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Abstract: Despite progresses in representing different processes, hydrological models remain un-
certain. Their uncertainty stems from input and calibration data, model structure, and parameters.
In characterizing these sources, their causes, interactions and different uncertainty analysis (UA)
methods are reviewed. The commonly used UA methods are categorized into six broad classes:
(i) Monte Carlo analysis, (ii) Bayesian statistics, (iii) multi-objective analysis, (iv) least-squares-based
inverse modeling, (v) response-surface-based techniques, and (vi) multi-modeling analysis. For each
source of uncertainty, the status-quo and applications of these methods are critiqued in gauged catch-
ments where UA is common and in ungauged catchments where both UA and its review are lacking.
Compared to parameter uncertainty, UA application for structural uncertainty is limited while input
and calibration data uncertainties are mostly unaccounted. Further research is needed to improve
the computational efficiency of UA, disentangle and propagate the different sources of uncertainty,
improve UA applications to environmental changes and coupled human–natural-hydrologic systems,
and ease UA’s applications for practitioners.

Keywords: hydrological model uncertainty; sources of model uncertainty; review of uncertainty
analysis; methods of uncertainty analysis; uncertainty analysis in ungauged basins

1. Introduction

Hydrological models are developed to understand process, test hypothesis, and
support decision-making. These models solve empirical and governing equations at
different complexities. Their complexities vary depending on how the governing equations
are solved over different spatial configurations such as lumped [1], semi-distributed [2],
or fully distributed area [3], as well as the extent to which variables and processes are
coupled [4,5]. Although model development has progressed in accounting for different
processes and complexities, they remain as simplifications of the actual hydrological
processes.

Process simplification is a consequence of limited knowledge and data, imprecise
measurements, and involvement of multiple scales and interactive processes [6–9]. These
simplifications introduce uncertainty and make it an intrinsic property of any model [10–12].
Analyzing this uncertainty requires separate methodological treatments beyond model
development. However, uncertainty analysis (UA) benefits hydrological modeling in (i) iden-
tifying model limitations and improvement strategies [13,14], (ii) guiding further data collec-
tion [15,16], and (iii) quantifying the uncertainty associated with model predictions.

Various UA techniques have been developed. A few of the methods include gen-
eralized likelihood uncertainty estimation (GLUE) [17], differential evolution adaptive
metropolis (DREAM) [18], parameter estimation code (PEST) [19], Bayesian total error
analysis (BATEA) [20], and multi-objective analysis (Borg) [21]. These techniques have been

Water 2021, 13, 28. https://dx.doi.org/10.3390/w13010028 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-4559-0799
https://orcid.org/0000-0001-8179-7928
https://dx.doi.org/10.3390/w13010028
https://dx.doi.org/10.3390/w13010028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/w13010028
https://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/13/1/28?type=check_update&version=3


Water 2021, 13, 28 2 of 23

applied in different water resources decision-making such as water supply design [22],
flood mapping [23,24], and hydropower plant evaluation [25]. However, there is a lack of a
systematic review and categorization of these techniques to provide a much-needed UA
guideline for selecting a suitable method.

This review intends to summarize, categorize, and review UA methods for each source
of model uncertainty. The conceptual basis of the methods, their applications, advantages,
and challenges are critiqued along with an outlook of future research. This work builds
upon and goes beyond other UA reviews in the literature. Among these reviews, Walker
et al. [26] focused on the conceptual basis of model uncertainty, while Refsgaard et al. [27]
focused on the role, terminology and assessment of uncertainty. Pathak et al. [28] empha-
sized the application of selected UA methods for practicing engineers. Meanwhile, Gupta
et al. [6] and Mishra [29] focused on reviewing specific UA methods, calibration techniques
and sensitivity analysis, and Warmink et al. [30] focused on identification and classifica-
tion of uncertainty sources. None of these reviews adopt a comprehensive categorization
and critiquing of the UA methods for each uncertainty source. Here, we fill that gap by
organizing and critiquing the UA methods for each source of uncertainty. Further, we
newly reviewed response surface methods, uncertainty source interactions and provided
a much-needed review of UA applications for hydrologic prediction in ungauged basins.
These make our work a novel contribution that critiqued UA in both gauged and ungauged
catchments.

2. Sources of Hydrological Model Uncertainties

Hydrological model uncertainties stem from parameters, model structure, calibration
(observation) and input data (Figure 1). In addition to these sources, uncertainties can stem
from model initial and boundary conditions; however, these sources are not considered
in this review. Hydrological models often contain parameterizations that are a result of
conceptual simplifications, known as effective parameters [31]. Parameter uncertainty can
be a result of the inability to estimate or measure these effective parameters that integrate
and conceptualize processes [32]. In addition, parameter uncertainty can be a result of the
natural process variability and observation errors. Although some model parameters, such
as hydraulic conductivity, are measurable at the point scale, their values at the catchment
scale vary significantly. Hence, the practical difficulty in measuring this variability can
also lead to parameter uncertainty. On the other hand, due to errors in the calibration data,
parameter uncertainty can be encountered even if a model is an exact representation of
the hydrologic system. Therefore, inability to accurately estimate effective parameters, the
challenge of measuring natural variability, and the existence of observation errors lead to
parameter uncertainty. This uncertainty often manifests itself in model calibration through
the lack of a single optimal set of parameters [33].

