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Abstract: A novel microbial fuel cell-assisted electro-permanganate process (MFC-PM) was proposed
for enhanced diclofenac degradation compared to that of the permanganate oxidation process. By uti-
lizing eco-friendly bio-electricity in situ, the MFC-PM process could activate the simultaneous anodic
biological metabolism of urea and the cathodic electro-permanganate process. Density functional
analysis and experimental evidence revealed the reactive manganese species (Mn(VII)aq, Mn(VI)aq,
Mn(V)aq, and Mn(III)aq), generated via single electron transfer, contributed to diclofenac degrada-
tion in the cathodic chamber. The sites of diclofenac with a high Fukui index were preferable to
be attacked by reactive manganese species, and diclofenac degradation was mainly accomplished
through the ring hydroxylation, ring opening, and decarboxylation processes. Biological detection
revealed clostridia were the primary electron donor in the anode chamber in an anaerobic environ-
ment. Furthermore, maximum output power density of 1.49 W m−3 and the optimal removal of
94.75% diclofenac were obtained within 20 min under the conditions of pH = 3.0, [DCF]0 = 60 µM,
and [PM]0 = 30 µM. Diclofenac removal efficiency increased with external resistance, higher PM
dosage, and lower catholyte pH. In addition, the MFC-PM process displayed excellent applicability in
urine and other background substances. The MFC-PM process provided an efficient and energy-free
bio-electricity catalytic permanganate oxidation technology for enhancing diclofenac degradation.

Keywords: microbial fuel cells; electro-permanganate; reactive manganese species; urine treatment

1. Introduction

Pharmaceutical and personal care products (PPCPs) are an emerging class of pollutants
in water that have received widespread and sustained attention [1]. Diclofenac sodium
(DCF, a typical PPCP) has anti-inflammatory, anti-rheumatic, analgesic, and antipyretic
effects. It is widely utilized to treat arthritis symptoms, rheumatism, gout, various fevers,
trauma or post-operative pain, and gynecological pain. Global annual demand for DCF is
more than 4000 tons, and annual per capita consumption ranges between 195–940 mg [2–5].
Nevertheless, only a small portion of DCF is absorbed by humans and animals; more than
65% of DCF is excreted in urine or feces as parent drug or metabolite [6,7]. Traditional
treatment methods (i.e., activated sludge method in wastewater treatment plants (WWTPs))
display low DCF removal efficiency due to the bio-refractory nature of DCF [8]. Unde-
graded DCF enters rivers, lakes, plants, and animals through the water cycle and food
chain. It has been extensively detected in various waters at the ng L−1-mg L−1 level (e.g., in
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sewage treatment plant tailwater, drinking water, surface water, and human urine) [8–10].
Due to its potential physiological toxicity, DCF in water poses a huge threat to human
beings and the environment [9]. Therefore, there has been an urgent need to develop
effective strategies for DCF removal.

In recent years, advanced oxidation processes (e.g., Fenton technology [11], Fenton-like
technology [12], ozone oxidation technology [13], permanganate oxidation technology [14],
and photocatalytic technology [15]) have attracted considerable attention from researchers
as methods for the degradation of such bio-refractory organic pollutants. In particular,
permanganate oxidation technology has been widely utilized for the elimination of organic
pollutants due to its advantages as a low-cost, easily transportable, and environmentally
friendly methodology [16]. However, the stability of permanganate (PM, E0 = 1.68 eV) and
its low potential relative to radicals [17] to a certain extent limit its reactivity to organic
pollutants. To expand the availability of PM, many researchers have focused considerable
attention on the search for an effective means of activating PM. Highly reactive manganese
species (RMnS), such as Mn(VI), Mn(V), Mn(III), and reactive oxygen species (e.g., •OH
and SO4

•−), are generated by the rapid oxidation of pollutants [18,19]. Ultraviolet (UV)
irradiation, biochar, and some reagents (e.g., bisulfite and humic acid (HA)) have been
successfully applied to activate PM. The formed reactive species can accelerate the oxidation
rate of PM [20–23]. Our previous work also proved that PM could be reduced to RMnS in
an electric field (E-PM), and that the generated RMnS was faster than PM in the oxidation
of DCF [17,24,25]. Compared to other methods, the controlled and eco-friendly electrical
activation method provided a novel strategy for PM activation; however, the energy
consumption issues and manganese transformation mechanism during the E-PM reaction
process needed to be further addressed.

