained 95 percent of total
variance. It was shown that the winter drought, characterized by 3 months SPI in February,
had clear spatial patterns, while for monsoon and other time scales, drought pattern was
more complicated. Figure 9 shows spatial patterns of loadings of winter drought. For
monsoon drought, PC1 explained 15.46 percent of total variance. It had high positive
loadings in the western and northeastern basins and small negative loadings in the central
basin. The second principal component, PC2, had positive loadings in the central basin
along Bangladesh, whereas loadings in the western and northeastern basins were negative.
Rotated loading patterns of the first two principal components are shown in Figure 10c,d.
Rotated PC1 had positive loadings in the southwestern and northwestern basins and small
negative loadings in the central basin. In contrast to this, the second rotated principal
component had positive loadings in the southeastern basin and small negative loadings in
the western basin. A different pattern of loadings was observed for the winter drought.
The first principal component that explained 88.85 percent of total variance had positive
loadings throughout the basin, with high loadings in the southern basin and somewhat
smaller loadings in the northern basin. On the other hand, the second component had
small negative loadings in most of the region and some positive loadings in the northern
basin. Rotated first principal component had positive loadings throughout the basin with
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larger positive loadings in the southern region. Rotated second component had slightly
smaller positive loadings throughout the basin.

RPC2

~ v

Loadings
-1 -0.8 -0.6 -04-02 0 02 0.4 06 08 1

(b) (I [ [ [ .

Figure 9. Loading patterns of two principal components of winter drought (a,b) and rotated loadings (c,d).
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Figure 10. Loading patterns of two principal components of monsoon drought (a,b) and rotated loadings (c,d).
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4. Discussion

Trends in annual and monthly precipitation within the Ganga-Brahmaputra Basin
were evaluated with satellite-based PERSIANN-CDR precipitation data. Drought trends
and spatial patterns of drought were also studied with the same precipitation data. From
1983 to 2020, annual precipitation in the basin exhibited a decreasing trend. The rate of
decline was higher in the low-elevation region, wherein average annual precipitation was
also higher as compared to other regions. A positive trend in annual precipitation was
observed only around Bhutan and the southwestern basin. Annual precipitation was
rapidly declining along the southeastern basin and in the central basin. The number of
pixels exhibiting significant trends were different for original and modified MK trend
tests. The lower number of stations exhibited a significant trend with modified MK test,
after accounting for autocorrelation in time series data; a number of studies such as those
of Kumar et al. [54] and Sa et al. [24] have presented similar findings. Wang et al. [36]
evaluated the causes of winter droughts in western Nepal, mentioning that drought events
were increasing after 2000 due to warming of the Indian ocean, decadal variation of Arctic
oscillation, and human-induced aerosols. These might be the reasons of the reduction
in average annual precipitation after 2000; however, thorough research to determine the
causes of the changepoint is recommended.

Monthly trends showed decreasing monsoon and post-monsoon precipitation, whereas
pre-monsoon precipitation was increasing in this basin; monsoons started early as com-
pared to past years. Monsoon precipitation was decreasing significantly along the Ganga
River as compared to other regions of the basin. For pre-monsoon months, March and
April, a positive trend was observed in the majority of region along the basin. The basin
was dominated by a negative slope for the month of January, February, May, June, and
August. The number of pixels exhibiting significant trends in monthly precipitation was
also different with the MK and MMK trend tests; prewhitening time series precipitation
to remove the effect of serial correlation resulted in different trend results. The way in
which serial correlation and prewhitening influence positive and negative trends is an
important question, but it is outside the scope of this article. Rice and wheat are major
crops cultivated in the Ganga—Brahmaputra Basin. Change in precipitation patterns and
climate variability affect crop yields, and impact is more intense in regions with no irri-
gation facilities [33]. The development of appropriate adaptation measures is necessary
to mitigate the impacts of climate variation in crop yield. Flexibility in land use can be
an essential technique to reduce the effects of precipitation variation in crop yields, as
mentioned by Siderius et al. [53].