An exact representation of a hydrological system is challenging due to the absence
of a unifying theory, limited knowledge and numerical and process simplifications. Such
limitations constitute model structural uncertainty. Model structural uncertainty can also
refer to alternative conceptualizations, such as the hydro-stratigraphy of the subsurface or
the discretization of surface and process features [34–36]. Model performance is strongly
dependent on model structures [37]. As a result, structural uncertainty is critical as it can
render the model and quantification of other uncertainties useless [37–39]. Comparing
structural and parameter uncertainty, Højberg et al. [40] showed that structural uncertainty
is dominant, particularly when the model is used beyond its calibration sphere. Moreover,
Rojas et al. [41] concluded that structural uncertainty may contribute up to 30% of the
predictive uncertainty. Using the variance decomposition of streamflow estimates, Troin
et al. [42] showed that model structure is the highest predictive uncertainty contributor.
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Figure 1. Different sources of hydrological model uncertainty. The arrows indicate the direction
of interaction of the uncertainty sources. The center rectangle demonstrates different structures,
hypotheses, and equations as examples of structural uncertainty. The top and left rectangles indicate
input data distributions as sources of input forcing and calibration data uncertainties. The bottom
rectangle shows parameter uncertainty using parameter distributions. The right-side sketch shows
the resultant predictive uncertainty in a hydrograph as upper and lower predictive bands.

Input forcing to hydrological models includes different hydro-meteorological, catch-
ment, and subsurface data. Although there have been improvements in data acquisition
and processing, the data used for model forcing are sparse, and subjected to gaps, impre-
cisions, and uncertainties [43]. In most cases, input data involve interpolations, scaling,
and derivation from other measurements that result in an uncertainty range of 10–40% [43].
These inaccuracies in input data constitute input uncertainty. Failure to account for input
uncertainty can lead to biased parameter estimation [20,44] and mislead water balance
calculations [45]. Consequently, input uncertainty can interfere with the quantification of
predictive uncertainty. Comparing input and model parameter uncertainty particularly
in a data sparse region, Bárdossy et al. [46] showed the severity of input uncertainty over
parameter uncertainty and suggested a simultaneous analysis of both uncertainties to have
a meaningful result.

Hydrological modeling often involves calibrating the model parameters and evaluat-
ing model predictions using observed state and/or flux variables, such as streamflow and
groundwater levels. These observations are subjected to similar measurement uncertainties
as input data. Streamflow observations, for instance, are derived from rating curves that
translate river stage measurements to discharge estimates. This translation not only propa-
gates the random and systematic stage measurement errors but also passes the structural
(rating curve equation) and parameter uncertainties involved in the calibration of the rating
curve. In addition, discharge estimates suffer from interpolation and extrapolation errors
of the rating curve, hysteresis, change in site conditions (e.g., bed movement), and seasonal
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variations in measurement and flow conditions [47–50]. Extrapolation contributes the
highest uncertainty [51]. Overall, discharge observation uncertainty ranges from 5% [52,53]
to 25% when extrapolation is involved [54].

Predictive uncertainty is the result of the above uncertainties exhibited on the model
output. This uncertainty can be biased or variance-dominated depending on the level of
model complexity and the information content of the data, bias being dominant in simple
models and variance being dominant in complex models. Predictive uncertainty is usually
heteroscedastic, the magnitude of uncertainty varying with the magnitude of the model
output (non-Gaussian residuals). In streamflow modeling, this is partly due to the limited
number of high flow observations (low frequency events) to constrain model calibration.
Different data transformation schemes are used to address heteroscedasticity including the
Box–Cox transformation and simple log transformation [55,56].

3. Hydrological Model Uncertainty Analysis

We have found six broad classes of UA methods: (i) Monte Carlo sampling, (ii) re-
sponse surface-based schemes including polynomial chaos expansion and machine learn-
ing, (iii) multi-modeling approaches, (iv) Bayesian statistics, (v) multi-objective analysis,
and (vi) least square-based inverse modeling (Figure 2). Furthermore, approximation
and analytical solutions based on Taylor series are also used in UA. However, since such
approaches are not widely applied, they are not included in this review.

Figure 2. Summary of sources of hydrological model uncertainty and broad techniques used to deal with them. The
numbers next to the methods indicates the papers reviewed in Section 3.

The number of papers reviewed in this section (Section 3) across the different sources
and methods are shown in Figure 2. This numbers indicate pioneering articles, articles
that discuss limitations and advantages of the methods, and articles that introduce method
improvements. Hence, the numbers do not indicate articles that are application oriented.
As rainfall multipliers are embedded as part of model parameters they are not included
as a unique method to be reviewed. In general, although it could be a limited sample,
the numbers may reflect an approximation of how different methods are being developed
for each source and how these methods are being critiqued and advanced as a focus of
different studies.

The bellow six broad classes are a summary of different UA methods (Table 1). The
common thread across these methods is their involvement of many actual/surrogate model
executions. This can translate into high computational time depending on (1) the model’s
execution time, (2) whether the surrogate training requires multiple runs, and (3) whether
the model execution is parallel.
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Table 1. Summary of uncertainty analysis methods, sources of uncertainty, and color coded broader methodological
categories.