Microbial fuel cells (MFCs) are generally considered as green energy transducers, which
can turn chemical energy into electrical energy (bio-electricity) via the metabolism of microor-
ganisms in an anode chamber [26]. Due to the non-negligible energy losses in the conversion
and storage process, many scholars prefer to utilize the bio-electricity in-situ in the cathode
chamber [27–29]. Previous works proved that bio-electricity produced via MFCs is an effec-
tive energy that can catalyze oxygen, persulfate, and hydrogen peroxide (H2O2) to produce
active species (e.g., •OH and SO4

•−) (Equations (1)–(4) [30–32]) for accelerating the removal
of organic contaminants in situ in the cathode chamber [33,34]. Moreover, photocatalytic
oxidation technology combined with bio-electricity was also utilized to removal contami-
nants in the cathode chamber [27,35]. Hence, in the E-PM process, bio-electricity might also
replace traditional power to catalyze PM in situ for enhancing the degradation of organic
contaminants in the cathode chamber via the generation of active species. The replacement of
conventional electricity by bio-electricity could also significantly reduce the energy consumed
by the E-PM process in pollutant removal.

2H+ + 2e− + O2 → H2O2 (1)

Fe(II) + H2O2 → Fe(III) + HO− + HO• (2)

HSO5
− + e− → HO− + SO4

•− (3)

HSO5
− + e− → HO• + SO4

2− (4)

Herein, a novel two-chamber MFC, coupling an MFC system with the E-PM process
(MFC-PM), was constructed to activate PM for DCF removal. At first, the removal ratio
and degradation kinetics of DCF were investigated under different operational conditions
(PM dosage, catholyte pH, and external resistance) to exploit the removal efficiency of the
MFC-PM process. Then, the primary electricity-producing bacteria in the anode chamber,
the reaction mechanism in the cathode chamber, and the degradation pathway of DCF were
explained. At a minimum, the potential applicability of the MFC-PM process was tested.
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2. Materials and Methods
2.1. Materials and Reagents

All reagents were analytic reagent grade or higher and used as received. DCF pur-
chased from the Micxy Chemical Co., Ltd, Cheng Du, China as the sodium salt, was used
as the target pollutant in this study. Potassium permanganate (GR grade), acetic acid,
methanol, and acetonitrile were chromatographic grade. In addition, HA was purchased
from Sigma-Aldrich Chemical Co., Ltd, Darmstadt, Germany. The methanol (MA, 99.9%)
and acetonitrile (ACN, 99.9%) were obtained in HPLC grade from CINC High Purity Sol-
vents (Shanghai) Co., Ltd. Phenol (C6H6O, 99%), tert-butanol (TBA, C4H10O, purity 99.0%),
formic acid (HPLC grade), acetic acid (HPLC grade), anhydrous sodium sulfate (Na2SO4,
99.0%), sodium bicarbonate (NaCO3, 99.8%), sodium chloride (NaCl, 98.0%), and sodium
nitrite (NaNO3, 99.0%) were obtained from Kelong Chemical Co., Ltd, Chengdu, China. Sul-
furic acid (H2SO4, 98.0%), sodium hydroxide (NaOH, purity 98.0%), hydroxylammonium
chloride (NH2OH·HCl, 98%), and sodium pyrophosphate decahydrate (Na4P2O7·10H2O,
99%) were obtained from Chuandong Chemical Co., Ltd, Chongqing, China. All sample
solutions and the mobile phase were prepared with ultrapure water (18.2 MΩ cm).

2.2. Reactor and Operation

The anode chamber solution contained the following nutrients: CO(NH2)2 39.64 g L−1,
KCl 0.26 g L−1, NH4Cl 0.62 g L−1, NaH2PO4·2H2O 5.54 g L−1, Na2HPO4·12H2O 23.1 g L−1,
and trace elements displayed in Tables S1 and S2. The catholyte was Na2SO4 (0.05 M) and
PM. Initial pH values were adjusted by HCl (anolyte), H2SO4 (catholyte), and NaOH.

The reactor in this study was divided by a proton exchange membrane (Nafion 117,
DuPont Co., Ltd., Wilmington, NC, USA). Pt electrode plating on the Ti flat (60 × 70 × 1 mm3)
was utilized in the cathode chamber, and a carbon brush electrode (50 × 60 × 150 mm3)
was placed in the anode chamber. The volumes of both the anode and cathode chamber
were 0.51 L. Sequencing batch mode was utilized in the operation of the MFC-PM process.
Before each test, the catholyte was purged with nitrogen to remove oxygen. After the end
of each cycle, the catholyte was replaced, and hydroxylamine hydrochloride was utilized
to remove the MnOx (x = 1–2), which could be deposited on the surface of the electrode.

