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Abstract: Hydrologic models driven by downscaled meteorologic data from general circulation
models (GCM) should be evaluated using long-term simulations over a historical period.
However, simulations driven by GCM data cannot be directly evaluated using observed flows,
and the confidence in the results can be relatively low. The objectives of this paper were to bias
correct simulated stream flows from calibrated hydrologic models for two basins in New Jersey, USA,
and evaluate model performance in comparison to uncorrected simulations. Then, we used stream
flow bias correction and flow duration curves (FDCs) to evaluate and assess simulations driven by
statistically downscaled GCMs for the historical period and the future time slices 2041–2070 and
2071–2099. Bias correction of stream flow from simulations increased confidence in the performance of
two previously calibrated hydrologic models. Results indicated there was no difference in projected
FDCs for uncorrected and bias-corrected flows in one basin, while this was not the case in the
second basin. This result provided greater confidence in projected stream flow changes in the former
basin and implied more uncertainty in projected stream flows in the latter. Applications in water
resources can use the methods described to evaluate the performance of GCM-driven simulations
and assess the potential impacts of climate change with an appropriate level of confidence in the
model results.

Keywords: flow duration curves; bias correction of stream flows; flow regime; precipitation-runoff
modeling system (PRMS)

1. Introduction

Estimation and simulation of the flow regime and hydrologic indices require longer time periods,
especially for annual time series, which can ensure natural climate variability is included in model
calibration and evaluation [1,2]. Calibration of hydrologic models for long-term simulations is done
with objective functions on observed daily mean flows, monthly mean flow, and/or peak flows across
multiple time resolutions [3,4]. In a non-stationary context, there are limitations to applying calibrated
models [5]. Hydrologic simulations for climate change impact analysis are driven by downscaled
general circulation models (GCM) [6–8], and such simulations cannot be directly calibrated with
observed flows since the inputs differ for historical simulations. Additionally, there are no future
observed data; therefore, it is not possible to calibrate or evaluate the model performance of hydrologic
simulations for potential future climates. The absence of such data creates a situation similar to the
development of models for ungauged basins [9–11], where regionally applicable measures of stream
flows are required for model calibration and evaluation. Some questions remain as to the level of
confidence for applications of hydrologic models driven by GCMs to local scales [12]. A potential
solution to this problem is to use flow duration curves (FDC) and bias correction of stream flows for
the evaluation of hydrologic models driven by statistically downscaled meteorological data.
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FDCs have been used as objective functions for model calibration [1,13,14] and have a wide range
of uses in water resource applications because they are able to simply convey relatively complex
information about the hydrology of a system to decision makers [11,15]. Westerberg et al. [1] suggested
using FDCs for calibration when the range of observed flows is outside the range of model input data
and that important aspects of the flow regime (“hydrological signatures”) and simulated uncertainty
have a more direct interpretation than other efficiency measures. A potential additional step to evaluate
model performance involves bias correction of simulated stream flows with observed stream flows
using FDCs. This is distinct from bias correction techniques that are required for both statistically and
dynamically downscaled meteorological data from general circulation models (GCM) used to drive
climate change impact assessment in hydrology [16,17], which is not discussed in this paper.

Daraio [18] used the precipitation-runoff modeling system (PRMS), a distributed hydrologic
model [19] that has been widely used for climate change impact assessment [20–22], to simulate the
hydrologic response of two watersheds on the Coastal Plain in New Jersey (NJ) under selected climate
change scenarios. The region is expected to see increases in temperature of around 4 ◦C and a 6–10%
increase in precipitation for high emission scenarios [23]. Model performance was deemed satisfactory,
and simulations were able to provide some information on potential seasonal changes in flow and
groundwater recharge. However, the model output was biased toward overestimation of low flows
and underestimation of high flows. Given that this indicated a systematic bias in simulations, it was
conjectured that bias correction of flow output using FDCs could be used to both more fully evaluate
model performance and improve the simulation results. Additionally, it was recognized that a more
thorough assessment of the models’ abilities to simulate long-term flow regimes was required to
increase confidence in the results of climate change projections of stream flows in these basins [24].

Stream flows are well represented by a lognormal distribution, and the FDC is equivalent to the
empirical cumulative distribution function for flows, which makes it ideal for parametric bias correction
techniques. Bias correction and other correction methods have been applied to hydrologic model
output of flows for hydrologic forecasting with success [25–28]. Bias-corrected flows increased the
accuracy of ensemble forecasts [29] and improved forecasts using a coupled GCM [30]. Bias correction
of flows has the advantage of being applied after parameter estimation and could help address the
problem of equifinality [31]. Bias correction of simulated flows from hydrologic models could be
used to both more fully evaluate model performance and improve simulation results, in particular for
applications to ungauged basins and for future projected flows in a single basin.

The FDC is a representation of the hydrologic regime that is a function of both climatic drivers and
watershed properties. Assuming watershed properties are well represented, simulations using climatic
drivers from statistically downscaled GCMs should capture the overall long-term hydrologic regime,
represented by the FDC. It is hypothesized that bias correction of stream flows and hydrologic analysis
using FDCs can be used to evaluate and assess confidence in hydrologic simulations driven by
statistically downscaled GCMs. The objectives of this paper were to use FDCs (1) to bias correct
simulated stream flows from calibrated PRMS models for two basins in NJ and evaluate model
performance in comparison to uncorrected simulations, (2) to use bias correction and FDCs to
evaluate the performance of rainfall-runoff simulations driven by statistically downscaled GCMs
over the historical period 1956–2005, and (3) to assess potential changes to FDCs using uncorrected
and bias-corrected stream flows from climate change projections of the future time slices 2041–2070
and 2071–2099.