No. UA Methods
Reviewed

Applicable in
Uncertainty

Source
Method Classes Web Page to Download

the Software Tool
Reference

Application

1 Monte Carlo
Parameter/input/

structural
uncertainty

Monte Carlo
http:

//www.uncertain-future.
org.uk/?page_id=131

[57]

2 GLUE
Parameter/
structural

uncertainty

Monte Carlo and
behavioral
threshold

http:
//www.uncertain-future.

org.uk/?page_id=131
[58]

3 FUSE Structural Monte Carlo https://github.com/
cvitolo/fuse [59]

4 Multi-objective Parameter
uncertainty

Multi-objective
optimization

http://borgmoea.org/
https://faculty.sites.uci.
edu/jasper/software/;

http://moeaframework.
org/index.html

[60–62]

5 Machine Learning Predictive
uncertainty Machine Learning https:

//scikit-learn.org/stable/ [63]

6 PEST/UCODE
Parameter/
predictive

uncertainty

Least square
analysis

http://www.
pesthomepage.org/

https://igwmc.mines.
edu/ucode-2/

[64–66]

7 Polynomial chaos
expansion

Predictive/
parameter

uncertainty

Polynomial chaos
expansion

https://www.uqlab.com/
featureshttp:

//muq.mit.edu/
https://pypi.org/project/

UQToolbox/
https://github.com/

jonathf/chaospy

[67–69]

8 Ensemble
averaging

Structural
uncertainty Multi-models [70]

9 BMA Structural
uncertainty

Multi-models plus
Bayesian statistics

https://faculty.sites.uci.
edu/jasper/software [71]

10 HME Structural
uncertainty

Multi-models plus
Bayesian statistics

https://faculty.sites.uci.
edu/jasper/software [72]

11 DREAM Parameter/input
uncertainty Bayesian statistics https://faculty.sites.uci.

edu/jasper/software/ [18]

12 BATEA and
IBUNE

Input/structure/
parameter

uncertainty
Bayesian statistics https://faculty.sites.uci.

edu/jasper/software/ [73,74]

3.1. Parameter Uncertainty

Compared to the other sources of uncertainty, several techniques are employed to
address parameter uncertainty (Figure 2). One of the widely used parameter UA methods
is generalized likelihood uncertainty estimation (GLUE) [17], which accounts for the equi-
finality hypothesis [33]. The equifinality hypothesis highlights the existence of multiple
parameter sets that describe hydrological processes indiscriminately or producing the same
final result. The approach augments Monte Carlo simulations with a behavioral threshold
measure that distinguishes hydrologically tenable and untenable parameters (and struc-
tures). Although GLUE’s straightforward conceptualization and implementation allow
it to achieve a widespread use, GLUE has been criticized for its subjectivity in choosing
a behavioral threshold and its lack of a formal statistical foundation [75–77]. Extending
GLUE, Beven [33] suggested the limits of acceptability approach where pre-defined uncer-
tainties that objectively reflect both input and output observation uncertainties are used as
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a measure of acceptability than the subjective behavioral thresholds. Although its use is
not as widespread as GLUE, this approach has been applied, e.g., [78,79]. The limitation of
its application is partly due to the lack of measurements that reflect the level of input and
output uncertainties and their interactions [80–82].

Following GLUE, numerous contributions have been made to formally quantify pa-
rameter uncertainty. These approaches primarily rely on Bayesian statistics [83–86]. The
main advantage of the formal Bayesian statistics is that parameter uncertainty is not only
quantified, but can also be reduced through the inclusion of prior knowledge. Although
GLUE’s behavioral thresholds can achieve this goal, their formulation is subjective. The
latest addition to the formal approach is DREAM [18], which has been applied widely.
DREAM’s widespread application is derived from its unique capability of merging the
differential evolution algorithm [87] with the adaptive Markov Chain Monte Carlo (MCMC)
approach [88,89]. The differential evolution allows DREAM to efficiently explore non-linear
and discontinuous parameter spaces, while the adaptive MCMC component keeps it within
the parameter posterior space. Contrary to other MCMC schemes [90], DREAM uses multi-
ple chains to exchange sampling space information rather than confirming the attainment
of the stationary state. The primary challenge of DREAM and other Bayesian methods
is identifying a likelihood function that results in homoscedastic residuals, justifying the
use of a strong assumption for a formal likelihood function. This challenge is particularly
difficult in disproportionately low flow dominated observations of streamflow coupled
with a few high flows [33,55,91–93].

Least squares-based parameter inversions incorporated in PEST [19] and US Geo-
logical Survey computer program (UCODE) [66] are also used to quantify parameter
uncertainty. These approaches rely on linear approximation of models and Gaussian
residuals. Besides estimating parameter uncertainty, these methods are also useful in
determining the number of model parameters that can be estimated using the available
data [94,95]. This is valuable in highly parameterized models to prioritize data collection
for model improvement. Furthermore, PEST expedites Monte Carlo based UA through
its null space Monte Carlo analysis and the use of singular value decomposition (SVD).
This further allows PEST to be used in its SVD-assist mode with Tikhonov regularization.
The SVD-assist approach coupled with parallelized Jacobian matrix calculation makes
parameter estimation close to observations (because of Tikhonov regularization) and faster
(due to parallelization plus SVD reducing the parameter space) when calibrating highly
parameterized and ill-posed problems. The main limitations of PEST and other least-
squared based UA are their assumption of model linearity and Gaussian residuals. These
assumptions have limited their use in surface water models riddled with threshold-based
processes, discontinuities and integer variables.

Multi-objective optimization (MOO) is another UA approach for parameter uncer-
tainty. MOO-based UA has received substantial interest due to the absence of a single
global optimal solution due to equifinality, and because of the need for improved con-
straint of flux and store outputs in hydrological models [60,96,97]. MOO allows retrieving
information from the increasingly available data against which model predictions can be
compared [61,98]. It handles parameter uncertainty by conditioning model calibration
through multiple complementary and competing objective functions. The functions can be
defined using (1) multiple responses such as, metrics that measure the matching of different
segments of a hydrograph, (2) same-variable output but at multiple sites, and (3) multi-
variable outputs such as streamflow, soil moisture, and evapotranspiration [61,99,100]. The
result of MOO provides trade-off solutions referred to as non-dominated (Pareto) solutions
in which each member solution matches some aspect of the objective better than every
other member.

