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Abstract: The scarcity of water resources nowadays lays stress on researchers to develop strategies
aiming at making the best benefit of the currently available resources. One of these strategies is
ensuring that reliable and near-optimum designs of water distribution systems (WDSs) are achieved.
Designing WDSs is a discrete combinatorial NP-hard optimization problem, and its complexity
increases when more objectives are added. Among the many existing evolutionary algorithms, a new
hybrid fast-convergent multi-objective particle swarm optimization (MOPSO) algorithm is developed
to increase the convergence and diversity rates of the resulted non-dominated solutions in terms of
network capital cost and reliability using a minimized computational budget. Several strategies are
introduced to the developed algorithm, which are self-adaptive PSO parameters, regeneration-on-
collision, adaptive population size, and using hypervolume quality for selecting repository members.
A local search method is also coupled to both the original MOPSO algorithm and the newly developed
one. Both algorithms are applied to medium and large benchmark problems. The results of the new
algorithm coupled with the local search are superior to that of the original algorithm in terms of
different performance metrics in the medium-sized network. In contrast, the new algorithm without
the local search performed better in the large network.

Keywords: multi-objective algorithms; network resilience; particle swarm optimization; water
distribution systems

1. Introduction

Designing water distribution systems (WDSs) has gained lots of interest in the past
three decades. Despite the simple formulation of some of these problems, the feasible
solutions are hardly identified because of the vastness of their search spaces. Moreover,
the total enumeration of the solutions for this kind of problem is almost impossible [1].
For instance, if a small network consists of 20 pipes with only 5 available diameters in
the market, the search space size of this network is around 9.53× 1013 possible solutions.
This complexity led to the necessity of using optimization methods to solve this type of
optimization problem. Several optimization methods were applied on WDSs design such
as linear programming (LP), dynamic programming (DP), non-linear programming (NLP),
mixed integer programming (MIP), and evolutionary algorithms (EAs) [2,3]. Due to the
vastness of search spaces and the discrete nature of variables for such problems, EAs began
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to take the lead because of their simplicity in execution and the quality of solutions they
provide for such problems.

The complexity of WDS design problems increases when more components are added
to the network pipes (e.g., pumps, storage tanks, etc.) since the search space gets wider [4].
The complexity also increases when more than one objective is considered because of the
emergence of many feasible non-dominated solutions in this case and the trade-off between
the different objectives functions [5]. For instance, the single-objective design of WDSs,
which mainly depends on minimizing the capital cost, always results in a solution with
minimum pipes diameters. However, this solution often produces the least hydraulic
reliability of the network. When network reliability is added to the design as an objective,
the conflicting nature between the cost and reliability affects the produced non-dominated
solutions (i.e., the approximate Pareto set). In this case, decision-makers should select only
one solution among these solutions for the real implementation of the network. Many
other objectives may be added to these problems, such as minimizing the operational cost,
maximizing water quality, and minimizing water leakage, to name a few. However, adding
more than two objectives to the optimization problem usually forms an approximate Pareto
surface of non-dominated solutions.

One of the most well-known meta-heuristic optimization algorithms used in designing
WDSs is the particle swarm optimization (PSO) algorithm developed by Kennedy and
Eberhart [6]. The algorithm is based on the swarm intelligence phenomenon, which may
be observed in bird flocks or fish schools where a leader, which moves with the most
convenient direction and speed, leads the whole swarm into a specific destination (this
destination here is the optimum solution). Later, Coello and Lechuga [7] modified the
PSO algorithm and developed the multi-objective PSO (MOPSO) algorithm by adding
an external archive for saving non-dominated solutions (i.e., the approximate Pareto set)
during the optimization process. Padhye [8] compared several proposals for archiving
the particles in this external archive and stated the advantages and disadvantages of each
method. He also proposed a new hybrid method by combining the ε-dominance and
the sequential quadratic programming (SQP) search, and this method resulted in better
convergent solutions.

PSO and MOPSO were frequently used in optimizing the design of WDSs and pro-
duced reasonable solutions compared to many other optimization algorithms, as will be
explained subsequently. Wang et al. [9] made an extensive trial to obtain the best-known
Pareto sets for twelve benchmark networks by accumulating the results of five evolutionary
and hybrid algorithms so that those Pareto sets act as references for any other researchers.
The hybrid AMALGAM algorithm, which includes parts of the PSO algorithm, and the non-
dominated sorting genetic algorithm II (NSGA-II) had the most considerable contributions
in forming the best-known Pareto sets of the studied networks.

El-Ghandour and Elbeltagi [10] made a comparison between five meta-heuristic EAs
(the genetic algorithm (GA), PSO algorithm, the ant colony optimization (ACO) algorithm,
the modified shuffled frog leaping algorithm (SFLA), and the memetic algorithm (MA)).
They performed a single-objective optimization to design two benchmark networks, the
two-loop network and New York tunnels network. The PSO algorithm proved to have the
best performance among all other studied algorithms in terms of solutions efficiency and
computational resources.

Additionally, Wang et al. [11] developed a hybrid algorithm called GALAXY to solve
WDSs using six search operators including the main search operator of PSO, which is called
the turbulence factor, TF. GALAXY’s results were superior compared to some baseline
MOEAs, which were NSGA-II, ε-MOEA, and BORG algorithms. Monsef et al. [12] made a
multi-objective optimization using NSGA-II, MOPSO, and the multi-objective differential
evolution (MODE) of four benchmark networks (New York tunnel network, Hanoi network,
Pescara network, and Modena network). MOPSO gave moderate result quality compared
to the others while MODE algorithm surpassed all algorithms in terms of accuracy and
computational resources.
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MOPSO algorithm often performs well in WDSs design. It produces Pareto sets
with functional diversities within the objective space; however, the convergence of final
solutions is sometimes weaker than other algorithms [12]. Furthermore, MOPSO algorithm
has few parameters to be tuned and has a fast-convergent search operator. It reaches sub-
optimal solutions in relatively less computational time than other algorithms [10,12]. On
the other hand, PSO algorithm, and the same applies for MOPSO algorithm, occasionally
falls in local optima, severely suffering from premature convergence. Moreover, due to the
non-linearity and non-convexity of the used objective functions in WDSs design problems,
PSO and MOPSO particles may gather together at local optima, and the search process
collapses [3,13].

Therefore, in a multi-objective WDS optimization, if MOPSO algorithm is improved
in terms of convergence and diversity of the final solutions while taking advantage of its
fast-convergent search operator, it can be superior compared to the other EAs frequently
used in the literature. For this purpose, Different strategies may be added to hybridize
the original MOPSO algorithm to improve its capabilities to reach near-optimal solutions
when used to optimize WDSs design problems.