2. Methods

2.1. Overview

Previously calibrated PRMS models [18] were used to simulate stream flows in two watersheds
in New Jersey, USA, for the historical period (1956–2005) and for the future period 2041–2099.
The simulated stream flows were used in the following manner. (1) Simulated stream flows driven
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by observed meteorological data from these models were bias corrected using FDCs developed from
observed stream flows in each basin. (2) The PRMS simulations driven by statistically downscaled
GCM meteorological data over the historical period 1956–2005 for both uncorrected and bias-corrected
stream flows were evaluated using FDCs from observed and simulated stream flows. (3) Uncorrected
and bias-corrected simulated stream flows driven by statistically downscaled GCM data for climate
change projections of the future time slices 2041–2070 and 2071–2099 were assessed using FDCs.

Model performances for simulations driven by observed data for the historical period of water
years 1956–2005 were assessed using several goodness-of-fit (GoF) measures and compared with GoF
after bias correction of simulated stream flows. Meteorological data (bias corrected with constructed
analogs, BCCA, maximum and minimum daily temperature and daily precipitation) from 15 different
GCMs from the CMIP5 multi-model ensemble (Table 1) were used to drive calibrated PRMS models
for the two watersheds. The GCM-driven stream flow simulations were evaluated and bias corrected
for model error, and results from these simulations were used in the analyses described below.

Table 1. List of models from the CMIP5 multi-model ensemble used in this paper.

Modeling Center (or Group) Institute ID Model Name

Commonwealth Scientific and Industrial Research
Organization (CSIRO) and Bureau of Meteorology
(BOM), Australia

CSIRO-BOM ACCESS1.0

Beijing Climate Center, China Meteorological
Administration BCC BCC-CSM1.1

College of Global Change and Earth System Science
Beijing Normal University GCESS BNU-ESM

Canadian Centre for Climate Modelling and CCCMA CanESM2

National Center for Atmospheric Research NCAR CCSM4

Community Earth System Model Contributors NSF-DOE-NCAR CESM1(BGC)

Centre National de Recherches Météorologiques/Centre
Européen de Recherche et Formation Avancée en Calcul
Scientifique

CNRM-CERFACS CNRM-CM5

Commonwealth Scientific and Industrial Research
Organization in collaboration with Queensland Climate
Change Centre of Excellence

CSIRO-QCCCE CSIRO-Mk3.6.0

Institute for Numerical Mathematics INM INM-CM4

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR
IPSL-CM5A-MR

Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute (The
University of Tokyo), and National Institute for
Environmental Studies

MIROC MIROC-ESM
MIROC-ESM-CHEM

Atmosphere and Ocean Research Institute (The
University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

MIROC MIROC5

Max-Planck-Institut für Meteorologie (Max Planck
Institute for Meteorology) MPI-M MPI-ESM-MR

MPI-ESM-LR

Meteorological Research Institute MRI MRI-CGCM3

Norwegian Climate Centre NCC NorESM1-M



Water 2020, 12, 2312 4 of 25

2.2. Site

The Batsto and the upper Maurice basins are located on the coastal plain of NJ, which ranges
in elevation from 119 m to sea level and has a surficial geology that consists of unconsolidated to
semi-consolidated material. The Batsto watershed is located entirely within the Pinelands region,
which extends from central NJ to just north of Delaware Bay (Figure 1), and the majority of the basin is
within the Pinelands National Reserve. The area primarily consists of sandy, acidic soil that sits atop the
Kirkwood-Cohansey Aquifer. Coarse sands within the Pinelands are porous in nature, which allows
for rapid infiltration. The upper Maurice watershed is adjacent to this region and includes a small
part of the western border of the Pinelands, and the soils in the upper Maurice basin are similar to
those in Batsto. Soils in the Batsto basin are 85% sand, and soils in the Maurice basin are 78% sand.
The Maurice River becomes an estuary downstream of Union Lake, in Millville, NJ, and the extent
of the area of the upper Maurice begins upstream of the entrance to the lake. The Batsto watershed
is dominated by forest (60%) and wetlands (25%), and the upper Maurice watershed is mixed urban
(28%), forest (30%), and agriculture (22%) lands. These two watersheds are near enough to share a
very similar climatic regime with important differences in land use and degree of urbanization.

Figure 1. Locations of the Upper Maurice River watershed and the Batsto River watershed. Outlets of
each watershed are shown as triangles. The gauge at Norma, NJ, was used for the Maurice River
(USGS Site ID 01411500), and the gauge at Batsto, NJ, was used for the Batsto River (Site ID 01409500).

2.3. Hydrologic Simulations and Bias Correction

Simulations for the historical period were run from water years 1956–2005 using observed
meteorologic data and meteorologic data derived from 15 GCMs (Table 1). Simulations were run using
GCM derived data for the time slices 2041–2070 and 2071–2099.
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2.3.1. Simulations Using Observed Data

The PRMS models were previously calibrated over the years 1989–1995 and validated over
1996–2003 by Daraio [18]. In this study, simulations were evaluated against observed flows for the
historical period of water years 1956–2005 using several GoF measures (Table 2). Uncorrected simulated
flows were bias corrected using quantile mapping based on the full record of flows. Bias correction
was done using the flow duration curves from the entire period (1956–2005) instead of using part of
the period for calibration and part for evaluation. This choice was made because a significant part of
any bias is random, and a long time period is recommended for calibration of the bias correction [17].

Lognormal distributions were fit to FDCs, and parameter estimates were obtained, µ and σ,
for all simulations using maximum likelihood estimation (MLE) with the R package “fitdistrplus” [32].
FDCs for observed and simulated flows were developed, and PRMS model bias was estimated
and corrected in each basin using quantile mapping in R [33] with the R package “qmap” [34,35].
The general approach (see Gudmundsson et al. [34] for details) transforms the simulated data, Pm, using
the following.

Po = F−1
o [Fm(Pm)] (1)

where Po is the observed data, F−1
o is the inverse CDF for Po, and Fm is the CDF for Pm. The CDF was

the quantile function estimated from the data that used a quantile step of 0.01. Bias correction
was applied for daily mean flows over the full period 1956–2005 based on the composite FDC.
As with uncorrected simulations, performance for bias-corrected simulations was evaluated using
GoF measures.