In the first 3 operating cycles, the completion of the start-up of the MFC was assumed
when the output voltage differed by less than 5%. The activated sludge sample was taken
from the secondary sedimentation tank of a sewage plant and incubated for 30 days in a
domesticated form. An experiment started when the voltage was stable (>0.8 V); after each
experiment, the voltage continued to be monitored until it was stable again, then the next
experiment was started. When the voltage dropped to less than 0.6 V, the medium in the
anode chamber after the reaction was replaced with fresh medium (see Figure S1a).

2.3. Analytical Methods

Samples collected from the cathode chamber were immediately filtered through a
0.22 µm filter and quenched with 100 µL hydroxylamine hydrochloride (0.01 M). The
DCF concentration was determined by HPLC-UV (Waters®, Milford, MA, USA) with a
COSMOSIL 3C18-MS-II column (5 µm particle size, 4.6 × 150 mm, Nacalai Tesque, Inc.,
Kyoto, Japan), and a UV-Visible detector (Waters® 2487) at a wavelength of 276 nm with
a flow rate of 0.8 mL min−1. The mobile phase was composed of 3% acetic acid and
acetonitrile (20: 80, v/v). The PM concentration was measured by the ABTS method at
415 nm [36]. The intermediate products in DCF degradation were determined by UPLC-
IMS-QTOF-MS (Waters®, Milford, MA, USA) with a Column-BEH C18 (2.1 × 100 mm,
1.7 µm). The eluent consisted of two mobile phases at 0.2 mL min−1: (A) 0.1% formic acid
in water (v/v), and (B) 0.1% methanol. The gradient was as follows: (i) 50% component
(A), and 50% component (B) was maintained during the first 10 min; (ii) component (A)
was decreased from 50% to 25% in the next 10 min, and component (B) was maintained at
75%; (iii) component (A) and component B were both maintained at 50% for 20 min. Mass
spectrometric analysis was conducted using positive/negative electrospray ionization with
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a mass scan range of m/z 50–1000. The DCF removal ratio and PM consumption ratio were
calculated as % with Equations (5) and (6), respectively. The generation of RMnS and the
UV-vis spectral changes of the solution were monitored by UV-vis spectrophotometers (T6,
Purkinje Co., Beijing, China).

Degradation (%) = (C0 − Ct) / C0 × 100% (5)

Consumption (%) = (C(PM)0 − C(PM)t) / C(PM)0 × 100% (6)

where C0 and C(PM)0 were the DCF concentration (µM) and the total PM concentration
(µM) in the initial solution, and Ct and C(PM)t were the corresponding values at time.

2.4. Electrochemical Measurements and Microbial Characterization

Cyclic voltammetry (CV) was performed using an electrochemical workstation (CHI660E,
Chenhua) with a 3-electrode mode. The Ag/AgCl electrode was utilized as a reference
electrode placed in the anode chamber. Connected to a 1000 Ω external resistor, the voltage
outputs were monitored by a data collector (RS232/485, China) every 0.5 min. Power
density curves and polarization of the MFC process were obtained by varying the external
resistance from 9999 to 9 Ω, when the voltage output approached steady state. The current
density I was calculated as I = U/(R × A), and the power was calculated as P = U × I.

The microbial layered on the carbon brush electrodes was collected, centrifuged, and
concentrated in a 5 mL centrifuge tube, then stored in liquid nitrogen. The integrity of
the extracted DNA was inspected by 1% agarose gel electrophoresis. The amplified DNA
was analyzed with an Illumina MiSeq high-throughput sequencer supported by Shang-
hai Meiji Biotechnology Co., Ltd. Samples were stored in liquid nitrogen before PCR
amplification, and the microbial community structures of carbon brush were detected by
16s rRNA pyrosequencing. The primer pair were 515F (5′-GTGCCAGCMGCCGCGG-3′)
and 907R(5′-CCGTCAATTCMTTTRAGTTT-3′), respectively. Moreover, the F-terminal
sequence and R-terminal sequence were GTGYCAGCMGCCGCGGTAA and GGACTACN-
VGGGTWTCTAAT, respectively.

2.5. Model Construction and Density Functional Theory Calculations

In this paper, a 2 × 2 supercell of platinum crystal with 4 layers was constructed. A
15 Å vacuum space was established along the Pt(111) crystal plane, which could minimize
the inter-reaction between adjacent boxes. The monomer models of Mn(VII), Mn(VI),
Mn(V), and Mn(III) were constructed via the reference [36]. In addition, the structural
optimization and adsorption energy calculation were performed with Material Studio
Software via the generalized gradient approximation (GGA) in the form of the Perdew–
Burke–Ernzerhof (PBE) function. During the calculations, the Monkhorst-Pack 2 × 2 × 1
k-pointing mesh with 400 eV cutoff energy was utilized. All calculations were accepted
when the threshold was <10−5 eV in energy, and the force was <0.03 eV Å−1. DFT-D
corrections were utilized to evaluate non-covalent forces through the Grimme scheme. The
adsorption energy (Eads) of substances on the plane was calculated with Equation (7).