SPI calculated at different time scales also showed decreasing trend, indicating increase
in drought events for the basin. Significant decreasing trends of SPI were observed in the
central and eastern basins, and more significant trends were observed in SPI calculated
for longer time scales. Increasing trends in SPI were observed in the southwestern basin.
Drought events increased in frequency and severity over the past two decades. The winter
drought in 1992 affected 97% of the whole basin, and other winter droughts occurred in 1999
and 2006. The 2009 monsoon received significantly low precipitation as compared to other
years; more than half of the basin was under drought. As groundwater is mainly extracted
and used for irrigation, more intense droughts and declining precipitation over the past
years have exacerbated groundwater depletion in the basin. Figure 11a shows spatial
distribution of groundwater along the basin. Groundwater Drought Index was calculated
with GRACE-assimilated CLSM groundwater data between 2003 and 2020 [55], and trends
in groundwater drought were studied with the MK trend test. Details about GWDI is
presented in Appendix A. Consistent with SPI trends, GWDI exhibited a decreasing trend
in about 86% of pixels, and positive slope was observed in a small region along the
southwestern basin. Due to decrease in precipitation, the rate of groundwater extraction
was higher than the rate of groundwater replenishment. Multipurpose reservoirs to collect
monsoon water for winter and dry season irrigation and electricity production would be a
big step in order to cope with increasing droughts and water deficiency [34].
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Figure 11. (a) Average groundwater and (b) GWDI trends in Ganga—Brahmaputra Basin.

Principal components were extracted for SPIs at different time scales. Variance was
distributed over a number of principal components, except for 3 months SPI in February,
i.e., winter drought. Drought pattern was complex for Ganga—Brahmaputra Basin for all
other periods except for winter, similar to the drought pattern in Gandaki River Basin, one
of the sub-basins of Ganga—-Brahmaputra, as studied by Dahal et al. using gauge precipita-
tion [18]. As 95% of the variance was explained by the first two PCs, winter drought was
characterized by clear spatial patterns. Satellite-based precipitation estimate, PERSTANN-
CDR, can detect drought events, the spatial patterns of drought, and precipitation trends
similar to gauge observations [18,25,29].

The obtained results provide information that can be used to improve water resources
and drought monitoring and management in the GB basin. Further research should be
conducted to thoroughly investigate the impacts of serial correlation and prewhitening
in trend analysis. Because of global warming, precipitation patterns are expected to be
altered differently in different climate regions, with more extreme precipitation events
occurring [56]; the relationship between precipitation patterns and climate can be investi-
gated. Additional studies can be conducted to analyze and forecast extreme precipitation
events in future.

5. Conclusions

The annual precipitation in the GB basin was found to be decreasing at the rate of
5.08 mm per year. Change point in basin averaged precipitation occurred around the year
2000, and average precipitation declined from 1333 mm/year to 1200 mm/year. Change
point occurred in average precipitation in all elevation regions, indicating precipitation
time series is inhomogeneous. A positive trend was observed in March and April precipita-
tion, whereas the basin was dominated by negative trends for other months. Increasing
frequency and intensity of drought was indicated by decreasing trend of SPL. There was
a clear spatial pattern for winter drought. A complex pattern was observed for monsoon
drought and SPI calculated at different time scales. Crop yields and groundwater storage
were directly affected by changing precipitation patterns. Satellite precipitation estimates
such as PERSIANN-CDR can be more beneficial than gauge precipitation data for climate
studies in regions with low gauge density, such as the Himalayas.
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Appendix A
Standardized groundwater index (SGI)/Groundwater Drought Index (GWDI) is cal-
culated as cw cw
GWDI = ij = mean
GW,

where GWi/j is groundwater for ith month of jth year, GW,.4, is average groundwater for
ith month over the entire study period, and GW, is the standard deviation of groundwater.
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