Confidence intervals for FDCs were estimated at the 10% and 90% exceedance levels. The 10%
and 90% FDCs and a median FDC were estimated by sorting each annual flow in decreasing order,
high flows to low flows, then taking the 10%, 50%, and 90% quantiles for each associated probability
of exceedance pe, where:

pe,i =
i

366
for i = 1, 2, . . . , 365 (2)

from the annual maximum flow to the lowest annual flow. The 10% FDC represents the FDC for flows
that were in the 90th percentile (greater than 90% of all values) of flows for each pe,i. Likewise, the 90%
FDC represents the FDC for flows that were in the 10th percentile of flows for each pe,i.

2.3.2. Goodness-of-Fit

Goodness-of-fit for simulations driven by observed historical climate data were evaluated using
the R package “hydroGoF” [36] (Table 2). Note that the seasonal definition for this analysis does not
follow the traditional definitions that were used in the GoF evaluations. The season definition was
based on the exceedance hydrograph for observed flows (Figure 2 and Daraio [18]): winter = JFM and
part of April, spring = AMJJ, summer = JASO, and autumn = OND. Seasonal definitions for the GoF
measures were winter = DJF, spring = MAM, summer = JJA, and autumn = SON. Therefore, the GoF
measures for seasonal flows provided a robust measure of model performance at these time scales.
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Table 2. Goodness-of-fit measures.

ME Mean Error 1
N ∑(Qs −Qo)

R2 Coefficient of variation
[

1
N
(Qo−Q̂o)(Qs−Q̂s)

σoσs

]2

RMSE Root Mean Squared Error
√

1
N ∑(Qs −Qo)2

PBIAS Percent Bias ∑(Qs−Qo)
∑ Qo

× 100

NSE Nash–Sutcliffe Efficiency 1− ∑(Qo−Qs)2

∑(Qo−µo)
, −∞ ≤ NSE ≤ 1

d Index of agreement 1− ∑(Qo−Qs)2

∑[|(Qs−µo)|+|(Qo−µo)]
2 , 0 ≤ d ≤ 1

KGE Kling–Gupta Efficiency 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2

β =
µs
µo

; γ =
σs/µs
σo/µo

, −∞ ≤ KGE ≤ 1

VE Volumetric efficiency 1− ∑ |(Qo−Qs)|
∑ Qo

, 0 ≤ VE ≤ 1

Qo = observed flow (m3/s); Qs = simulated flow (m3/s); N = total number of observations/simulations;
µo = mean observed flow; µs = mean simulated flow; σo = standard deviation of observed flow; σs = standard
deviation of simulated flow; summations are done over daily mean flow for the indicated time period.

Figure 2. Flow exceedance for water years 1956–2005 for the Batsto (left) and Maurice Rivers. Plots show
from top to bottom: observed, simulated uncorrected (UC), and bias-corrected (BC) for each river.
The lower curve is the minimum flow in the record; the next curve is the 95% exceedance level (flow
exceeded 95% of the time); then the median flow, then mean flow (thick line), then 5% exceedance, then
the maximum flow in the record for each day of the year.

2.4. Simulations Using GCM Data

Statistically downscaled bias-corrected (1/8◦ × 1/8◦) constructed analogs (BCCA) V2 daily
climate projections from the CMIP5 multimodel ensemble [37–39] were used to derive meteorological
data (i.e., precipitation, maximum, and minimum air temperature) to drive PRMS models. The CMIP5
general circulation models used in this analysis are listed in Table 1. Shapefiles of both basins
with delineated HRUs were uploaded to the USGS Geo Data Portal, and the area-weighted grid
(12 km) statistics algorithm was used to obtain daily mean precipitation, maximum air temperature,
and minimum air temperature for each HRU. These data were evaluated and validated prior to being
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made publicly available on the data portal by Bracken [40]. Data for the historical period of 1955–2005
and future projections for the period 2020–2100 were downloaded for each CMIP5 model. A total
of 132 climate projections were used for simulations in each basin to drive PRMS simulations and
obtain stream flow under two different representative concentration pathways (RCP) for emissions
leading to 4.5 and 8.5 additional Wm−2 by the end of the 21st Century. The selection of CMIP5 climate
projections was based on data availability from the USGS Geo Data Portal. PRMS simulations for the
historical period (water years 1955–2000) provided baseline data from which climate change measures
were calculated. The baseline values were calculated from either one historical run, for GCMs with
only one such run, or the ensemble mean from all historical runs combined for GCMs with multiple
historical runs. Simulations driven by statistically downscaled meteorological data were corrected for
PRMS model bias, and results from uncorrected simulations and model-corrected were compared for
the historical period (1956–2005) and for the future periods 2041–2070 and 2071–2099. Bias correction
of stream flows was also done directly on uncorrected GCM-driven stream flow simulations with
observed data

Changes in FDCs were analyzed qualitatively by plotting the projected median FDC,
10% exceedance FDC, and 90% exceedance FDC curves and baseline FDC curves at the same
exceedances. Quantitative estimates of the proportional change PC (percent change expressed as a
decimal) were obtained using GCM-driven simulations for the historical period as a baseline. Changes
in stream flows from the projected median FDC, 10% exceedance FDC, and 90% exceedance FDC
curves were estimated using:

PCpe,i =
(Q fpe,i

−Qhpe,i
)

Qhpe,i

for i = 1, 2, . . . , 365 (3)

where Q fpe,i
is the GCM-driven projected stream flow for exceedance probability pe,i in the 10%, median,

or 90% FDC, Qhpe,i
is the GCM-driven simulated historical flow in the 10%, median, or 90% FDC for

exceedance probability pe,i, and PCpe,i is the proportional change in stream flow in the 10%, median,
or 90% FDC for exceedance probability pe,i. Positive values of PC indicate an increase in flow in the
future, and negative values represent a decrease of flow in the future. Future uncorrected simulations
were compared with baseline uncorrected simulations, and future model-corrected simulations were
compared with model-corrected baseline simulations in all cases.