Eads = EPt + sub − EPt − ESub (7)

where EPt+sub, EPt, and Esub were the energy of Pt and substances, Pt crystal, and substances,
respectively.

3. Results
3.1. DCF Removal in the Cathode Chamber

DCF removal in the PM oxidation process, the bio-electricity process (i.e., Pt-plating
titanium in cathode chamber without PM), and the MFC-PM process (i.e., Pt-plating
titanium in cathode chamber with PM) were evaluated. As displayed in Figure 1a, after
20 min reaction, the average removal of DCF was 80.26% in the PM oxidation process,
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whereas those for the MFC-E process and MFC-PM process were 12.63% and 94.75%,
respectively. DCF removal efficiency of the MFC-PM process was faster than the others.
Furthermore, the kinetic parameters of the rate constants were calculated and summarized
in Figure 1b. As displayed in Figure 1b, the removal rates of DCF in all processes followed
pseudo-first-order kinetics. The reaction rate constants (k) of the bio-electricity oxidation,
PM oxidation, and MFC-PM processes were 0.009, 0.073, and 0.155 min−1, respectively.
PM consumption in the PM oxidation process and MFC-PM process were also observed.
As shown in Figure 1c, in the PM oxidation process, 89.86% of PM was consumed within
20 min, while 93.43% of PM was consumed in the MFC-PM process. Additionally, the DCF
removal efficiency of the MFC-PM process compared to other systems was evaluated and
listed in Table S3. As illustrated in Table S3, the DCF removal efficiency of the MFC-PM
process was higher than most other existing processes, indicating that DCF could be rapidly
removed by the MFC-PM process.
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Figure 1. The removal ratio of DCF (a), DCF degradation kinetics (b), and PM consumption (c) by the PM, MFC-E, and
MFC-PM processes (pH = 3.0; [DCF]0 = 60 µM; external resistance = 0 Ω; [PM]0 = 30 µM).

The higher DCF removal rate achieved with the MFC-PM process could be attributed
to the oxidation of DCF by PM and the highly active species formed by the combination of
PM and bio-electricity. As displayed in Figure 1, compared to the PM oxidation process,
DCF removal, reaction rate constants, and PM consumption in the MFC-PM process were
all increased significantly, which indicated that PM was activated with the employment of
bio-electricity. These results also demonstrated a synergistic effect between PM oxidation
and bio-electricity. The synergistic index (Equation (8)) was calculated to be 1.9 (>1), which
also indicated a synergetic effect between the PM and bio-electricity processes [22].

Synergistic index = k(MFC-PM)/(k(PM) + k(bio-electricity) (8)

where k(MFC-PM), k(PM), and k(bio-electricity) were the pseudo-first-order rate constants
of the MFC-PM, PM, and bio-electricity processes, respectively (min−1).

3.2. Process Optimization
3.2.1. Effect of PM Dosages

As shown in Figure 2 and Table S4, with the increase of PM dosages (from 15 to 45 µM),
the DCF removal ratio increased from 68.93% to 97.27%, and the k value also increased,
from 0.051 to 0.192 min−1. With the sustained increase of PM dosage (45–75 µM), the DCF
removal ratio and k values decreased initially, then continued to increase. This unusual
phenomenon (i.e., pollutant removal efficiency did not increase with the increasing of
PM dosage) confused us. Therefore, the electrochemical characteristics of the MFC-PM
process at different PM dosages were tested to explain this phenomenon. Interestingly,
with the change of PM dosages, cathode potential and current density also changed. The
trends of change in both of these were consistent with the trend of change in DCF removal
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efficiency (see Figure 2b). The results demonstrated that DCF removal efficiency was also
related to the electrochemical nature. The higher power output of the MFC-PM process
might be beneficial for activating PM and promoting the generation of reactive species,
which could promote DCF removal. Additionally, Tafel plots were generated to evaluate
electron transfer resistances via the exchange current densities and Tafel slopes, in which
the exchange current densities expressed the rates of electron exchange at equilibrium, and
Tafel slopes represented the electron transfer efficiencies [36,37]. As displayed in Figure 2c,
the exchange current densities followed 60 µM < 15 µM ≈ 30 µM ≈ 45 µM < 75 µM, which
represented that the rate of electron exchange containing 60 µM PM concentration was
the lowest. Moreover, the cathode of the MFC-PM process with 60 µM PM concentration
achieved the highest Tafel slope compared to the others, which indicated that the MFC-PM
process at 60 µM PM concentration possessed the lowest reaction activity. We speculated
that the generated MnOx (x = 2 or 1.5) might cover the active sites so that the active specific
surface area of the electrode was reduced. Overall, there was no positive correlation
between DCF removal efficiency and PM dosages in the MFC-PM process, and the 30 µM
PM dosage was the relatively optimal dosage, taking into account economic and manganese
retention issues.
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3.2.2. Effect of Catholyte pH