Parameter uncertainty is considered well identified when the optimized parameter
uncertainty substantially decreased from the prior uncertainty, leading to a reduced model
prediction uncertainty. In MOO, the uncertainty range can further be narrowed by rejecting
solutions that failed the model validation test. MOO also provides unique parameter un-
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certainty information following the shape of the Pareto front. For instance, extended Pareto
front in each objective indicates high uncertainty in reproducing the parameterization of
the processes [61,100,101]. Furthermore, MOO provides functionality beyond parameter
UA as the shape of the tradeoff allows us to understand model structural limitations [102].
However, this advantage might not be straightforward because meaningful multi-objective
tradeoffs in hydrological modeling are less frequent [102].

One of the challenges in MOO is the lack of consistent criteria for choosing the number
and type of the objective functions and inability to formally emphasize one criterion over
the other. Like GLUE, MOO is also statistically informal as it does not use Bayesian prob-
ability theory. Theoretically, the Pareto solutions and GLUE’s behavioral solutions may
overlap; however, they are not necessarily equivalent. The difference between the param-
eter uncertainty sets defined by the Pareto front and the GLUE approach is that GLUE’s
equifinality set consists of both the dominated and non-dominated parameter whereas the
Pareto set contains only the non-dominated sets [103]. The difference between Bayesian
UA and multi-objective analysis is that Bayesian schemes usually have a single objective
(likelihood functions) or an aggregated multi-objective. In cases where multi-objective
configuration is employed, the Bayesian scheme results in a compromise solution [104]
while MOO results in a full Pareto solution [103]. Detailed review of MOO can be found
in [100].

Response surface methods are used to approximate predictive uncertainty that is
primarily caused by parameter uncertainty. Response surface methods employ a proxy
function emulating the original model’s parameter and output relationships, making the
method blind to model internal workings or the nature of outputs that are not emulated.
The common proxy functions used to approximate models are truncated Polynomial
Chaos Expansion (PCE) [2,105,106] and machine learning schemes [107–110]. Since these
methodologies are computationally inexpensive, the approximation is suited for UA in
complex models that demand long run time or applied for real time forecasts. Response
surface methods train the approximating functions based on a subset of the original model
output and parameter relationships. Consequently, one of the major challenges of these
schemes is ensuring the accuracy of the approximating function. If the subset is not
representative, the function can lead to biased approximation. Identifying the right size
and representative subset are an ongoing research. Furthermore, the accuracy of the
response surface methods depends on the smoothness of the original model parameter and
output surface relationship. Thus, the approximation is better for problems that are not
highly non-linear and response surfaces that are not riddled with thresholds and multiple
local optimums. Commonly, a validation test on a split sample is considered to confirm the
approximating function’s accuracy [2,110].

The typical approach of uncertainty quantification using response surfaces is to con-
duct Monte Carlo simulations using the approximated function. The resultant Monte Carlo
based distributions represent the predictive uncertainty. Compared to the machine learning
alternative, PCE offers an analytical approximation of the uncertainty through the estimate
of variance without the need for simulations [111]. Further review of PCE can be found
in [112,113], while review of machine learning approaches are provided by [114].

Dotto et al. [115] compared Monte Carlo (GLUE), multi-objective (A Multi-Algorithm,
Genetically Adaptive Multiobjective—AMALGAM [62]) and Bayesian (Model-Independent
Markov Chain Monte Carlo Analysis—MICA [116]) techniques to estimate parameter un-
certainty. They found that while all the techniques performed similarly; GLUE was slow
but easiest to implement. Although the Bayesian technique was less suitable because
it required homoscedastic residuals, it was the only one avoiding subjectivity. Finally,
they indicated that method choice depends on the modelers’ experience, priority, and
problem complexity. Further, Keating et al. [117] found equivalent performance between
the Bayesian DREAM and the least square null-space Monte Carlo. Comparing GLUE and
formal Bayesian techniques, Thi et al. [118] indicated formal Bayesian method’s efficiency
in resulting to a better identified parameter. However, Jin et al. [119] indicated that a
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stricter behavioral threshold choice can achieve similar identifiability with an increased
computation [120]. A detailed comparison of formal Bayesian techniques against GLUE
and its behavioral threshold choices can be found in [120].

3.2. Input Uncertainty

Hydrological models require different hydroclimatic input data. For this review, we
focused on precipitation and its uncertainty. Traditionally, input uncertainty is addressed
using a factor that multiplies input precipitation to correct measurement uncertainty. This
approach is relatively fast and easy as the multiplication factor is expert judgement-based
or estimated with model parameters. However, the method is ad hoc and does not have
formal procedures to determine the multiplying factor. Beyond this approach, precipita-
tion uncertainties can be studied using Monte Carlo (GLUE) and Bayesian statistics. The
Monte Carlo approach estimates the rainfall multiplying along with the model parameters.
The Bayesian techniques can be classified into two classes, model dependent and model
independent, depending on whether the input uncertainty is estimated dependently or
independently of the model parameters. Balin et al. [121] demonstrated how input uncer-
tainty can be estimated as a standalone quantity, separate from model parameters. They
decoupled input uncertainty from the model by assuming a distribution that represents the
“true” precipitation. This approach is advantageous, because it relieves input uncertainty
from the remaining uncertainty sources. However, the approach is limited because of the
difficulty in determining the “true” input distribution.