Annual and full record FDCs for observed, simulated, and GCM-driven derived stream flows
were analyzed using the R package “hydroTSM” [36]. GCM-driven simulations were analyzed for
each individual GCM, but results were pooled for simulations with multiple runs (CanESM, 5 runs;
CCSM4, 2; CSIRO-Mk3.6.0, 10; IPSL-CMA5-LR, 4; MIROC5, 3, MPI-ESM-LR, 3; MPI-ESM-MR, 3).
Flow duration curves from the time slices 2041–2070 and 2071–2099 were developed, and stream
flow projections were corrected for model error (model corrected) using quantile mapping with the R
package “qmap” [35]. Simulations were model corrected using pooled parameter estimates for GCMs
with multiple runs.

3. Results

3.1. Simulations Driven by Observed Meteorological Data

3.1.1. Goodness-of-Fit

Uncorrected simulations of stream flow for water years 1956–2005 performed relatively well
in both basins based on several GoF measures used to evaluate the models (Figures 3 and 4).
Overall, based on GoF measures, the model performed better in the Batsto basin than in the Maurice
basin for daily flows by most measures with less of a difference for monthly flows. This was also
the case for GoF measures for uncorrected annual and seasonal flows (Table 3). In the Maurice basin,
the monthly R2 and Nash–Sutcliffe Efficiency (NSE) measures for uncorrected flows improved from
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≈0.4 to 0.7 compared with daily flows, and most measures indicated a better fit of model simulations
for monthly mean flows over daily flows in both basins.

Uncorrected simulations showed a wide range in GoF measures for seasonally averaged flows.
For both basins, absolute PBIAS was greater for seasonally averaged flows than for daily, monthly,
and annual mean flows. In Batsto, seasonal bias ranged from −17% (winter) to 30% (summer),
while the daily, monthly, and annual PBIASs were −1.4%, −1.4%, and −2.8%, respectively (Table 3).
The same trend was apparent in Maurice.

Figure 3. Goodness-of-fit for monthly mean flow (m3s−1; top) and annual mean flow (second row) for
uncorrected (UC) and monthly mean flow (third row) and annual mean flow (bottom) for bias-corrected
(BC) PRMS simulations in the Batsto River.
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Figure 4. Goodness-of-fit for monthly mean flow (m3s−1; top) and annual mean flow (second row) for
uncorrected (UC) and monthly mean flow (third row) and annual mean flow (bottom) for bias-corrected
(BC) PRMS simulations in the Maurice River.
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Table 3. Goodness-of-fit (GoF) measures for uncorrected (UC) and bias-corrected (BC) simulated flows.
GoF was measured based on seasonally averaged flows. DJF = December, January, and February, etc.
Note that seasonal bias correction was not done based on the seasonal definitions used in
the evaluations.

UC BC

Batsto River

GoF DJF MAM JJA SON DJF MAM JJA SON

ME (m3s−1) −0.71 −0.32 0.74 0.04 −0.54 −0.36 0.85 0.06
R2 0.57 0.61 0.65 0.63 0.56 0.63 0.66 0.61
RMSE (m3s−1) 1.69 1.41 1.61 1.11 1.86 1.32 1.74 1.34
PBIAS% −16.70 −9.70 28.90 1.40 −12.60 −10.70 32.90 2.10
NSE 0.48 0.54 0.55 0.63 0.37 0.60 0.47 0.45
d 0.82 0.80 0.84 0.88 0.85 0.86 0.87 0.87
KGE 0.62 0.51 0.56 0.74 0.69 0.65 0.61 0.72
VE 0.74 0.76 0.57 0.78 0.70 0.75 0.57 0.74

Maurice River

ME (m3s−1) −0.96 −0.57 0.60 −0.25 −0.63 −0.31 0.82 −0.07
R2 0.39 0.51 0.46 0.47 0.38 0.50 0.45 0.46
RMSE (m3s−1) 2.39 1.90 2.25 1.68 2.41 1.92 2.52 1.78
PBIAS% −16.70 −11.60 18.50 −6.40 −11.00 −6.30 25.20 −1.70
NSE 0.21 0.45 0.36 0.40 0.20 0.44 0.20 0.33
d 0.75 0.81 0.80 0.82 0.77 0.83 0.79 0.82
KGE 0.56 0.63 0.62 0.67 0.59 0.69 0.58 0.68
VE 0.71 0.74 0.63 0.71 0.71 0.74 0.59 0.69

Bias correction of flows using the FDC for the full record in each basin improved the fit
of the overall FDC as expected. However, GoF measures did not improve consistently for
bias-corrected simulations (Figure 4 and Table 3). For bias-corrected simulations of Batsto River
flows, there were improvements in fit according to the measures of mean error (−0.09 to −0.03) and
PBIAS (−2.8% to ≈−0.9%) for daily and monthly mean flows and KGE from 0.62 to 0.75 and 0.71
to 0.77 for daily and monthly mean flows, respectively. For bias-corrected simulations of Maurice
River flows, there were improvements in fit according to the measures of mean error (≈0.32 to ≈−0.08)
and PBIAS (≈7 % to −1.7%) for daily and monthly mean flows and Kling–Gupta Efficiency (KGE)
from 0.63 to 0.87 and 0.72 to 0.80 for daily and monthly mean flows, respectively.

Bias correction of flows did not improve the overall performance of the model on simulations of
annual mean flows in either basin, with the exception of PBIAS, which was expected from the bias
correction. Goodness-of-fit for seasonally averaged bias-corrected flows was variable in a similar
manner to the uncorrected simulated flows. Model PBIAS increased in some seasons and decreased in
others for bias-corrected simulations compared to uncorrected simulations. Overall, for both basins,
PRMS simulations over the time period (1956–2005) simulated here compared with the shorter
evaluation period (1997–2003) from [18] performed as well or better for some measures and worse
for others.