The influence of catholyte pH on DCF removal in the MFC-PM process was investi-
gated. As displayed in Figure 3a,b, the removal efficiency of DCF and the consumption
of PM were the highest under acidic conditions (pH = 3.0). When the pH increased from
3.0 to 11.0, DCF removal efficiency and PM consumption both decreased significantly,
which indicated that the MFC-PM process for DCF removal was a highly pH-dependent
reaction, and lower pH values were suitable for DCF removal. On one hand, the oxidation
potential of PM decreased with increasing pH, which could affect the reaction activity of
PM (Equations (9)–(11)) [19]. On the other hand, the cathode potentials changed markedly,
and arrived at the highest value in the condition of pH = 3.0. Additionally, the current
density decreased from 24.5 to 14.8 mA m−2 as catholyte pH increased from 3.0 to 11.0.
The decreasing cathodic potential and current density with increasing pH might also affect
the removal of DCF (see Figure 3c). Furthermore, to further explore the phenomenon, we
examined the electrochemical performance of the MFC-PM process at different pH values
with the cyclic voltammetry (CV) method. As displayed in Figure 3d, three reduction
peaks (−0.11 V, −0.63 V, and −0.75 V), and one oxidation peak (−0.59 V) at pH = 3.0
were observed and were different from the peaks observed at other pH values (5.0–11.0).
Moreover, it was found that manganese intermediates could be formed under the poten-
tial of −0.72 V (see Figure S1). The unique reduction peaks at pH = 3.0 indicated that
manganese intermediates might only be formed at pH = 3 in the MFC-PM process [38].
Hence, combined with the reaction mechanism in Section 3.3.3, we speculated that the
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reduction peaks of −0.11 V, −0.63 V, and −0.75 V corresponded to the reaction processes
of Mn(IV)→Mn(III), Mn(VI)→Mn(V)/Mn(IV), and Mn(VII)→Mn(VI), respectively. The
oxidation peak corresponded to the reaction processes of Mn(V)→Mn(VI). Hence, pH = 3.0
was the optimal pH value in the MFC-PM process.

Acidic condition: MnO4
− + 5e− + 8H+ →Mn2+ + 4H2O E0 = 1.51 V (9)

Neutral condition: MnO4
− + 3e− + 4H+ →MnO2(s) + 2H2O E0 = 1.70 V (10)

Alkaline condition: MnO4
− + 3e− + 2H2O→MnO2(s) + 4OH− E0 = 0.59 V (11)
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3.2.3. Effect of External Resistance

To evaluate the influence of external resistance on DCF removal in the MFC-PM
process, four different external resistances (500, 1000, 2000, and 5000 Ω) were examined. As
displayed in Figure 4a and Table S4, although the external resistances had little influence
on the DCF removal ratio, a significant influence was observed on the DCF removal rate.
The removal rate decreased from 0.321 to 0.243 min−1 as the external resistance increased
from 0 to 5000 Ω within 3 min. Moreover, the electrochemical performance at different
external resistance values was also evaluated. As shown in Figure 4b, the output potential
and current density all decreased with the increases in external resistance owing to the
large diffusional resistance and overpotential [39,40]. Hence, the current density decreased
from 0.41 to 0.07 A m−2 when the external resistance increased from 500 to 5000 Ω. This
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phenomenon might be due to the block of electron transport that inhibited the reaction
in the cathode chamber. The potentials of the anode were 0.26 (500 Ω), 0.29 (1000 Ω),
0.32 (2000 Ω), and 0.35 V (5000 Ω), respectively. As the external resistance increased,
electrons migrated and accumulated in the anode, leading to the increase of potential in
the anode [41]. Overall, reducing the external resistance was a beneficial approach for
DCF removal.
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3.3. Proposed Electron-Transfer and DCF Removal Mechanism
3.3.1. Identification of Reactive Species