On the other hand, Bayesian total error analysis (BATEA [74]) and integrated Bayesian
uncertainty estimator (IBUNE [73]) estimate input uncertainty along with model param-
eters. Hence, these approaches recover input uncertainty with parameter and structural
uncertainties. Thereby, the estimated input uncertainty is dependent on the specific model
structure and can vary with changes in model structures. Consequently, the input uncer-
tainty might not only be a result of input measurements, but also structural and parameter
uncertainties. These approaches can also be computationally expensive in distributed
models, which require spatially and temporally varying inputs.

3.3. Structural Uncertainty

Multi-model averaging and ensemble techniques, which pool together alternative
model structures, have been applied to quantify and reduce structural uncertainty. Hage-
dorn et al. [122] noted that the success of multi-model averaging is a result of error com-
pensation, consistency, and reliability. Consistency refers to the lack of a single model that
performs best regardless of circumstances, and reliability refers to averages performing
better than the worst component an ensemble. Moreover, Moges et al. [123] showed why
a multi-model average performs better than a single model using statistical proof and
empirical large-sample data.

Predictions from ensembles are combined using either equal or performance-based
weights. Velázquez et al. [70] presented a study that benefits from equal weighting while
performance based weighted multi-model predictions are discussed in [37,71,124]. A com-
parison of different alternative model averaging techniques was presented in [125]. Equal
weighting is advantageous in the absence of model weighting/discrimination criteria
and when component models have similar performances. However, when the models’
performances are significantly different and each model is specialized in simulating cer-
tain components of the hydrological processes, using variable weights provide better
predictions.

One of the widely used weighted multi-model averaging is Bayesian model averaging
(BMA) [126–128]. BMA and similar Bayesian based averaging techniques are advantageous
since their weights are interpretable and derived from model posterior performance that
combines the model’s ability to fit observations and experts’ prior knowledge. Despite its
widespread application, BMA has its limitations in addressing structural uncertainty. For
instance, even though model performance varies across hydrograph segments [129], runoff
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seasons [14], or catchment circumstances [72], BMA assigns constant weights to component
models. Furthermore, improvement in BMA’s performance was noted when component
models are weighted differently for different quantiles of a hydrograph [129]. In contrast,
hierarchical mixture of experts (HME) [72], an extension of BMA, has the capacity to assign
different weights to different models depending on the dominant processes governing
different segments of a hydrograph. This flexibility allows HME to be useful in dealing
with structural uncertainty when model performances vary.

Hydrology involves governing physical principles and established process signatures
that need to be respected. As a result, any statistically based multi-model averaging
techniques need to be critically streamlined so that they respect hydrological principles. In
this regard, Gupta et al. [130] stressed the application of diagnostic modeling. Similarly,
Sivapalan et al. [131] argued the importance of parsimony and incorporation of dominant
processes in model structural development. To this end, Moges et al. [132] streamlined
HME by coupling it with hydrological signatures that diagnose model inadequacy. Such
approaches can be explored to characterize catchment hydrology while avoiding disparities
between statistical success and process description.

Structural uncertainty has also been addressed in the framework for understanding
structural errors (FUSE [59]), which explores structural uncertainty through shuffling and
combination of parts of alternative hydrological models. The parts constitute alternative
formulations of processes. FUSE has similarity with Monte Carlo (or Bootstrap) methods.
However, the samples in FUSE are components of a model representing the different
alternative process conceptualizations. Further, given the ease of parallelization, FUSE is
practical to address structural uncertainty.

The chief criticism of all multi-modeling UA is the limitation of identifying and
incorporating the entire span of feasible model structures. Although the above methods
can handle any number of structures, the practical inability to identify and explore the
entire structural space constrains the scope of the investigation. As a result, full examination
of structural uncertainty is limited.

3.4. Calibration Data Uncertainty

Although different calibration data are used to constrain hydrological models, stream-
flow observation uncertainty is common in the literature. Hence, this subsection focuses on
streamflow observation uncertainty. Some of the methodologies used to address observa-
tion uncertainty include Monte Carlo simulations to estimate the rating curve uncertainty,
use of the upper and lower bounds of the rating curve estimates, and Bayesian techniques.
The first method propagates observation uncertainty to parameter and/or predictive un-
certainty estimates through a repeated calibration of the hydrologic model [45], making
the method computationally intensive. In the second approach, only the upper and lower
rating curve uncertainty bounds are considered to come up with the corresponding up-
per and lower bounds of predictive uncertainty [133]. This approach is computationally
effective, but it does not maximize exploring the full information contained in the rating
curve uncertainty. To improve the rating curve uncertainty utilization, McMillan et al. [134]
suggested derivation of an informal likelihood function that accounts for the entire rating
curve uncertainty. This technique allowed them to apply Bayesian statistics and use the
rating curve information to analyze observation uncertainty. In contrast, Sirakosa and
Renard [135] used a formal Bayesian technique where the rating curve parameters and the
hydrological model parameters are inferred simultaneously by directly using the stage
measurement instead of the streamflow estimate.

Observation uncertainty influences predictive uncertainty. McMillan et al. [134]
showed improvement in model predictive uncertainty by considering discharge obser-
vation uncertainty compared to a model that does not consider discharge uncertainty
while Beven and Smith [82] demonstrated the disinformation emanating from observation
uncertainties. Aronica et al. [133] showed how different rating curve realizations lead to
different predictive uncertainties, whereas Engeland et al. [45] concluded that considering
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or not considering observation uncertainty leads to different parameter uncertainties and
different interactions with structure, parameter, and predictive uncertainties. These studies
indicate the significance of observation uncertainty and the need to account it.