Although WDSs in many parts of the world are nowadays fully complete, in other
parts (i.e., Middle East and some developing countries), they are still looking to improve
their systems. Implementing new, robust, and yet simple algorithms for the optimal design
of the networks would be essential. In this work, it is not intended to develop a new
approach but to enhance the performance of MOPSO in terms of runtime convergence and
solutions diversity compared to the original MOPSO while using a fixed computational
budget in both cases. In addition, a comparison is held between the different strategies
in the literature added to the algorithm and the effect of each on improving the overall
performance is investigated. Two different benchmark networks are analyzed, and a
comparison is held between the original and the modified MOPSO algorithms for each
network. The structure of the rest of this paper is as follows: Section 2 describes the original
MOPSO algorithm and its application to the design of WDSs. Section 3 identifies the
performance metrics used in judging the results of each algorithm. Section 4 describes the
strategies added to the original MOPSO algorithm to form the new algorithm. In Section 5,
application of the local search to both MOPSO algorithms is described, while in Section 6
the used benchmark networks are illustrated. Finally, the obtained results and conclusions
are given in Sections 7 and 8, respectively.

2. Original MOPSO Algorithm
2.1. PSO Concept

The single-objective PSO imitates the idea of swarm intelligence. The algorithm
initiates a population of particles representing a flock of birds or a school of fish aiming at
moving towards the area of optimum solutions. The population initiation is usually done
by generating random numbers for the decision variables (the decision variables are the
pipes’ diameters in WDSs design problems) within their prespecified ranges. A decision
vector is created for each particle, and the population consists of a prespecified number
of population particles, jmax. Thus, several decision vectors (x1, x2, . . . , xj, . . . , xjmax) will
be developed to form the initial positions of population particles. The algorithm starts to
iterate to improve each particle position by following the swarm intelligence idea, as will
be subsequently explained.

The objective function is evaluated for each particle. The algorithm saves the global
best position of all particles (Gbest) and the particles’ personal best positions (pbest,1, pbest,2,
. . . , pbest,j, . . . , pbest,jmax) for each particle in terms of the objective function value. Each
particle position is improved in any following iterations by changing the velocity and
direction as follows

vi+1 = wivi + C1r1(pbest,j − xi) + C2r2(Gbest − xi) (1)
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where vi+1 is the new particle velocity vector in iteration i+1, vi is the velocity vector in
iteration i, wi is the inertia coefficient in iteration i that keeps the particle moving, r1 and r2
are random numbers between 0 and 1, C1 is the cognitive parameter, and C2 is the social
parameter. In most studies, the values of C1 and C2 are set to 2.0 while wi may be calculated
from several equations. One of the most common is

wi = 0.5 +
1

2(ln (i) + 1)
(2)

The new velocity vector of each particle vi+1 should not exceed or drop below the
maximum flying velocity vector, vmax, and the minimum flying velocity vector, vmin,
respectively, so that the particle does not fly outside the search space [13]. vmin is usually
set as -vmax and all vmax values are typically set to 2.0 for all the particles.

Afterward, each particle position vector is updated according to the following equation

pi+1 = pi + vi+1 (3)

where pi+1 is the new particle position in iteration i+1, and pi is the particle position in
iteration i.

Then, the algorithm iterates within a prespecified number of iterations, imax, and Gbest
at the last iteration is the optimum solution. A fixed total number of objective function
evaluations, TNFE, to find the final solutions is adopted in this work. It represents the used
computational budget in obtaining the results, i.e., the number of times the algorithm uses
the simulator of the objective function, as will be explained later, to evaluate the fitness of
all particles. The aim of fixing the TNFE, which should be proportional to the size of the
problem search space, is to ensure an equal opportunity for this algorithm and any other
version of it to find the final solutions using the same computational budget [9].

Coello and Lechuga [7] modified the single-objective PSO algorithm so that it acted like
any multi-objective algorithm and developed the multi-objective PSO (MOPSO) algorithm.
This transformation was done by adding an external archive/repository to save the non-
dominated solutions every iteration. The leader of any iteration, which acts as Gbest for all
population particles, is selected by the roulette-wheel selection [14] from the repository
particles of the previous iteration. The repository has a maximum size, which equals the
population size in this work, and if the repository is full, excess particles, which are selected
using the roulette-wheel selection, are removed.

2.2. Formulation of WDS Design Problem

When solving the WDS design problems using MOPSO algorithm, each particle deci-
sion vector should represent all the pipe diameters in the network. The actual diameter of
each pipe should be selected from a given set of the available diameters in the market. A
hydraulic simulator is needed to obtain the pressure heads and flow velocities correspond-
ing to each particle position. In this work, the hydraulic simulator is the freely available
software EPANET2.0 [15]. MOPSO algorithm is written in a MATLAB Environment, and
an EPANET-MATLAB toolkit is used to control EPANET2.0 from MATLAB [16].

The objective functions consist of minimizing network capital cost and maximizing
network reliability. The network capital cost is a function of the cost of pipes, which is
proportional to the number, length, and diameter of all pipes in the network according to
the following equation

min NCC =
Np

∑
k=1

Ck(dmar)Lk, mar = 1, ..., Nav (4)

where NCC is the network capital cost, Np is the number of pipes in the network, Ck is the
unit cost per length of pipe k having an available diameter in the market dmar, Lk is the
length of pipe k, and Nav is the number of available diameters in the market.
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On the other hand, the network reliability is measured by a surrogate measure, which
is the network resilience [17]. The network resilience, In, is a modification of the resilience
index developed by Todini [18]. The resilience index expresses the surplus amount of
available power for all network junctions to confront any failure, if any, happening in the
network (e.g., pipes failure, contamination intrusion, etc.) considering the total power
generated by reservoirs and pumps available in the network. The modification made by
Prasad and Park [17] on the resilience index equation is adding a uniformity coefficient, U,
for all junctions to check network redundancy. For more details, readers may refer to [17].
The network resilience can be calculated from

max In =
∑

Njun
m=1 UmQm(Hm − Hm,req)

(∑Nr
r=1 Qr Hr + ∑

Npu
p=1

Pp
γ )−∑

Njun
m=1 Qm Hm,req

(5)

where In varies between 0 and 1, Njun is the number of junctions in the network, Um is
the uniformity coefficient of junction m, Qm is the demand of junction m, Hm is the actual
piezometric head of junction m, Hm,req is the minimum required piezometric head for
junction m and it is network-specific, Nr is the number of reservoirs in the network, Qr is
the reservoir outflow, Hr is the reservoir water elevation, Npu is the number of pumps in
the network, Pp is the pumping power of pump p, and γ is the unit weight of water.

The uniformity coefficient for any junction m, Um, can be calculated from

Um =
∑

Ntp
t=1 dt

Ntp × max{dt}
(6)

where Ntp is the total number of pipes connected to junction m, and dt is the diameter of
pipe t connected to junction m.

Values of the capital cost and network resilience are normalized to provide a fair
probability of optimization for each objective function as follows

(NCCnor, Inor) =

(
NCC−NCCmin

NCCmin
,

Imax − In

Imax

)
(7)

where NCCnor is the normalized value of network capital cost, Inor is the normalized value
of the network resilience, NCCmin is the minimum value of network capital cost, Imax is the
maximum value of the network resilience.