3.1.2. Flow Duration Curves

Each basin showed a different pattern of variation in annual FDCs (Figure 5). Observed annual
FDCs varied to about the same magnitude across all flow exceedances in the Maurice basin.
Observed annual FDCs showed less variability at low flows (high exceedance) in the Batsto basin
and greater variability for high flows. Simulated FDCs did not fully capture the overall FDC or the
variation of annual FDCs in either basin. Simulations in both basins tended to underestimate high
flows and overestimate low flows (Figure 6). Variation at low exceedance levels was underestimated
in the Maurice River, and variation at high exceedance levels was overestimated in the Batsto River.
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In the Maurice basin, there was a greater tendency for uncorrected simulations to underestimate
high flows than to overestimate low flows. Simulations for the Batsto River, on the other hand,
underestimated high and overestimated low flows to a similar degree (Figure 7). The FDC in
the Maurice basin was smoother than that for the Batsto for flows with pe > 0.95 (low flows).
Simulated flows were able to capture this sharper drop in low flows for the Batsto; however, this part
of the FDC was not fit well by a lognormal distribution based on the entire range of flows.

The variations in observed annual FDCs (Figure 6) were relatively well represented by uncorrected
simulated flow duration curves in both basins. Differences in uncorrected simulated flow bias for each
basin were more apparent when comparing the annual FDCs and the 10% and 90% FDCs. For instance,
the consistent underestimation of high flows and underestimation of low flows was clearer in Batsto.
The middle of the FDC (0.25 ≤ pe ≤ 0.75) was well represented by uncorrected simulations, as well
as the variance in annual FDCs. In Maurice, for pe ≤ 50%, the tendency of uncorrected simulations
to underestimate flows can be seen clearly. Uncorrected simulations in Maurice also showed slightly
lower variation than observed flows in the annual FDCs.

Figure 5. Observed (left) and PRMS simulated (right) annual flow duration curves for the Batsto and
Maurice Rivers for water years 1956–2005. Thick black line represents the FDC for the full period
of record.

Bias correction of stream flow for the calibrated PRMS model was able to correct the systematic
model error of the overestimation of low flows and underestimation of high flows in both basins
(Figure 6). Bias-corrected simulations for both basins tended to increase the spread of the 10% and
90% FDCs over the full range of pe with the exception of at low pe in Maurice, which indicated greater
uncertainty with bias correction. Overall, FDCs representing bias-corrected simulations indicated that
the model performed better in the Maurice River than in the Batsto River for both high and low flows
and with respect to the variation in flows.
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Figure 6. Median, 10%, and 90% exceedance levels for annual flow duration curves for simulations in
each basin. The upper two plots show the calibrated PRMS simulations for uncorrected stream flows
compared to observed flows. The second row of plots shows results from bias-corrected simulations
compared to observed flows.

Figure 7. Tail of the full record flow duration curves for high and low flows (right and left plot in
each row, respectively) in each river as indicated.

3.2. Simulations Using GCM Data

Hydrologic simulations driven by GCM data could only be evaluated using FDCs.
Estimated parameters for the fitted lognormal distributions for uncorrected and model-corrected
simulations driven by GCM data showed greater variation than parameters bias corrected directly
with observed data (Figure 8). GCM-driven simulated stream flows showed relatively low overall
variation for estimated parameters over the historical period and increased variation in parameters
for climate change projections, which indicated over-correction of stream flows. It is likely that bias
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correction of GCM-driven stream flow simulations with observed flow data, in this case, reduced
the simulation of the natural variation of the hydrologic model. Therefore, the analysis of climate
change impacts on flow duration curves was done using only model-corrected GCM simulated
stream flows.

Figure 8. Lognormal distribution parameters, mean µ (top) and standard deviation σ (bottom),
for uncorrected (UC), model-corrected (MC), and bias-corrected (BC) GCM simulations. UC, MC,
and BC are GCM simulations for the historical period (1956–2005). Parameters are shown for GCM
simulations for RCP 4.5 and RCP 8.5 for UC MC, and BC. Parameter values for observed fitted
lognormal distributions are shown as the dotted line in each plot.

3.2.1. Historical Simulations

Overall, the annual FDCs from GCM-driven stream flow simulations for the historical period
for uncorrected and model-corrected stream flows fell within the range of observed annual FDCs
(Figure 9). Annual FDCs from GCM-driven simulated stream flows for the historical period showed a
wide range of variability dependent on the GCM (supplemental figures), and some models showed
greater variation than others. FDCs based on the ensemble of uncorrected GCM simulations for the
historical period tended to overestimate low flows and underestimate high flows (Figure 9) to an even
greater degree than uncorrected simulations driven by observed meteorological data. Application of
the model correction to GCM-driven simulations greatly reduced this bias, but did not fully eliminate
it. Model correction of GCM-driven simulations increased the variance of annual FDCs in both basins.

The 90% FDC for high flows from uncorrected GCM-driven simulations of the Batsto River were
aligned with the median FDC of observed high flows, pe / 0.05, whereas the the opposite was the case
for low flows with pe ' 0.95. Implementing the model correction for GCM simulated stream flows in
Batsto was able to correct for bias in most of the high flows and greatly improved the estimates of low
flow frequencies. A similar trend was apparent in the Maurice River, though to a lesser extent at both
high and low flows. The model correction of GCM-driven simulations in Maurice improved estimates
of the frequency distribution, but not as much as in Batsto.
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Figure 9. Annual flow duration curves for stream flow simulated for the Batsto River using downscaled
climate projections for each GCM simulation (uncorrected (UC), and model corrected (MC)) used
in the analysis. The observed FDC is the thick black line, and the thick blue line is the FDC for the
simulated data using the full period.

3.2.2. Projected Simulations

The projected changes in parameter values for the full FDCs indicated a much greater uncertainty
in estimates of FDC than can be seen in the qualitative assessment of annual FDCs. Overall estimates
of σ did not change much for projected distributions; however, there was much greater variation in
estimates of the mean, µ, for projected distributions of stream flows, or FDCs (Figure 8).