Conventional electrochemical oxidation systems could supply electrons directly from
the power supply. In the MFC-PM process, electrons were generated from microorganisms
by the metabolism of urea, and then transferred to the cathode via the external circuit. Our
previous work proved that electrons on the surface of electrode (Pt) could activate PM to
form RMnS and hydroxyl radical (HO•) for the removal of contaminants [24,25]. In the
MFC-PM process, methyl alcohol (MA, broad spectrum quenching agent) and tert-butanol
(TBA, HO• scavenger) were selected to detect the generation of HO• [42]. As shown in
Figure S2a, with the increase of TBA and MA doses from 500 µM to 100 mM, the DCF
removal ratio was not significantly inhibited. That result indicated that HO• was not gener-
ated in the MFC-PM process or did not affect DCF removal [25]. Accordingly, manganese
intermediates (Mn(VI)aq, Mn(V)aq, Mn(IV)s, and Mn(III)aq) might be the reactive oxides in
the MFC-PM process. Methyl phenyl sulfoxide (PMSO) was selected as a probe to ensure
the presence of Mn(VI)aq and/or Mn(V)aq due to the specific products (e.g., methyl phenyl
sulfone). Hence, methyl phenyl sulfone (PMSO2) was the exclusive product of PMSO by
Mn(VI)aq and/or Mn(V)aq oxidation, whereas hydroxylated and/or polymeric products
would have been generated in the presence of HO•. Furthermore, compared to other man-
ganese intermediates, PMSO could be quickly oxidized into PMSO2 with stoichiometry
1:1 by Mn(VI)aq or Mn(V)aq. Figure 5a shows that with the degradation of PMSO, PMSO2
was gradually generated during the MFC-PM process. The ratio of ∆PMSO2/∆PMSO was
approaching 100%, which indicated that Mn(VI)aq and/or Mn(V)aq were generated in the
MFC-PM process. However, one question surrounded this process: was the transformation
of manganese valence state via signal or double electron transfer modes? DFT calculation
was utilized to elucidate the adsorption energy of different manganese intermediates on
the surface of the Pt(111) lattice plane to further clarify the transformation mechanisms of
manganese. As displayed in Figure 5b, all manganese intermediates adsorption energies
on the Pt(111) lattice plane were negative values, which illustrated that manganese interme-
diates could be adsorbed and reacted in on the Pt(111) lattice plane. The adsorption energy
of Mn(VI) (−1.52 eV) was lower than that of Mn(V) (−1.40 eV), indicating that Mn(VI)
was easier to attach to the Pt(111) lattice plane. Hence, PM was more likely to be reduced
via one electron mode on the Pt(111) lattice plane, resulting in the formation of more
adsorptive Mn(VI)aq. Besides, Mn(VI)aq and Mn(V)aq had characteristic absorption peaks
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at 610 nm and 660 nm, respectively, which could have been further utilized to confirm the
generation and change of Mn(VI)aq and Mn(V)aq. Figure 5c,d showed that with the increase
of time, the absorbance of Mn(VI)aq and Mn(V)aq increased for a short time and gradually
decreased. The largest peak of Mn(VI)aq appeared earlier than that of Mn(V)aq, which
indicated that Mn(VI)aq was formed first. In summary, these results above indicated that
PM was preferred to reduce to Mn(VI)aq via one electron transfer first, and then Mn(VI)aq
was further reduced to Mn(V)aq.
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Mn(IV)s was a vital product produced in the PM catalytic oxidation process that could
promote organic contaminant removal. The effect of Mn(IV)s in the MFC-PM process was
studied. As displayed in Figure S2b, no apparent absorption peaks (375–410 nm) were
observed. This result indicated that Mn(IV)s was absent in the MFC-PM process. Moreover,
the effect of Mn(IV)s on DCF removal was also studied (see Figure S2c). The removal of
DCF in the MFC-MnO2 process was restrained compared with that of the MFC-PM process.
This result further demonstrated that Mn(IV)s had a slight effect on DCF removal.

Mn(III), a single-electron oxidant (E0 = 1.51 V), might also contribute to DCF removal
in the MFC-PM process. The Mn(III)aq-sodium pyrophosphate (PP) complex had its
characteristic peak at 258 nm, which could confirm the presence of Mn(III)aq. As displayed
in Figure S2d, with the addition of PP (from 500 µM to 10 mM), DCF removal was inhibited
significantly, which indicated that Mn(III)aq played an important role in the MFC-PM
process. In parallel, compared to the PM oxidation process, a complex peak of Mn(III)aq-
PP was observed in the MFC-PM process (Figure 5e), which showed that Mn(III)aq was
generated in the MFC-PM process. Moreover, with the increase of the PM/DCF ratio,
the peak value of Mn(III)aq-PP clearly increased (Figure S2e), indicating that Mn(III)aq
contributed to the removal of DCF in the MFC-PM process. In addition, a novel MFC with
multiple anodes and a single cathode (Figure S3) was also designed to gain more insight into
the relationship between bio-electricity and the generation of Mn(III)aq. Activated carbon
fiber (ACF) was utilized as the cathode electrode in this novel system. The generation of
Mn(III)aq was also detected. Interestingly, with the increase of the anode chamber, the peak
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of Mn(III)aq-PP increased accordingly, illustrating that Mn(III)aq generation was directly
related to the addition of bio-electricity.