The original MOPSO algorithm is adapted here to find the pay-off characteristics
curve (approximate Pareto set) between the network capital cost and the network relia-
bility by running the algorithm several runs with different population sizes, and Pareto
surfaces are identified. Finding the pay-off characteristics curve is done by identifying
the non-dominated solutions saved in the external archive after finishing each run and by
combining, ranking, and sorting the results from all runs. The different population sizes
used for the required runs should be proportional to the size of the search space for each
network. This proportionality is mandatory because small populations cannot perform
well in a large search space due to their limited ability to discover the whole search space.
In contrast, large populations, when used in a small search space, are computationally
expensive. Consequently, large networks (i.e., a large number of junctions and pipes)
require large population sizes and vice versa.

2.3. Constraints Handling

Two different types of constraints exist in WDSs design problems. The first type is a
rigid constraint since it is related to satisfying the continuity and energy balance equations
and it cannot be violated. This constraint is satisfied throughout the solution by using
the hydraulic simulator, EPANET 2.0. The second type is a flexible constraint since it is
related to the network operation and it might be violated. An example of this type is



Water 2021, 13, 1334 6 of 21

satisfying the required pressure heads of junctions and flow velocities of pipes within their
prespecified limits.

Here, the flexible constraints are related to the pressure heads only and are handled
using the same concept presented in [17]. After the end of each iteration during any run, the
algorithm saves the non-dominated solutions, which are supposed to have zero constraints
violations at the final iteration, in the external archive from population solutions. At any
iteration, if a pair of sequential solutions (A) and (B) is selected from the population,
solution (A) is saved in the repository while solution (B) is not saved if (i) solution (A)
is feasible while solution (B) is infeasible; (ii) solutions (A) and (B) are both infeasible
but solution (A) has less constraints violations compared to solution (B), or (iii) solutions
(A) and (B) are both feasible but solution (B) is dominated by solution (A). After saving
the new repository members, the repository is updated by repeating the same previous
steps for the old and the new repository members, and an approximate Pareto front, PF, is
obtained after the end of each iteration. Hence, the final approximate PF formed at the last
iteration represents the best non-dominated solutions in a single run.

3. Performance Metrics

The need to measure the performance of multi-objective algorithms is essential for
assessment and comparison purposes, especially in this work that aims at comparing two
versions of the MOPSO algorithms, the original algorithm (OMOPSO) and the modified
one (MMOPSO). Some metrics can be applied during the run (on-line metrics or runtime
metrics), and others can be applied at the run end (off-line metrics). The runtime metrics
are better in monitoring the performance of any algorithm, especially when information
about the convergence speed is needed, as shown in [19]. The perfect performance of
any multi-objective algorithm is achieved if it converges rapidly to the true PF while
maintaining a diverse set of non-dominated solutions on the approximate PF.

Zitzler et al. [20] stated that the number of performance metrics should be equal
to or greater than the number of objective functions to maintain theoretical accuracy. In
this work, two runtime metrics are used, the runtime convergence metric [19] and the
hypervolume metric [21]. The runtime convergence metric, Cm, measures the Euclidean
distances between each of the non-dominated solutions on the approximate Pareto set and
the closest point on a reference set (e.g., the true PF). Then, it sums all these distances up
and divides the summation by the number of non-dominated solutions. If this metric is
close to zero, this indicates a good convergence of the generated approximate Pareto set.

On the other hand, the hypervolume metric, HVm, measures both convergence and
diversity of the obtained solutions. HVm measures the objective space area which is
covered by the non-dominated solutions in terms of a reference point. In this work, the
reference point is selected to make the approximate PF of convex shape. The reference
point, r, in this work is calculated as follows

r =
(

NCCmax −NCCmin
NCCmin

,
Imax − Imin

Imax

)
(8)

where NCCmax is the maximum capital cost of the network, and Imin is the minimum value
of network resilience. NCCmax and NCCmin can be calculated by setting the maximum and
minimum available diameter in the market for all the pipes in the network while Imax and
Imin equal 1 and 0, respectively. HVm is often classified as a monotonic measure since it
does not depend on the true PF, unlike Cm which needs a true PF [22]. In this work, the
hypervolume value for the approximate PF is divided by the hypervolume value of the
best-known Pareto set. Therefore, HVm is converted to NHVm, which ranges from zero to
one. If NHVm is close to unity, this means an excellent convergence and diversity of the
generated approximate Pareto set.

In addition to Cm and NHVm, the total number of non-dominated solutions, Nnds,
for any final PF is utilized for displaying the intensity of this PF. In this work, Nnds is
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essential in presenting the effect of any strategy on the final PF intensity when it is applied
to OMOPSO, as will be shown subsequently.

4. Modified MOPSO Algorithm

In WDS design problems, OMOPSO occasionally suffers from rapid convergence
towards local minima during any single run, mainly if some repository members are con-
centrated in a particular area of the objective space. OMOPSO consumes a considerable
amount of the number of function evaluations, NFE, to escape from local minima, thus
reducing the opportunity to discover other areas of the objective space. Furthermore, the
algorithm usually fails to maintain a diverse set of solutions, although it continuously
seeks to improve diversity with the progress of iterations. Therefore, it often fails to obtain
the whole set of non-dominated solutions located on the true PF and frequently loses
competent solutions in terms of diversity during the archiving method. Consequently,
there is a need to modify OMOPSO to escape from local optima and maintain or even
increase its convergence and diversity rates to reach near-global optimum solutions. Many
strategies are proposed here to enhance the overall algorithm performance by reducing
the computational effort required for parameters tuning, improving the algorithm ran-
domness during the search, and maintaining the best diverse non-dominated solutions
obtained in any iteration. These strategies are explained in the subsequent sections. It
should be noted that the PSO primary search operator is the same as that of OMOPSO
(Equations (1) and (3)).

4.1. Self-Adaptive PSO Parameters Strategy

The main parameters of PSO are the inertia coefficient, wi, the cognitive coefficient,
C1, the social coefficient, C2, and the maximum flying velocity, vmax.

Firstly, many equations exist in the literature to calculate the value of wi, which keeps
the particles moving during the whole run [23]. wi is implicitly responsible for switching
the search from global search (exploration) at the beginning of the search into local search
(exploitation) at the end of the search [24]. This switching is done by changing wi from its
highest value in the first iteration (i.e., global search) to its lowest value (i.e., local search)
at the last iteration. The highest and lowest values of wi in this study are assumed 1.0
and 0.5, respectively. Several equations of wi from [23] are used in trial runs. However,
none of these equations dramatically affect the results of the WDS design problem, as also
confirmed in [23]. Therefore, Equation (2) is kept the same in all the runs.

Secondly, the strategy of PSO self-adaptive parameters was proposed in [24] to elimi-
nate the need for parameter tuning of C1, C2, and vmax. The values of C1 and C2 usually
vary from 0.2 to 4.0 while vmax may be calculated as follows

vmax = α× (varmax − varmin) (9)

where α is a constant ranging from 0.1 to 1.0, varmax and varmin are vectors containing all
the maximum and minimum limits of all the decision variables, respectively.