3.5. Predictive Uncertainty

The resultant uncertainty estimate of a model output is predictive uncertainty. Pre-
dictive uncertainty can be quantified by propagating parameter, structure and input un-
certainties to the model output. This propagation is mostly performed by Monte Carlo
simulation of parameter, structure, and input uncertainties. Predictive uncertainty can
be reduced using different machine learning schemes [63,136]. Although their physical
process realism needs validation, these schemes reduce predictive uncertainty as they can
learn and identify patterns in the model residuals. Besides, to reduce predictive uncertainty,
it is important to disentangle and understand the propagation of the different sources of
uncertainties.

4. Salient Features and Additional Perspectives in Hydrological Model Uncertainty
4.1. Uncertainty Source Interaction and Reduction

Understanding the causes and interactions of uncertainty sources is critical in dis-
entangling and reducing predictive uncertainty. The different causes and interactions of
the four sources are summarized in Figure 3. Some of the causes can be common across
the different sources (Figure 3). Structural uncertainty is at the core and interacts with all
sources of uncertainty. The interactions between input and structural uncertainty are not
direct. They interact through the parameters of the model. On the other hand, although
input and calibration data uncertainties are independent, they both interact with parameter
uncertainty. The interaction between input and parameter uncertainties may lead to biased
parameter estimates [74], which can dominate the overall model uncertainty [137,138].
Similarly, input errors can be compensated by parameters [139–141]. However, this com-
pensation can be misleading since the causes of input uncertainty are independent of
any model and its parameters. This is particularly a concern when the model is used for
conditions that are different from the ones used for model development. Thus, it is better
to independently address the causes of input errors instead of relying on compensation.

Although observation and model structural uncertainty do not necessarily interact
directly, Montanari and Baldassarre [142] showed how different model structures can
limit propagation of observation uncertainty. For a given model structure, observations
are used for (1) model performance evaluation, (2) deriving hydrological signatures, and
(3) deriving likelihood measures in model parameter estimation. With these uses, obser-
vation uncertainty interacts with parameter uncertainty when parameters are estimated.
Consequently, failure to account for observation uncertainty can lead to biased parameter
and predictive uncertainty [135,143,144]. Due to the interaction between parameter and ob-
servation uncertainty, acquiring more data can reduce parameter/predictive uncertainties.
However, if the information content of the acquired data cannot support the parameteri-
zation of the model, these uncertainties may not be reduced by simple data acquisitions.
Different techniques are employed to better extract the information content of calibration
data, including (i) extracting different hydrological signatures from streamflow [145–147],
(ii) increasing the spatial coverage of observations beyond the catchment outlet [148–150],
(iii) having different variables beyond streamflow [151,152], (iv) incorporating soft data
from expert-based diagnostics [153,154] and (v) including remote sensing data [155–157].
These examples indicate that not only data acquisition, but also the diversity and the
information content of the data are essential.
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Figure 3. The different sources of hydrological model uncertainty and examples of their causes.

The bias–variance trade-off curve describes the interaction between parameter and
structural uncertainty [158] (Figure 4). This theoretical curve shows that the optimal
model lies between a biased assumption-ridden simple model and a highly variable
complex model, that is, model biases lead to inaccurate process representations, while
building a complex model without the detailed supporting data results in highly variable
outputs and ambiguities. Thus, model building involves trade-offs between the two
sources. Consequently, Clark et al. [159] states how the boundary between structure and
parameter is not always clearly defined. As different parameter values can translate into
structural uncertainty, Clark et al. [159] indicated that it is not straightforward to distinguish
parameter from structural uncertainty. Structural uncertainty can also be manifested by
parameters residing at the edge of the permissible parameter range [160]. Indeed, calibrated
parameter values lying outside their physical ranges serve as an indicator of structural
uncertainty [161]. Similarly, different studies showed that the tradeoff between these two
sources [162,163].

On the bias–variance trade-off curve, there are two potential ways of reducing un-
certainty. From the right, parameter uncertainty can be lessened through reducing model
complexity by multi-objective and multi-variable analysis, dimensional reduction of com-
plex and coupled models, or approximating the complex model with surrogate proxies.
Via any of these approaches, reduction of parameter uncertainty demands computational
efficiency, different flux and storage data, and using effective UA methods (Section 3 and
the literature therein). From the left, structural uncertainty can be lessened by removing
simplifying and relaxing assumptions using theory development, coupling sub-models and
process understanding [14,164,165]. However, due to the uniqueness of place and process,
reduction of structural uncertainty can be watershed dependent [166]. Consequently, the
use of hydrological signatures can be critical in identifying and diagnosing the dominant
processes and incorporating the proper level of model complexity.

4.2. Model Inadequacy and Structural Uncertainty

Model adequacy is interlinked with structural uncertainty. Model inadequacy results
from missing one or more processes, inadequate numerical schemes and discretization,
adopting a deterministic approach for a stochastic phenomenon, and misrepresenting
process/physical phenomenon [167]. Conversely, structural uncertainty results from the
inability to discriminate alternative models due to limitations in process understanding
(Section 2). As such, ideally, the ensemble techniques in Section 3.3 shall contain models that
are difficult to discriminate, thereby linking model inadequacy evaluations and structural
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UA. However, in most ensemble based structural UA, it is not common to address structural
uncertainty following model inadequacy evaluations.