Overall, RMnS (Mn(VI)aq, Mn(V)aq, and Mn(III)aq) were formed and contributed to
DCF removal in the MFC-PM process.

3.3.2. Analysis of Electricity-Producing Communities

Classifications of microbial communities were displayed in Figure S4. Four taxa were
evaluated at the phylum level, comprising Firmicutes (42.5%), Actinobacteria (23.7%), Pro-
teobacteria (19.1%), and Bacteroidetes (12.0%), respectively. Firmicutes and Proteobacteria
were typical anaerobic electroactive bacteria that could transfer electrons via nanowires,
electrokinesis, and outer-membrane cytochromes [34,43]. Moreover, Bacteroidetes, ranking
third in total number, could also export electrons to the Pt electrode [44]. In contrast, Acti-
nobacteria, ranking second in total number, had no electrochemical activity. The presence
of Actinobacteria in the cathode chamber might be because it is commonly in inoculated
sludge and continued to reproduce on urea nutrient sources [45]. Additionally, further
analysis at the genus level indicated that Pseudogracilibacillus was dominant on the carbon
brush electrodes (12.8%).

3.3.3. Reaction Mechanism

In addition to the evidence mentioned above, chronoamperometry was also utilized
to ascertain the reaction dynamics of the MFC-PM process (Figure 5f). The addition of
50 mM Na2SO4 had no effect on the response current, which indicated that the increase
of electrolyte ions in the solution had no effect on electron transfer. However, with the
addition of PM at 60 s, the current increased significantly, indicating PM was reduced on the
Pt electrode. An obvious current response was observed with the addition of DCF at 120 s,
indicating that electron transfer between the DCF and the reacting electrode had occurred.
Moreover, when DCF was added to the solution at 60 s, no obvious response current was
observed. This result indicated that there was no direct electron transfer between DCF and
origin Pt electrodes. Overall, the evidence indicated that PM was first reduced to RMnS via
combination with electrons, which were generated by Firmicutes bacteria. The RMnS could
transform into each other and oxidize DCF (Equations (12)–(19)) [17,24,25]. A simplified
reaction pathway for DCF removal in the MFC-PM process was proposed and is illustrated
in graphic abstract.

Mn(VII)aq + e− →Mn(VI)aq (12)

Mn(VI)aq + e− →Mn(V)aq (13)

Mn(V)aq + 2e− →Mn(III)aq (14)

Mn(V)aq + e− →Mn(IV)s (15)

2Mn(V)aq →Mn(VI)aq + Mn(IV)s (16)

Mn(III)aq + e− →Mn(II) (17)

2MnO4
− + 3Mn2+ + 16H+ + 5e− → 5Mn(III)aq + 8H2O (18)

RMnS + pollutant→ products (19)

3.3.4. Degradation Pathways of DCF

HPLC/MS analysis and DFT calculation were employed to elucidate the degradation
pathway of DCF in the MFC-PM process. At first, the Fukui index, representing elec-
trophilic attack (f -) and the natural population analysis charge distribution were calculated
to predict the location of DCF that RMnS might attack. As displayed in Figure 6a,b, C2,
C7, C12, C13, and C17 possessed relative larger f - values, which meant that these locations
were more vulnerable to RMnS attack in theory [46]. Furthermore, combined with the
HPLC/MS results and DFT calculation, a possible degradation pathway was proposed. As
shown in Figure 6c, first, DCF degradation was classified into three routes: ring opening,
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ring hydroxylation, and decarboxylation. In the ring opening pathway, the C2 atom was
attacked, leading to the generation of P8 (m/z 346), and then P8 (m/z 346) was converted
to P10 (m/z 318) by hydrolysis and ring closure. In the ring hydroxylation pathway, the C7
atom with the highest f - (0.1962) was attacked to form P1 (m/z 312) and P4 (m/z 267), and
P1 and P4 were converted to P3 (m/z 283) and P5 (m/z 266), respectively, by a multi-step
decarboxylation and oxidation; DCF underwent decarboxylation and C-N cleavage to
eventually form P7 (m/z 161). Finally, the intermediates could be further attacked by
reactive species to cleave into smaller molecules (e.g., CO2 and H2O).
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3.4. Application of the MFC-PM Process