The self-adaptive parameters strategy is performed by assuming random values for
C1, C2, and α within their prespecified limits at the start of the search and by incorporating
them within the decision vector for each particle to act like additional decision variables.
Thus, the algorithm searches for the best values of these parameters until reaching their near
optimum values. Their values differ from one particle to another and from one iteration to
another. Although this method has a major drawback resulting from reducing the search
quality because it increases the search space size, this strategy relieves the computational
effort needed at the start of the solution to select appropriate values for these coefficients.

4.2. Selecting Repository Members Strategy

In this strategy, the repository members are selected from population particles to
maintain the diversity of the non-dominated solutions set as much as possible. Following
the original MOPSO algorithm, the leader of all particles in any iteration is chosen randomly
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from the repository using the roulette wheel selection method, thus providing an equal
probability for each repository member to be the leader of the whole swarm.

On the other hand, the selection of the repository particles is performed using the
non-dominated sorting, which was explained briefly in the constraints handling section. A
problem occurs when the actual size of the repository (i.e., the number of saved members
in the repository) exceeds its maximum allowable size. In OMOPSO, the excess particles
are eliminated from the repository by selecting the exact number of particles that need to be
eliminated using the roulette wheel selection method. This elimination method negatively
impacts the quality of the approximate Pareto set since it may lead to losing eminent
non-dominated solutions in terms of diversity. Accordingly, a modification is made to this
elimination method by deleting the particles that would not adversely affect the achieved
hypervolume of the approximate PF as much as possible. First, saved particles with the
same position are removed, leaving only one particle for each repeated position. Then,
excess particles, if any, are deleted one by one by while maximizing NHVm in each deletion.
This strategy substantially helps in maintaining the resulted diversity of the approximate
PF. Figure 1 summarizes the steps of this archiving strategy.

Figure 1. Flowchart describing the repository archiving strategy.

4.3. Regeneration-On-Collision Strategy

Surco et al. [3] used this strategy in a single-objective PSO optimization setting of
WDSs design problems to prevent a PSO population from falling in local minima, hence
jeopardizing the solution progress for the whole run. They explained the phenomenon of
particles collision briefly. They stated that due to the non-linearity and the non-convexity
of the total network cost function with penalties and the discrete nature of WDS design
problems, any ordinary particle might collide with a local optimum in the objective space.
Thus, the cognitive and social terms in Equation (1) equal zero for this particle. They
also stated that if there is no criterion to fix the positions of the collided particles, this
may lead to the assemblage of all particles in a local optimum and the occurrence of
premature convergence.

Accordingly, a solution for this problem was developed in [3] by re-initiating any
particle that collides with a local optimum while preserving the value of its flying velocity.
Re-initiation of a collided particle position is done by generating a new random decision
vector containing all the decision variables (i.e., all the diameters of network pipes) within
their prespecified limits and keeping the same old flying velocity vector during the collision.

In the current work, a similar idea is adopted by re-initiating only one particle of
any two collided particles within the objective space. The difference between this work
and [3] is for two reasons: (i) to increase the probability of re-initiating any particle of
any two particles that may have the same direction and therefore saving any consumed
computational budget in their path to fall in any local minimum and (ii) to increase the
leaping ability of the population in order to increase its efficiency in discovering the search
space. Although this strategy may damage the convergence rate of the collided particles, it
would help in preventing the MOPSO population from falling in local minima.

4.4. Adaptive Population Size Strategy

The population size has a double-edged nature in EAs since it affects the computa-
tional budget and both of the PF convergence and diversity of any run [25,26]. A small-sized
population, although it consumes less computational budget, has less ability to perform a
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global search at the beginning of a run and thus may easily fall in local optima or obtain a
final set of non-dominated solutions with low diversity. On the other hand, a big-sized pop-
ulation consumes more computational time with less progress in the overall convergence,
although it may provide a proper final diverse set of solutions. Therefore, adopting a fixed
population size throughout the whole run may lead to any of the previous problems.

Hence, the necessity of an adaptive-sized population arises. Chen and Zhao [25] tried
this by adopting the ladder-concept where the whole iterations are divided into ladder
steps with equal iterations in each step. In the first step, the largest prespecified population
size is used. The population size remains fixed during any step; however, when moving
from one step to another, the population size is changed according to the following rules:
(i) if the diversity at the end of a step is less than a threshold value, the population size
increases in the next step; (ii) if the diversity at the end of a step is more than a threshold
value, the population size decreases in the next step, or (iii) if the diversity at the end of a
step equals a threshold value, the population size remains the same.

In another study, Hadka and Reed [26] developed a new hybrid algorithm called Borg
algorithm, where the population-to-repository ratio, also termed as the injection rate in
some studies, was used to regenerate the population if a stagnation occurs in the population
progress towards near optimum solutions. The population-to-repository ratio is usually
above or equal unity. The idea of this ratio is to check the progress of population runtime
convergence continuously. If there is no improvement in it after a prespecified number
of iterations, the population is regenerated. Population regeneration is performed by
combining the repository members and new members. These new members are generated
from applying the mutation approach to the repository members.

Here in this work, both approaches of the two studies mentioned above are combined
for better overall performance. The number of iterations, which is calculated based on
the maximum population size, is divided into ten steps. Each step, T, comprises a fixed
population and repository sizes. The population size has two bounds, which are the
minimum population size, nPopmin, and the maximum population size, nPopmax.

The population size is changed at each step end according to the following sequence.
First, the average hypervolume throughout this step is checked. If there is no improvement
in it in terms of a prespecified tolerance, the population is regenerated. It should be
noted that the population regeneration is done according to a prespecified population-to-
repository size ratio, PopRepR. Otherwise, the actual PopRepR is checked, and as in [26], if
it is greater than the prespecified PopRepR by 25%, the population is generated according
to the prespecified PopRepR. Figure 2 describes all the conditions that may lead to the
regeneration of the population after the end of any single ladder step, T.

Figure 2. Flowchart describing the population regeneration conditions.

The population regeneration process is performed by assuming that the prespecified
PopRepR equals 1.0. Half of the new population matches half of the repository mem-
bers’ positions and flying velocities. In contrast, the other half is generated by applying
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the crossover approach to the position and velocity vectors of each consecutive pair of
repository particles. This strategy helps in relieving the computational effort needed for
population size selection at the start of any run and increases the leaping ability of the
population within the objective space during the search process.

To conclude the previous sections, pseudo-codes for both OMOPSO and MMOPSO
are presented in the appendix section (Figures A1 and A2). Regarding the pseudo-code of
MMOPSO, the self-adaptive PSO parameters are randomly initialized side by side to the
decision variables at the initialization step. The step of updating repository members is per-
formed by maintaining the achieved diversity of solutions. The regeneration-on-collision
strategy is applied to the population particles at the end of each update of repository
members. The population is resized using the adaptive population size strategy, which is
performed periodically at the end of each ladder step as described before.