Figure 4. (a) The span of model complexity with respect to spatial resolutions and process complexity, (b) The bias–variance
tradeoff curve relating model complexity and uncertainty. The green curve indicates the decrease in bias (model inaccuracy)
as model complexity increases while the purple curve indicates a decrease in variance (parameter uncertainty) because of a
decrease in model complexity. The red curve indicates the net effect of bias and variance.

Both hydrological and statistical approaches are used to evaluate model inadequacy.
By using a statistical technique, Pande [168] proved that the crossing of any two quan-
tiles of a model structure indicates the structure’s inadequacy. Pande [169] applied this
quantile-based approach to rank several structures. This ranking can be used to identify
alternative models for structural UA. Although other statistical model ranking methods
such as Bayesian model selection criteria exists, Pande’s [168] approach is preferable as it is
proven to diagnose structural inadequacy. However, as the approach involves model opti-
mization for different quantiles, it demands high computation. Further, as this approach
is statistical, it cannot always guarantee hydrological adequacy. Alternatively, in the hy-
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drological approach, process-based signatures are employed to evaluate model structural
adequacy. For instance, the use of recession curves may highlight deficiency in subsurface
flow characterization while the behavior of flow duration curves can diagnose process
nonlinearities [56,170–172]. Further, McMillan [173] provided a review of hydrological
signatures and their corresponding processes. These links can be used as hydrological
instruments to identify inadequacy and enhance structural UA.

4.3. UA in Ungauged Basins

Most watersheds across different parts of the world are ungauged. Although such
watersheds are common, model development and UA are limited as they demand hydrolog-
ical observations [174,175]. In these watersheds, there are two approaches of UA—model
dependent and model independent (Figure 5). In both approaches, we have identified
five distinct stages that may incur uncertainty. The model dependent approach [176,177]
involves (i) choosing a model, (ii) estimating and quantifying parameter uncertainty for
several gauged watersheds which can be achieved using Bayesian, Monte Carlo or multi-
objective techniques as discussed in Section 3, (iii) determining how many parameters
(the full or a subset of the parameter distribution) to transfer to the ungauged catchment,
(iv) developing a regional relationship between the model parameters and watershed
attributes, and (v) estimating the parameter distribution of the ungauged catchment by
using the regional relationship (Figure 5a). At its core, this approach directly transfers
model parameters from gauged to ungauged watersheds. Hence, it can propagate both
structural and parameter uncertainties from gauged to ungauged catchments. Additionally,
UA becomes challenging when the model parameters and regional relationships at stage
four are poorly identified. Further, at stage three, determining the transferable parameters
does not only lack a guideline, but also incurs a high computational cost when the full
parameter distribution is transferred. As an alternative to selecting the parameter subset,
Hundecha and Bárdossy [178] directly estimated the regression coefficients instead of the
model parameters. Their approach requires predefining a linear regression between a
set of sensitive model parameters and catchment characteristics. Although the approach
alleviates the subset problem, it assumes a linear relationship and increases the number of
parameters (regression coefficients) to be estimated.

The model independent approach involves the following stages (Figure 5b): (i) se-
lect watershed attributes and hydrological signatures, (ii) regionalize the attributes and
hydrological signatures (e.g., baseflow index, curve number, mean flows), (iii) estimate the
value of the hydrological signatures using the ungauged watershed attributes, (iv) choose
a model, and (v) apply the model and quantify parameter uncertainty by targeting the
estimated signatures at the ungauged watershed. Stage five may employ Monte Carlo,
Bayesian and multi-objective methods. As any model uses the information at stage four,
this approach allows a direct quantification of structural uncertainty and is less prone to
propagating structural and parameter uncertainty from gauged to ungauged watersheds.
However, the approach is limited when the relationship between hydrological signatures
and catchment attributes is poor. Additionally, since most of the hydrological signatures
employed at stage four are streamflow oriented, the approach might be poor in predicting
other flux or storage variables.

At stage five, the Monte Carlo method discriminates the behavioral and non-behavioral
parameters by capitalizing on the confidence interval determined at stage three [179]. The
multi-objective approach uses the estimated signatures (stage three) as its objectives [180].
The Bayesian approach employs any distribution (e.g., based on expert knowledge) as its
parameter prior, while it relates the model simulated and estimated hydrological signatures
for its likelihood [175,181,182]. Moreover, the fundamental pros and cons of the Monte
Carlo, Bayesian and multi-objective techniques in Section 3 apply here as well.
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Figure 5. Stages of UA in ungauged basins: (a) model dependent and (b) model independent approaches.

UA in both approaches benefits from having (i) many gauged basins in the region-
alization, (ii) a discernible regional relationship and (iii) non-redundant complementary
hydrological signatures. Similarly, both approaches implicitly assume the dominant pro-
cess in the ungauged catchment is comparable to or contained within the set of dominant
processes in the gauged catchments and is a function of watershed attributes. Hence, model
choice is critical. Comparing a physically based versus a conceptual model, a physically
based model is theoretically advantageous as it relates most of its parameters to catchment
attributes. However, since its parameters are often poorly identified, using such models for
regionalization may lead to high uncertainty. In contrast, although there is a lack of direct
physical relationships between a conceptual model parameter and catchment attributes,
due to model parsimony, conceptual models are better suited for ungauged catchment UA.
Parsimony often leads to better identified parameter which is relatively easy to regionalize
and transfer to ungauged basins. Better identification may also reduce the challenges of
subsetting parameters for regionalization.