The annual FDCs for projected stream flows under RCPs 4.5 and 8.5 in both time slices (2041–2070
and 2071–2099) indicated some change in overall frequency of flows for both basins (Figures 10 and 11).
As with historical simulations, FDCs from GCM simulated stream flows for the historical period
showed a wide range of variability dependent on the GCM (supplemental figures). The FDCs showed
an increase in variation (wider spread in 10% and 90% FDCs) with climate change across the full range
of pe in both basins. The projected impacts of climate change on the FDCs were well quantified by
measures of the proportional change in flows by quantile, PCpe (Figures 12 and 13).
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Figure 10. Projected flow duration curves for the Batsto River under emission scenarios RCP 4.5 and
8.5 for the two time slices as indicated.
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Figure 11. Projected flow duration curves for the Maurice River under emission scenarios
RCP 4.5 and 8.5 for the two time slices as indicated.
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Figure 12. Projected change in stream flows as indicated by the proportional change in stream flow at
each exceedance level of the FDC for the Batsto River. Projected change in flow is shown for each RCP
for uncorrected (UC) and model-corrected (MC) GCM simulations.

For the Batsto River, the median FDC and 10% FDC were projected to increase across all
probabilities under both RCPs in both time slices (2041–2070 and 2071–2099). Model-corrected
simulations indicated a slightly greater increase in flow levels than uncorrected projected stream flows.
The 10% FDC for both model-corrected and uncorrected projected flows increased for higher flows
(low pe) and decreased for low flows (high pe). There was a greater increase in the projected median
FDC for high flows than for low flows as indicated by a slight negative slope of the median FDC
difference curve. Under RCP 4.5 for 2071–2099, both median and 90% FDCs changed about the same
amount, and under RCP 8.5, the median FDC seemed to return closer to the baseline FDC despite a
relatively large increase in the 90% FDC. The magnitude of low flows showed an increase under RCP
4.5 of around 5% (Figure 12), but under RCP 8.5, projections indicated little or no increased flow at
these high pe levels. At pe < 0.1, stream flows were projected to increase by a greater amount than for
low flows (pe > 0.9) under both RCPs, and a greater increase of high flows (pe ≥ 0.2) was projected
under RCP 8.5.
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Figure 13. Projected change in stream flows as indicated by the proportional change in stream flow at
each exceedance level of the FDC for the Maurice River. Projected change in flow is shown for each
RCP for uncorrected (UC) and model-corrected (MC) GCM simulations.

For the Maurice River, there was little or no difference between uncorrected and model-corrected
simulations of projected stream flows (Figure 13). Under RCP 4.5 for both time slices, the change in
median FDCs indicated that flows were not projected to increase by more than around 2.5% at most pe,
with slightly greater increases in flow indicated at pe / 0.02. Under RCP 8.5, projections for 2041–2070
indicated that median flows will not change except at the extremes, pe > 0.9 and < 0.1. Projections also
indicated an increase of 5–10% in the 10% FDC for pe > 0.75 and pe < 0.1 suggesting that higher low
flows and greater high flows may occur in the future. Projections in FDCs for 2071–2099 under RCP
8.5 showed a decrease in the median FDC in Maurice for all pe ' 0.07, but with an increase in flows
with pe / 0.05 and extreme high flows could increase by > 10%. Furthermore, projections suggested
that flows ranging from 0.1 ≤ pe ≤ 0.9 could decrease slightly.

4. Discussion

An important consideration when evaluating hydrologic model performance is whether or
not the model can be considered an appropriate representation, or hypothesis, of the relevant
processes in a simulated basin [41,42], which can be difficult due to uncertainty in the modeling
chain. For climate change impact assessments, top-down approaches propagate uncertainty from
emission scenarios, global climate models, regional climate models, through downscaling and bias
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correction (of meteorological data) methods [17] to data that are used to drive hydrologic models.
Additionally, there is error in observed data used to estimate model parameters (e.g., land use
and soils), meteorological data used as input (temperature and precipitation), and flows used for
calibration/evaluation. An important question remains, “Are we getting the right answers for the
right reasons?” [1]. This limits the application of hydrologic models to assess the potential impacts of
climate change for local and regional decision making due to the uncertainty of model outputs.

Results were reported by Daraio [18] with relatively low overall confidence in large part because
of the limited evaluation period and existing bias in stream flow simulations. The extended evaluation
of model simulations done here provided an assessment of the performance over a long-term historical
time period that extended beyond the calibration period, which should be done before its use to project
potential future stream flows [24]. The analysis using bias correction of stream flows from PRMS
simulations allowed for more confidence in projected climate change impacts in both basins, and in
the Maurice River in particular.

4.1. Performance of the Hydrologic Model

Goodness-of-fit (GoF) measures are the traditional way to assess the performance of
hydrologic models. Moriasi et al. [43] suggested that for watershed models, GoF measures for daily,
monthly, or annual simulations should have values of R2 > 0.60, NSE > 0.50, and PBIAS ≤ ±15%.
Evaluation of model performances using these metrics suggested that the model in the Batsto
River performed adequately on daily mean, monthly mean, annual mean, and (most) seasonal
mean flows, but only monthly mean flows were adequately simulated in the Maurice River. Ritter and
Muñoz-Carpena [44] suggested that an acceptable model would have an NSE ≥ 0.65, in which case
only annual flow simulations in the Batsto River and annual and monthly mean flows in the Maurice
River would be considered adequate. The use of the coefficient of variation (R2) and other correlation
measures for model calibration and evaluation has been questioned [45], but it was included here
primarily for model comparison. Additionally, several variants of the NSE were used to supplement
this efficiency measure. The Kling–Gupta efficiency improves on the NSE because it includes more
information on model performance including correlations, bias, and variability [36,46]. The index of
agreement d provides a measure of differences in the means for observed and simulated flows and
does not include a correlation measure, though the measure is sensitive to the influence of extreme
values due to the use of squared differences [45]. The Volumetric Efficiency (VE) represents the fraction
of water delivered at the proper time and in itself provides some measure of the skill of the model
to capture an important aspect of the flow regime. Including these GoF measures for models in both
basins indicated that PRMS simulations over the time period 1956–2005, compared with the shorter
evaluation period (1997–2003) from Daraio [18], performed as well or better for some measures and
worse on others. Overall, this increased the confidence in model performance for both basins.