5. Local Search Application

A simple local search, LS, may be performed after obtaining any final PF from
OMOPSO and MMOPSO to provide more local exploring ability to the search space areas
adjacent to the obtained solutions. Here in this work, an LS method similar to that in [27]
is used. Pipe diameters of any PF solution are separately and sequentially decreased two
steps, if possible, to their least cost available diameters to form two new coupling solutions
per each diameter in any solution. This step is repeated for all the PF solutions until all
old solutions are locally explored. The new feasible solutions obtained from the LS, if any,
are added to the old PF solutions, and a non-dominated sorting is performed to obtain an
updated final PF. The LS step is applied for both OMOPSO and MMOPSO, resulting in
four final PFs for any studied problem, which are the PFs of OMOPSO, OMOPSO with LS
(OMOPSO+), MMOPSO, and MMOPSO with LS (MMOPSO+).

6. Benchmark Problems

Several benchmark problems regarding WDS design are found in the literature [9],
and these problems may be classified into two main types, design problem and extended
design (rehabilitation) problems. Two benchmark problems are used in this work; Hanoi
(HAN) network [28] and Balerma irrigation network (BIN) [29]. Both HAN and BIN are
design problems. HAN and BIN are selected to be representative of medium and large
WDS, respectively. The size of each network is classified according to its search space size.
The decision variables for HAN and BIN are designing 34 and 454 new pipes, respectively.

Table 1 contains the number of water reservoirs, NR, the minimum allowed pressure
head above the ground level in meters, Pmin, the maximum permitted pressure head above
the ground level in meters, Pmax, the minimum and maximum capital costs, NCCmin and
NCCmax, in millions units, the number of available diameters in the market, Nav, the
minimum, intermediate, and maximum population sizes, nPopmin, nPopint, and nPopmax,
respectively, used during the simulation runs, the total computational budget, TNFE, and
the search space size for each network. The minimum allowed pressure head, Pmin, is
network-specific. In contrast, the maximum permitted pressure head, Pmax, is assumed
equal to the highest water level of all water reservoirs in each network. For more details
about each network’s specifications, readers may refer to [9].

Table 1. Data of WDS benchmark problems used in this work.

Network NR Pmin Pmax NCCmin NCCmax Nav
Population Sizes TNFE Search SpacenPopmin nPopint nPopmax

HAN 1 30 100 1.80 10.97 6 60 120 240 ≈2.02 × 106 2.87×1026

BIN 4 20 127 0.72 21.64 10 100 400 800 ≈9.34 × 106 1.00×10445

Wang et al. [9] obtained the best-known PF in the objective space for these networks
in terms of network capital cost and network resilience by accumulating the results of five
different algorithms. These PFs are used as reference sets, as illustrated previously in the
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performance metrics section. It is worth saying that Wang et al. [9] used an enormous
total computational budget in their work to get the best-known PFs. For instance, in HAN,
they used five different algorithms in 30 runs per each algorithm using NFE of 600,000.
That is, 5× 30× 600,000 = 90 ×106. While in this work, the total computational budget for
HAN in any algorithm is around 2.02× 106 which is equivalent to only 2.24% of that used
in [9]. The same applies for BIN in which the total used computational budget here is only
9.34× 106 which is 3.11% of that used in [9], which was 300× 106. The success of this work
relies on using very small computational budget to reach to near-optimum solution. This
will guarantee the practicality of this approach.

7. Results and Discussion
7.1. A Comparison between the Proposed Strategies

A comparison is held using HAN network to investigate the effect of each proposed
strategy when added to OMOPSO. Three runs are performed for each strategy using the
population sizes mentioned in Table 1. Three similar runs are performed for OMOPSO
and MMOPSO as well. The used NFE is 600,000 for any single run, and the maximum
and minimum population sizes for the adaptive population strategy and MMOPSO are 60
and 240, respectively. The final values of Cm, NHVm, and Nnds are obtained for the final PF
of any run. The average values of Cm, NHVm, and Nnds for each strategy/algorithm are
presented in Table 2.

Table 2. Average values of Cm, NHVm, and Nnds for each strategy/algorithm (relative improvements with respect to
OMOPSO are in brackets).

Strategy/Algorithm Cm NHVm Nnds

OMOPSO 0.0821 0.8342 101
Self-adaptive PSO Parameters 0.0394 (52.01%) 0.8900 (6.69%) 93 (−7.92%)
Selecting Repository Members 0.0589 (28.26%) 0.8860 (6.21%) 122 (20.79%)

Regeneration-on-collision 0.0507 (38.25%) 0.8737 (4.74%) 113 (11.88%)
Adaptive Population Size 0.0270 (67.11%) 0.9271 (11.14%) 165 (63.37%)

MMOPSO 0.0259 (68.45%) 0.9447 (13.25%) 164 (62.38%)

All the strategies indicate improvements in the values of Cm, NHVm, and Nnds with
respect to OMOPSO. However, the self-adaptive PSO parameters strategy records a lower
average Nnds compared to OMOPSO, although it records improvements by almost 52.01%
and 6.69% for the average values of Cm and NHVm, respectively. This ensures that the
value of Nnds is not always a good measure of the solutions’ convergence or diversity, since
it only illustrates the density of the obtained PFs.

The most significant improvements in the average values of Cm and NHVm among all
occur in MMOPSO which include all the proposed strategies as shown in Table 2. MMOPSO
records the highest relative improvements of about 68.45% and 13.25% of the average values
of Cm and NHVm in comparison with OMOPSO, respectively, regardless of the overlapping
effect of the strategies. It is clear also that the strategy of the Adaptive Population size
has significant effect compared to other self-standing strategies in improving the overall
performance of the original MOPSO algorithm. For a user to select between applying this
strategy or applying all of them in MMOPSO is a trade-off. It should be mentioned also
that, HAN network has a relatively medium-sized search space, and if the aforementioned
improvements are evident in HAN, the superior performance of MMOPSO is expected to
be more obvious in BIN, which has a larger search space.

7.2. Results of the Different Proposed MOPSO Algorithms

For each of the used benchmark networks, the total computational budget, TNFE, is
divided into four different stages; the main MOPSO search stage, which consumes around
three-fourths of TNFE in HAN and two-thirds of TNFE in BIN, the main local search
stage, which includes performing the local search two sequential times using the final PF
obtained from the main MOPSO search stage, the secondary MOPSO search stage, which
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consumes around one-quarter of TNFE in HAN and around one-third of TNFE in BIN,
and finally the secondary local search stage, which includes performing a local search only
one time using the final PF obtained from the secondary MOPSO search stage. To ensure
a fair comparison between all the proposed algorithms, it is worth noting that the used
computational budget for the secondary MOPSO search stage for OMOPSO and MMOPSO
equals the summation of the computational budgets that are consumed in the last three
search stages for OMOPSO+ and MMOPSO+, respectively.