As displayed in Figure S5a, different water matrices (surface and tap water) were
utilized to determine the practicability of the MFC-PM process for DCF removal. The
characteristics of water matrices utilized in this study were investigated. It may be seen that
the removal of DCF in the tap and surface water reached 95.32% and 82.05%, respectively,
which were slightly reduced compared with that of ultrapure water. The k values were 0.106
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and 0.083 min−1 in tap water and surface water, respectively (Table S4). This result was
consistent with previous reports that the non-radical oxidation process was less affected
by the water matrices in comparison to the radical oxidation process [27]. The result also
indicated that DCF could be effectively removed in the MFC-PM process in natural water.
However, the DCF removal rate in ultrapure water was faster than that of tap or surface
water. This phenomenon might be attributed to background organic matter and inorganic
salts in the surface water and tap water, such as NO3

−, H2PO4
−, and HCO3

−, which
affected the performance of the PM oxidation system. Moreover, Jia et al., proved that
inorganic salts may competitively react with electrons produced from MFC [47]. Hence, the
effect of anions on the MFC-PM process was studied. As shown in Figure S5b–f, HCO3

−,
lower concentrations of Cl−, HPO4

−, NO3
−, and lower concentrations of humic acid (HA)

all inhibited the removal of DCF, whereas higher concentrations of HA and Cl− enhanced
the reaction. HCO3

− and HPO4
− were frequently considered to have a negative effect on

pollutant degradation in the PM catalytic oxidation process by competing for catalytic sites
and influencing the solution pH. Hence, we speculated that pH values during reaction
could be altered by HCO3

− and HPO4
−, which could account for the inhibitory effect. The

pH during the MFC-PM process in the presence of HCO3
− and HPO4

− was examined
to test that speculation. With the presence of HCO3

− and HPO4
−, the pH was at 7.0 and

6.5, respectively. These values were higher than that of the blank process (i.e., MFC-PM
process) (pH = 3.2), in which a higher pH value was not favorable for DCF removal. While
NO3

— could not adjust solution pH, the inhibitory effect caused by NO3
− might be due to

the competition of NO3
− (Equations (20) and (21)) with PM for electrons on the cathode,

which resulted in the reduction of intermediate manganese generation [47]. As for HA and
Cl−, at low concentrations, they might compete with electrons in cathodes, resulting in
the reduced generation of RMnS, whereas at higher concentrations they might react with
RMnS to generate other reactive species (e.g., •OH, Cl•, etc.) to accelerate the MFC-PM
process [24,48]. Additionally, the removal rate of DCF in urea solution was also evaluated
to further assess the applicability of the MFC-PM process. As shown in Figure S6, with
the increase in urea concentration, DCF removal efficiency was significantly promoted,
indicating that the MFC-PM process was an effective method in removing DCF in urine.

NO3
− + 2e− + 2H+ → NO2

− + H2O (20)

NO2
− + 3e− + 3H+ → OH− + H2O + 0.5N2 (21)

4. Conclusions

A novel MFC-PM process was successfully developed for DCF removal in a cathode
chamber. Free RMnS were the main oxides and were generated by combination with
electrons from Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes. Ring opening,
ring hydroxylation, and decarboxylation were the main degradation pathways. Common
anions in natural water had negligible effect on the removal of DCF, whereas higher
concentrations of HA and Cl− promoted DCF removal. Moreover, DCF could be effectively
removed in actual water and urea water. This paper provided a novel energy-free method
of activating PM for DCF removal via generated RMnS in situ.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13152047/s1, Figure S1: The change of voltage with time (a), cyclic voltammetry curve
of PM (b), and UV-vis spectrum of PM under different potentials (c), Figure S2: Effect of MA, TBA
(a), UV-vis spectra of the the MFC-PM processes (b), effect of MnO2 (c) and PP (d) on the removal of
DCF, and the peaks of Mn(III)aq (e) in different PM/DCF ratios with 10 mM PP, Figure S3: Diagram
of MFC with muti-anodes and single cathode and UV-vis spectra with one anode (a), two anodes
(b), three anodes (c) in the MFC-PM system, and comparison with peaks of Mn(III)aq with different
numbers of anodes (d), Figure S4: Taxonomy of microbial communities classified at the phylum
level on the anode of MFC, Figure S5: Effect of water matrices (a), HPO4

2− (b), NO3
− (c), Cl− (d),

HCO3
− (e), and HA (f) on the removal of DCF in the MFC-PM system, Figure S6: Effect of urea
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on the removal of DCF in the MFC-PM system, Table S1: Elemental composition of minerals, Table
S2: Composition of vitamin solutions, Table S3: Comparison of the MFC-PM process with other
methods for the degradation of DCF, Table S4: The reaction kinetics of DCF removal in different PM
concentrations, external resistances, and water matrices by the MFC-PM process.
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