All measures of GoF for daily mean and monthly mean flows in Batsto were slightly better or about
the same over 1956–2005 compared with the shorter evaluation period. This was not the case for daily
mean flows in the Maurice River where GoFs were better for the shorter evaluation period, but monthly
mean flow GoFs for 1956–2005 were about the same for most measures. On a seasonal basis, there were
no consistent patterns in the differences in GoF measures between the longer and shorter evaluation
periods in each basin. Some measures improved over the longer period, and others indicated poorer
performance. Both models performed better for monthly mean flows, which may be more relevant for
use in long-term climate change projections. Bias correction of simulated flows using composite FDCs
from previously calibrated PRMS models was able to improve model performance on some measures
of GoF, and overall, they were as good as uncorrected simulations. The most important improvement
was the reduction in the degree of overestimation (underestimation) of low (high) flows in both basins
for bias-corrected simulated stream flows.
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While it is difficult to objectively interpret the GoF measures, in the context of each model being a
hypothesis for the relevant processes in the basins [42], there is not enough evidence to reject them.
Overall, the bias-corrected calibrated models of the Batsto and Maurice Rivers are good models,
and GoF measures indicated better model performance in the Batsto. Assessment with FDCs, on the
other hand, indicated better simulations of flow regime in the Maurice. Models in both basins do have
important limitations, and the variation in GoF scores provided an indication of the strengths and
weaknesses of the models. In particular, bias correction of stream flows was able identify areas where
a model may not simulate physical processes well.

The primary weakness of the simulations lies in the performance of the model at both high and
low pe levels, or low and high flows, respectively. The observed FDC for the Batsto River shows
reduced variation at low flows and a sharper curve in the FDC at the highest pe level. This is most likely
due to the strong groundwater component of the Batsto, especially at low flows [47]. The lognormal
distribution fit to the data was not able to capture low flows at high pe, or the tail of the distribution,
so the fitted FDC is more smoothly curved than the FDC from observed flows in Batsto. This is an
indication that there may be a structural error in the model that does not correctly simulate the physical
processes that dominate at low flows.

The PRMS simulations driven by observed meteorological data did not capture high flows, or low
pe levels, as well either. Bias correction of model simulations improved performance at high flows for
simulations, but again, this may indicate a problem with the PRMS model. The error in the PRMS
model at high flows seems to be greater in the Maurice River than Batsto, and it may be due to
some misrepresentation of runoff processes due to the greater area of mixed urban development in
the Maurice watershed. Additionally, the relative performance of the models, both uncorrected and
bias corrected, at the seasonal scales indicates the need to test bias correction of stream flows using
seasonally based FDCs. This work is in progress by the author’s research group.

4.2. Downscaled GCM-Driven Simulations

4.2.1. Bias Correction of Stream Flows

Statistically downscaled GCM or GCM-driven stream flow simulations showed bias at both
extremes where the FDC was not as well simulated as the middle of the FDCs (pe ≈ 0.5), which can
be primarily attributed to the performance of the PRMS models. For uncorrected simulations, use of
GCM data increased the PRMS model bias at both ends of the FDC, and correcting for model bias
improved the representation of GCM-driven simulations over the historical period.

Direct bias correction of GCM-driven stream flow simulations with observed flows—which
includes both PRMS model bias and any bias that can be attributed to the meteorological input
data—was able to improve the overall fit of the FDC over model-corrected GCM-driven simulations
in both basins. However, the direct bias correction of GCM stream flows seems to reduce the
representation of the natural variation of simulated flows over the historic period while increasing
variation over climate change projected stream flows. This would occur if the timing of, for instance,
high flows in simulations did not coincide with with the timing of observed high flows. High flows
tend to occur in summer in both basins. If high flows were simulated to occur in winter, then the
mismatch in timing would lead to correcting for flows generated by different physical processes in the
different seasons, e.g., rain on snow in winter versus a large tropical event in summer. Bias correction of
stream flows without model calibration has been shown to reduce seasonal forecast error for forecasts
that focused on the volume, but not timing, of flows [48]. Improper timing of bias corrections may
improve the overall fit of the FDC, but would lead to poor climate change projections. Therefore,
no GCM-driven simulations were bias corrected directly with observed flows, and bias correcting
stream flows would need to include timing to ensure better results.
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4.2.2. Climate Change Projections

Overall, the correction of model bias was effective for improving the fit of the FDCs, but projected
changes in FDCs based on uncorrected and model-corrected GCM-driven simulations were not
consistent in the two basins. In Maurice, projected changes in FDCs were almost identical
for uncorrected and model-corrected GCM simulated stream flows. In Batsto, model-corrected
GCM-driven simulations showed a greater change in flows at the median FDC level compared
to uncorrected simulated stream flow and an even greater increase in flows at the 10% FDC level.
It seems likely that the lack of difference in projected change in the FDCs between uncorrected and
model-corrected stream flow simulations in Maurice indicates higher confidence in climate projections
in this basin. The FDC was better simulated in Maurice than in Batsto; therefore, it is likely that
correction was done with proper timing, as discussed above, which led to more consistent correction
of flows and overall better model fit. Consistent with this interpretation, the analysis for simulations
in Batsto provided a better understanding of the limitations of the model and allow for a more clear
interpretation of results. Most importantly, it seems to be an indication of greater uncertainty for
projections in the Batsto River compared with projections in Maurice.