Full details are presented here for the main MOPSO search stage since it represents
most of the consumed TNFE in the two studied networks. In the main MOPSO search
stage, OMOPSO runs 15 times using three different population sizes nPopmin, nPopint,
and nPopmax, listed in Table 1 and by running each population size five separate runs.
Furthermore, 15 more runs are also made for MMOPSO in each network, starting with
nPopmax as initial population size and bounded by nPopmin.

A statistical analysis is made to analyze the final values of Cm and NHVm for each final
approximate PF generated from each single run of OMOPSO and MMOPSO in the main
MOPSO search stage. Box and whiskers plots are utilized to distinguish the differences in
Cm and NHVm for each network, as shown in Figure 3. In a box and whiskers plot, median
and mean are represented by a central line and a cross sign within the box, respectively, the
25th and 75th percentiles are the edges of the box, and whiskers are the extreme points.

Recalling that lower Cm represents improved convergence and greater NHVm repre-
sents both better convergence and diversity, an evident improvement is noticed in Cm and
NHVm for MMOPSO performance in HAN compared to OMOPSO. The 50.57% and 48.74%
relative decreases are found in the median and the mean Cm values and almost 3.36% and
3.46% relative increases in the median and the mean NHVm values, respectively.

Figure 3. Box and whiskers plot for Cm and NHVm values of 15 runs for OMOPSO and MMOPSO in
each network.

A better performance of MMOPSO in terms of NHVm is also outlined in BIN since the
relative increase in NHVm’s median and mean are 5.30% and 4.82%, indicating the quality
of MMOPSO searching process in big search spaces compared to OMOPSO. The relative
decrease in Cm’s median and mean are 27.11% and 23.28%.

Moreover, the runtime performance of Cm and NHVm metrics for both networks may
be detected by tracking their values during any run. The average curves of the runtime
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performance metrics, Cm and NHVm, for each algorithm in BIN network, which is the most
difficult network with respect to the search space size, are shown in Figure 4. MMOPSO
frequently succeeds in converging to better final values of Cm and NHVm, producing a
better quality of the final set of non-dominated solutions. Moreover, MMOPSO converges
faster towards the area of near-optimum solutions compared to OMOPSO.

Regarding the self-adaptive PSO parameters (which are C1, C2, and α), a statistical
analysis is also made to clarify their values for each non-dominated solution set obtained
from each run from the overall 15 runs, as shown in Figure 5. It may be noticed that the
mean values of α in HAN and BIN are 0.2970 and 0.4959 while the mean values of C1 and
C2 are 1.8529 and 1.9365, and 0.7247 and 0.8965, respectively. Subsequently, the variation in
these values indicates the significance of the self-adaptive PSO parameters strategy since it
alleviates the complexity of parameterization needed for investigating the best values of
these parameters at the beginning of any run.

In the strategy of selecting repository members, MMOPSO continuously succeeds
in saving only dissimilar non-dominated solutions during any run. It keeps only non-
dominated solutions that maintain the acquired hypervolume from previous iterations.
Although this strategy helped in providing a unique set of non-dominated solutions in
HAN, it did not function in BIN because of the difficulty of finding a high number of
non-dominated solutions that exceeds the maximum repository size during any single run.
For example, in one of the best HAN runs in terms of its final Cm value using OMOPSO,
the final repository is found full of 60 non-dominated solutions. Still, 5 of them are similar,
leaving only 55 unique solutions. On the other hand, in one of the best runs of MMOPSO
in HAN in terms of its final Cm as well, the repository saved 145 unique solutions without
any duplication. Additionally, due to the large search space of BIN, OMOPSO saves
125 solutions without repeat in the best run in terms of Cm while MMOPSO saves 273
unique solutions.

Figure 4. Average curves of runtime Cm and NHVm for 15 runs using the OMOPSO and MMOPSO algorithms in
BIN network.

Figure 5. Box and whiskers plots for α, C1, and C2 values for all networks.
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Furthermore, it is noticeable that the regeneration-on-collision strategy rarely occurs
while used in BIN. This low probability of collision between particles is due to the enormous
search space of this network, unlike HAN in which the regeneration-on-collision strategy
frequently occurs during each run. Although the collision between particles is a function
of the maximum population size, the minimum population size, and the search space size,
the search space size proved to have significant effect in this rare occurrence of particles
collision in BIN. In HAN, the mean number of total collisions reaches 5689 collisions with
a standard deviation of nearly ± 1757 collisions. On the contrary, almost all the runs in
BIN record zero collisions between particles. Thus, the regeneration-on-collision strategy
significantly expresses its ability to prevent the population from falling in local minima
in only medium search space problems. For large search space problems, the vastness of
the available solutions and the breadth of the search space overwhelmingly decrease the
probability of collision between any of the particles to a great extent.

Eventually, the adaptive population size strategy helps in preventing the modified
algorithm from being stagnant during the search progress of any run. This strategy helps
in changing the whole geometry of the population if there is no sensible improvement
in NHVm values. Thus, this strategy helps in increasing the population leaping ability
within the objective space, providing more opportunity to discover the search space. This
previous behavior is in contrast with OMOPSO in which the population is usually gathered
in close positions and follows a random leader every iteration to desperately increase its
ability to move towards undiscovered regions of the search space. Moreover, this strategy
switches frequently between large to small population sizes and vice versa during any run
to make the most beneficial use of the available computational budget, NFE. The strategy
starts using a large population size at the beginning of the search and then reduce the size
in the middle of the search process to increase the local search ability. During one of the
best runs in BIN in terms of NHVm using MMOPSO, the population size starts with the
maximum size of 800 particles to provide a good exploration opportunity for the algorithm.
Then, after consuming around a quarter of the computational budget, the population size
dramatically decreases to be around only 145 particles from the quarter to the three-fourths
of the computational budget to provide a good exploitation opportunity. After that, it
slightly increases to reach 245 particles in average to provide more storage capacity for the
repository for the rest of the run.

The final non-dominated feasible solutions, which are obtained from 15 runs for
any algorithm, are used to obtain approximate PFs of each network as follows. The
final non-dominated solutions from all runs are accumulated, ranked according to their
network resilience value, and sorted using the non-dominated sorting to form only one
final approximate PF per each network. Tables 3 and 4 summarize the final values of Cm
and NHVm for the final approximate PFs generated from each algorithm in HAN and BIN,
respectively, in the main MOPSO search stage and the subsequent search stages.
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Table 3. Values of Cm, NHVm, and Nnds for the final PFs in HAN (relative improvements in Cm and NHVm with respect to the main MOPSO search stage of OMOPSO are in brackets.)