The studies reviewed in this subsection did not account for input and observation
uncertainties. However, we provided a perspective in addressing them in ungauged basins.
A prior Accounting of observation uncertainty in gauged catchments may reduce propa-
gating the observational uncertainty from gauged to ungauged watersheds. This applies
only for the model dependent ungauged UA. However, since there are no observations
in ungauged basins, this uncertainty is not a concern by its own. Similarly, accounting
for input uncertainty in the gauged watersheds before regionalizing them can reduce
propagating input uncertainty to the ungauged watershed. However, it is important for
future studies to assess and disentangle all sources of uncertainty in ungauged basins.

4.4. Other Approaches in UA

This review has heretofore focused on the widely used probabilistic and optimization-
based UA (Section 3). Theoretically, accurate estimates through these methods require large
amounts of data. Additionally, these methods are not straightforward in accommodating
ambiguous information (e.g., natural language and qualitative information). These qualities
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may limit their success in data scarce conditions and regions. Considering these limitations,
alternative philosophies are in use. Although these alternatives are not the focus of this
review, we briefly highlight fuzzy and information theoretic based approaches. Fuzzy
based approaches rely on subjectively defined membership functions instead of formal
probabilities [183]. Hence, this approach is well suited in accounting ambiguous natural
language, qualitative and other additional information into UA. Liu et al. [184] showcased
the application of the method in addressing parameter uncertainty. The challenges of this
approach include subjectivity in defining the membership function and how to account for
probabilistic quantities. A general review of fuzzy theory to hydrological problems can be
found in [185].

On the other hand, information theoretic philosophies question the fundamental
notion of quantifying uncertainty. Their central argument rests on the application and
limitation of probabilistic methods in the absence of a ‘true’ model and limited data. That
is, lack of a “true” model and limited data may not guarantee making the true probabilistic
inference, hence uncertainty is inherently unknown [186]. Instead, this approach proposes
a different question that is “to what extent is the available observed data useful in model
improvement?” than quantifying the unknown uncertainty [187]. The application of this
approach is demonstrated in addressing both structural and parameter uncertainties [188].
Although Nearing and Gupta [188] argued that information theory is independent of
probabilistic theory, its technical application involves probabilistic terms [187].

5. Summary and Outlook

Across the four sources of hydrological model uncertainty, six broad classes of UA
methods are identified. Each method has its own skills and limitations, and none is
universally superior. In terms of coverage, parameter uncertainty has benefited from a
variety of techniques, while recently input uncertainty has gained attention. In contrast,
although there are a few works that deal with structural uncertainty, it is not addressed
extensively provided that it is at the core of the other sources [41]. Meanwhile, calibration
data uncertainty analysis beyond streamflow observation is limited.

UA that treat all sources of uncertainties in an integrated manner or disentangle their
contributions are sparse. More work in this area will help source attribution and interpreta-
tion of predictive uncertainty. In line with source attribution, it is also important to employ
uncertainty propagation in integrated hydrological models. By coupling different comple-
mentary sub-models these models have demonstrated their value in reducing assumptions
and capturing feedback process [189,190]. However, such studies have not yet widely
utilized UA to attribute their predictive uncertainty and illuminate which sub-model needs
improvement or what additional data is required. In this regard, Moges et al. [191] showed
how a framework based on the winding stairs algorithm and a concurrent computational
framework can be utilized.

Uncertainty characterizations are limited in their ability to provide reliable information
for applications involving environmental changes and coupled human–natural-hydrologic
systems. This is because these systems involve many intricate and highly uncertain factors,
such as future forcing input variables and decision-making under changing environments.
Hence, to treat the propagation of uncertainty due to the feedback between climate mod-
els and human water management, an advanced UA approach involving an integrated
transdisciplinary framework is needed. This challenge is recognized within the modeling
community [192,193].

Model development, particularly in transboundary rivers, involves not only the above
four sources of uncertainty but also geopolitical uncertainty related to water resources gov-
ernance [194]. This uncertainty is characterized by data secrecy, ambiguous treaties, lack
of mutual trust and cooperation, resulting in difficulties of data sharing and accessibility.
Consequently, geopolitical uncertainty may confound the above sources of uncertainty
sources and make hydrological models less reliable, limit their reproducibility and use-
fulness in decision-making [194,195]. As this source of uncertainty is poorly addressed
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in the existing hydrological literature, it needs more studies involving social scientists
and different stakeholders promoting transparency, trust building, and multidisciplinary
cooperation, which is in line with hydro-social thinking [196].

Another research frontier in UA is its application in large data sets [197,198]. Such
analysis can be useful to generalize, regionalize, and identify patterns of model uncertainty
in catchments of different climate, topography, and nature. Hence, it is important to apply
different techniques to diverse datasets beyond single-catchment focused studies. Such
explorations can reveal organizing principles and patterns of model uncertainty [199].

UA applications are still limited in practical engineering and management operations.
One approach to bridge this limitation is to better communicate UA and link it with other
concerns such as economics. In this regard, McMillan [25] demonstrated how UA reduces
cost in the hydropower industry. Similarly, investigating the implications of UA on the
flood insurance sector can be a path for coupling research and practice [200]. Future
investigations in these areas can help UA gain a widespread foothold for the practicing
community.

Furthermore, although there is a continued inclusion of UA in ungauged watersheds,
it remains to be at an early stage [174]. Given that most watersheds across the world are
ungauged, future research in this avenue is also critical. To this end, this review provides
the first critique of the steps, the alternatives, and the uncertainty sources in ungauged
watersheds.
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