Projected trends in both basins included an increase in flow variability (spread of the 10% and
90% FDCs), an increase in median flows through 2070 under both RCPs, and reduced changes in
the median FDCs by 2099 under RCP 8.5. The former indicates an increase in the variation of flows
across all probabilities of exceedance, in particular at high flows. Both rivers are projected to have
greater high and low flows, and the projections indicate more variation at high flows in both basins.
Model-corrected simulations had greater variation for both projected FDCs and for the baseline
(historical) GCM simulations. However, some bias correction methods are known to lead to variance
inflation [17], which could increase the uncertainty of simulated flows. Projected high flows were larger
with a greater likelihood that annual maximum flows will be more extreme. It is important to note
that it is well known that one of the weaknesses of GCMs is an inability to capture extremes [49,50].
While both the PRMS model bias and model-corrected GCM-driven bias in simulated stream flows
indicated an underestimation of high flows and overestimation of low flows, the consistency of the
error provides a level of confidence in these projections despite the bias. That is, based on these
projections, it seems likely that extreme floods will be higher, by the end of this century compared to
the end of the last, by 5 to 30% in Batsto and up to 15% in Maurice. However, more detailed analysis
of projected changes in extremes, both high and low, is necessary to reduce the uncertainty in the
interpretation of these projections.

There were important differences in projections in each basin that are clear based on the changes
in the FDCs. For instance, in the Batsto River, climate change projections indicated an increase in
mean flows under RCP 4.5—with slightly greater changes indicated by model-corrected compared to
uncorrected projected stream flows (see above). Projected stream flows were not greater under the
RCP 8.5 emission scenario than for RCP 4.5 in Batsto for 2041–2070. By contrast, variation in flows
increased in the Maurice River under both RCPs; however, the overall mean flow was not projected to
increase by much, and the median FDC indicated that flows across most probabilities of exceedance
will be lower by the end of the century. In Batsto, the range of flow variation was projected to increase
while the low flow regime returns to baseline by the end of the century for RCP 8.5.

Impacts of Watershed Characteristics

The Batsto basin lies within the protected Pinelands National Reserve in New Jersey, and there
is a relatively small amount of agriculture in the basin (≈10% of the basin). Land use change and
population growth will be minimal in this basin because of its location in the Reserve. The potential
impacts of the projected changes in stream flow will primarily impact the ecology of the river.
The results here indicate some change in the flow regime, but do not provide enough information to
fully assess the potential ecological impacts. Such an assessment requires a more detailed analysis
of the natural flow regime relevant to ecological characteristics of the river. Poff et al. [51] suggested
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that the natural flow regime can be defined using flow magnitudes, the frequency of occurrence,
the duration of specified flow conditions, the timing and/or predictability of flows, and the rate of
change or flashiness of flow. These indicators of the flow regime can be quantified using a number
of measures including the autocorrelation structure of the time series, rising and descending limb
density, peak distribution, low flows, and the FDC [52]. On there own, the FDCs analyzed in this
paper represent an incomplete picture of the natural flow regime. The author’s research group is
continuing the current analysis to include ecologically relevant hydrologic indices that can describe
most of the natural variation in flows, which is one of the key goals of hydro-ecological classification
of rivers [53,54].

The upper Maurice basin is much more developed, and urbanization is expected to continue
in the future as the population continues to increase. The climate change projections do not include
potential changes to land use and the expected growth of urban area in the basin; therefore, the results
must be interpreted in light of this limitation. For instance, the potential increase in high flows due to
climate change is likely to be exacerbated by increased urbanization. Additionally, projected decreases
in low flows have potential implications for water resources in Maurice since they signify a reduction
in base-flow and thus groundwater recharge, and the majority of drinking water is obtained from
groundwater sources in the watershed [18]. However, knowing the potential changes due to climate
change can help water resource managers and engineers adapt water infrastructure systems and
control that which is amenable to such control. The use of FDCs to show these potential changes
could be a strong means to convey the impacts of climate change on water resources and guide
such decisions.

5. Conclusions

Evaluation of GCM-driven stream flow simulations requires techniques that provide a measure
of a regional or long-term flow regime. This entails the use of methods that are commonly used
for hydrologic simulations in ungauged basins. This is particularly important for the use of models
for climate change projections since future stream flows even in a gauged basin cannot be observed.
A model that performs well over longer periods that include natural climate variation presumably
can be used with confidence for climate change projections. Overall, PRMS simulations of both the
Batsto and upper Maurice watersheds were able to simulate the FDC and the annual variation of
FDCs within each basin. The application of a bias correction for model error on simulated stream
flows improved the fit of the FDC over the historical period. While correcting for PRMS model bias
seemed to increase the uncertainty FDC estimates representing the flow regime, bias correction can
help identify potential model uncertainty and distinguish sources of uncertainty. Bias correction of
stream flows indicated the presence of some potential structural errors in the model for the Batsto
River that were not apparent by looking at GoF measures alone. The implementation of the model
correction on GCM-driven simulated stream flows also indicated greater uncertainty in projected
stream flows for Batsto in comparison with projections for Maurice.

The extended analysis of the FDCs for GCM-driven PRMS simulations indicated that climate
model-driven hydrologic simulations can be used with some confidence to assess potential changes
in FDCs under climate change. In both basins, the climate change projections can be assessed with
higher confidence than those from Daraio [18]. Applications in water resources and hydrology that
utilize flow duration curves can use projected changes to assess the potential impacts of climate
change relatively easily, including a relatively clear assessment of uncertainty. The results leave open
the question as to the possibility of using FDCs based on seasonal or monthly flows to bias correct
GCM-driven simulations with observed data and apply corrections to climate change projections.
The use of FDCs at these time scales may allow for the timing of flows to be included in the corrections,
reduce uncertainty, and improve confidence in climate change projections of stream flows using
GCM-driven hydrologic simulations.
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The following abbreviations are used in this manuscript:

GCM general circulation model
BCCA bias correction with constructed analogs
FDC flow duration curve
PRMS precipitation-runoff modeling system
NJ New Jersey
CMIP Coupled Model Intercomparison Project
CDF cumulative density function
UC uncorrected
BC bias corrected
MC model corrected
GoF goodness-of-fit
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