Stage
OMOPSO OMOPSO+ MMOPSO MMOPSO+

Cm NHVm Nnds Cm NHVm Nnds Cm NHVm Nnds Cm NHVm Nnds

Main MOPSO search 0.0177 0.9486 166 0.0177 0.9486 166 0.0132 (25.42%) 0.9727 (2.54%) 242 0.0132 (25.42%) 0.9727 (2.54%) 242
Main local Search N/A N/A N/A 0.0061 (65.54%) 0.9718 (2.45%) 234 N/A N/A N/A 0.0054 (69.49%) 0.9894 (4.30%) 298

Secondary MOPSO search 0.0066 (62.71%) 0.9860 (3.94%) 193 0.0051 (71.19%) 0.9840 (3.73%) 276 0.0122 (31.07%) 0.9730 (2.57%) 234 0.0053 (70.06%) 0.9896 (4.32%) 319
Secondary local search N/A N/A N/A 0.0039 (77.97%) 0.9903 (4.40%) 312 N/A N/A N/A 0.0041 (76.84%) 0.9917 (4.54%) 363

Table 4. Values of Cm, NHVm, and Nnds for the final PFs in BIN (relative improvements in Cm and NHVm with respect to the main MOPSO search stage of OMOPSO are in brackets.)

Stage
OMOPSO OMOPSO+ MMOPSO MMOPSO+

Cm NHVm Nnds Cm NHVm Nnds Cm NHVm Nnds Cm NHVm Nnds

Main MOPSO search 0.1239 0.8389 151 0.1239 0.8389 151 0.0781 (36.97%) 0.8931 (6.46%) 289 0.0781 (36.97%) 0.8931 (6.46%) 289
Main local Search N/A N/A N/A 0.1218 (1.69%) 0.8465 (0.91%) 808 N/A N/A N/A 0.0782 (36.88%) 0.8985 (7.10%) 2655

Secondary MOPSO search 0.0966 (22.03%) 0.8783 (4.70%) 149 0.0995 (19.69%) 0.8900 (6.09%) 365 0.0483 (61.02%) 0.9321 (11.11%) 399 0.0705 (43.10%) 0.9179 (9.42%) 911
Secondary Local search N/A N/A N/A 0.0956 (22.84%) 0.8931 (6.46%) 741 N/A N/A N/A 0.0695 (43.91%) 0.9193 (9.58%) 5455
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Differences between OMOPSO and MMOPSO are evident in the main MOPSO search
stage in HAN since MMOPSO is more capable of exploring the search space compared to
OMOPSO. The final number of non-dominated solutions, Nnds, for the approximate PF in
HAN is 166 solutions for OMOPSO and 242 solutions for MMOPSO. Moreover, the final
values of Cm and NHVm for MMOPSO approximate PF are improved by 25.42% and 2.54%,
respectively, compared to the approximate PF of OMOPSO.

MMOPSO significantly expressed its superiority in BIN in the main MOPSO search
stage since the modified algorithm reaches extreme solutions in terms of the value of
objective functions with more convergence values in terms of the reference PF compared
to OMOPSO. Nnds for the accumulated approximate PF in BIN is 151 for OMOPSO and
289 for MMOPSO. Improvements in Cm and NHVm are 36.96% and 6.46%, respectively, in
comparison between MMOPSO and OMOPSO.

In the main LS stage, obvious differences start to take place between OMOPSO and
MMOPSO, and their versions with local search, OMOPSO+ and MMOPSO+, respectively.
The LS is performed twice using the final PF obtained from the main MOPSO search
stage. In HAN, Cm and NHVm are improved by 65.54% and 2.45% for OMOPSO+, and by
59.09% and 1.72% for MMOPSO+, respectively, with respect to their values in the previous
search stage. Nnds increases as well from 166 to 234 for OMOPSO+ and from 242 to 298 for
MMOPSO+, respectively.

Whereas in BIN, the most significant impact of this stage is intensifying the number of
non-dominated solutions of the final PF, Nnds, while recording minor progress in terms of
Cm and NHVm. Nnds increases from 151 to 808 and from 289 to 2655 for OMOPSO+ and
MMOPSO+, respectively.

In the last two search stages for OMOPSO+ and MMOPSO+, a secondary MOPSO
search is performed and followed by a secondary LS search. In HAN, all the performance
indicators, which are Cm, NHVm, and Nnds, improved to be 0.0051, 0.9840, and 276 in the
secondary MOPSO search stage and to reach 0.0039, 0.9903, and 312 in the secondary
LS search stage, respectively, for OMOPSO+. The same applies for MMOPSO+ in which
Cm, NHVm, and Nnds improved to reach 0.0053, 0.9896, and 319 in the secondary MOPSO
search stage and 0.0041, 0.9917, and 363 for the secondary LS search stage, respectively.

In BIN, MMOPSO+ expresses its superiority over OMOPSO+ since it reaches a better
final set of non-dominated solutions in terms of all the performance indicators. MMOPSO+

reaches 0.0695, 0.9193, and 5455 for Cm, NHVm, and Nnds after performing the secondary
MOPSO search stage and the secondary LS search stage compared to 0.0956, 0.8931, and
741 for OMOPSO+ after performing the same two search stages.

The accumulated computational budget used in the last three search stages for
OMOPSO+ and MMOPSO+ are used to perform an extended optimization using OMOPSO
and MMOPSO in the two studied networks. OMOPSO reaches 0.0066, 0.9860, and 193
and MMOPSO reaches 0.0122, 0.9730, and 234 for Cm, NHVm, and Nnds, respectively in
HAN. The previous results confirm the superiority of MMOPSO+ over all the other studied
algorithms in HAN.

While in BIN, OMOPSO reaches 0.0966, 0.8783, and 149 and MMOPSO reaches 0.0483,
0.9321, and 399 for Cm, NHVm, and Nnds, respectively, after extending the optimization
that is performed in the main MOPSO search stage. Surprisingly, MMOPSO outperformed
MMOPSO+ and all the other studied algorithms which indicates the priority of MMOPSO
and the insignificance of performing an LS in large WDSs, especially in terms of Cm
and NHVm.

Generally, the LS increases Nnds for the MMOPSO+ algorithm by 23.14% after the
main MOPSO search stage and by 13.79% after the secondary MOPSO search stage in
HAN. The same applies for BIN in which the local search increases Nnds for MMOPSO+ by
818.69% after the main MOPSO search stage and by 498.79% after the secondary MOPSO
search stage.

Parts of the final PFs for all algorithms in both networks after the end of all search
stages are shown in Figure 6. Generally, all OMOPSO and MMOPSO studied versions fail
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to reach the full reference PFs in HAN and BIN despite its improved performance. This
failure is undoubtedly due to the use of only one algorithm to obtain the results instead
of accumulating the results of five different algorithms while using an enormous total
computational budget in [9] to obtain the best-known PFs for HAN and BIN.

The enhanced performance of MMOPSO is evident compared to OMOPSO for
several reasons:

• A reduced effort is needed for parameterization of PSO since the self-adaptive PSO
parameters strategy nearly optimizes their values during the search process.

• Implementing the regeneration-on-collision strategy prevents the population from
being trapped in local minima areas and this strategy is more evident in medium-sized
networks.

• More leaping ability is provided to MMOPSO by depending on the regeneration-on-
collision and the adaptive population size strategies. The random changes of some or
all particles’ positions during the search process substantially help in discovering new
solutions areas within the search space.

• The real dilemma of whether to use a relatively large or relatively small population
size is alleviated by depending on the adaptive population size strategy. This strategy
strengthens the global search at the beginning of the search and the local search at
its end.

• The local search strengthens the local exploration ability of MMOPSO in medium
sized problems since it investigates nearly all the local solutions around the gained
non-dominated solutions of MMOPSO final PF, providing a good opportunity to
increase the available design choices for decision makers upon the real implementation
of networks.

However, MMOPSO still needs further improvements to be capable of capturing
the whole set of non-dominated best-known solutions using a minimized computational
budget. The leader selection criterion and the random initiation of the population at
the search beginning should be improved so that MMOPSO becomes more efficient in
exploring the whole search space.

Figure 6. Comparison between the final approximate PFs.
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8. Conclusions

Several strategies are proposed, and each is tested and implemented to modify and
upgrade the original MOPSO algorithm for faster convergence with small computational
time. These strategies include the self-adaptive PSO parameters strategy, the new archiving
system to save repository members, the regeneration-on-collision strategy, and the adaptive
population size strategy. In addition, a simple local search method is applied twice to
the original and the modified MOPSO algorithms to examine the ability of local search
on both thus creating a total of four different MOPSO algorithms; OMOPSO, MMOPSO,
OMOPSO with local search (OMOPSO+), and MMOPSO with local search (MMOPSO+).
The algorithms are tested on two benchmark problems, HAN and BIN, which represent
medium and large search space problems, respectively. Results of all the studied algorithms
are compared in terms of three performance metrics which are the runtime convergence
metric, Cm, the hypervolume metric, NHVm, and the number of obtained non-dominated
solutions, Nnds, indicating significant improvements in Cm and NHVm for the modified
algorithm and its superiority in convergence compared to the original one.

Results for the different applied strategies showed that the self-adaptive PSO parame-
ters strategy relieved the computational efforts at the beginning of runs since it merged
the PSO parameters within the search process, converging them to their near-optimum
values. The new archiving system of repository members and the regeneration-on-collision
strategy improve the search process in the medium search space problem by preserving
the maintained diversity and preventing the population from falling into local minima.
However, in the large search-space problem (BIN network), they were not functioning.
In contrast, the adaptive population size strategy improves the search process in all the
studied problems by resizing the population according to the overall progress in NHVm,
thus making a better usage of the available computational budget.

The local search, which is performed two times between the two MOPSO search stages
and one time at the end, proved its efficiency in intensifying any final approximate Pareto
set obtained from both of the main and the secondary MOPSO search stages. The local
search usually increases the number of non-dominated solutions when applied after any
MOPSO search stage.

Although the modified MOPSO algorithm combined with the local search (MMOPSO+)
provides a superior final set of solutions in HAN, the modified MOPSO algorithm without
the local search, MMOPSO, proved its priority in BIN, indicating the insignificance of
conducting a local search in large WDSs designs in the way to reach a more convergent
and diverse set of solutions. Despite the improved performance of the developed MOPSO
algorithm, further benchmark networks and real networks with different objectives (e.g.,
operational costs, water quality) and additional decision variables (e.g., location, size
and number of storage tanks, optimum pumping power) should be tested to ensure the
applicability of the novel algorithm.
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Appendix A. Pseudo-Code for OMOPSO Algorithm
Pseudo-code of OMOPSO 

Inputs: Population size (nPop), Repository size (nRep), Number of Function Evaluations 
(NFE), MOPSO parameters (C1, C2, vmax, vmin), Best-known Pareto front, Minimum & 
Maximum allowable pressure heads (Pmin, Pmax), Minimum Network Cost (NCCmin), 
Maximum Network Cost (NCCmax), Minimum Network Resilience (Imin), Maximum 
Network Resilience (Imax). 

Outputs: Approximate Pareto set and front, runtime convergence value, hypervolume 

value. 

Initialization: 

Initialize a random population with size nPop to generate particles’ positions in the search 
space. 

Initialize a zero matrix for particles’ velocities.  

Evaluation: 

Evaluate the objective functions for each particle in the initial set using EPANET 2.0. 

Perform a non-dominated sorting for the particles and save the non-dominated solutions 
in the repository. 

While k < NFE 

Calculate the inertia factor. 

Select the particles’ leader from the repository particles using roulette wheel selection. 

Updating the Population 

Update the particles’ velocities and apply velocity limits (vmax & vmin). 

Update the particles’ positions and Evaluate the objective functions for particles using
EPANET 2.0. 

Update particles’ personal best positions. 

Perform a non-dominated sorting for the particles and add the non-dominated solutions in
the repository. 

Update the repository members. 

If the number of members in the repository > nRep 

Apply a roulette wheel selection to remove the redundant members. 

End 

Measure the runtime convergence and hypervolume metrics. 

End 

Obtain the final repository members to form the approximate Pareto set and Pareto front. 

Figure A1. Pseudo-code of the OMOPSO algorithm in a single run.
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Appendix B. Pseudo-Code for MMOPSO Algorithm
Pseudo-code of MMOPSO 

Inputs: Minimum Population size (nPopmin), Maximum Population size (nPopmax), 
Prespecified Population-to-Repository-sizes ratio (PopRepR), initial Repository size 
(nRep), MOPSO parameters ranges (ranges of C1, C2, vmax, vmin), Number of Function
Evaluations (NFE), Best-known Pareto front, Minimum & Maximum pressure heads
(Pmin, Pmax), Minimum Network Cost (NCCmin), Maximum Network Cost (NCCmax), 
Minimum Network Resilience (Imin), Maximum Network Resilience (Imax). 

Outputs: Pareto approximated set and front, runtime convergence value, hypervolume 

value. 

Initialization: 

Initialize a random population with maximum size nPopmax to generate particles’ positions
(including random values of PSO parameters within given ranges) in the search space. 

Initialize a zero matrix for particles’ velocities.

Evaluation: 

Evaluate the objective functions for each particle in the initial set using EPANET 2.0. 

Perform a non-dominated sorting for the particles and save the non-dominated solutions 
in the repository. 

While k < NFE 

Calculate the inertia factor. 

Select the particles’ leader from the repository particles using roulette wheel selection. 

Updating the Population 

Update the particles’ velocities and apply velocity limits (vmax & vmin). 

Update the particles’ positions and evaluate the objective functions for particles using
EPANET 2.0. 

Update particles’ personal best positions. 

Perform a non-dominated sorting for the particles and add the non-dominated solutions in
the repository. 

Update the repository members. 

If the number of members in the repository > nRep 

Remove the redundant members using the repository members selection strategy.

End 

Apply the regeneration-on-collision strategy to the population if needed. 

Measure the runtime convergence and hypervolume metrics. 

Regenerate the population according to the prespecified PopRepR if there is no 
improvement in hypervolume or there is more than 25% change in the actual PopRepR. 

End 

Obtain the final repository members to form the approximate Pareto set front. 

Figure A2. Pseudo-code of the MMOPSO algorithm in a single run.
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