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Abstract: In arid regions, the groundwater drawdown consistently increases, and even for a constant
pumping rate, long-term predictions remain a challenge. The present research applies the modular
three-dimensional finite-difference groundwater flow (MODFLOW) model to a unique aquifer facing
challenges of undefined boundary conditions. Artificial neural networks (ANN) and adaptive neuro
fuzzy inference systems (ANFIS) have also been investigated for predicting groundwater levels in the
aquifer. A framework is developed for evaluating the impact of various scenarios of groundwater
pumping on aquifer depletion. A new code in MATLAB was written for predictions of aquifer
depletion using ANN/ANFIS. The geotechnical, meteorological, and hydrological data, including
discharge and groundwater levels from 1980 to 2018 for wells in Qassim, were collected from the
ministry concerned. The Nash–Sutcliffe efficiency and mean square error examined the performance
of the models. The study found that the existing pumping rates can result in an alarming drawdown
of 105 m in the next 50 years. Appropriate water conservation strategies for maintaining the existing
pumping rate can reduce the impact on aquifer depletion by 33%.

Keywords: groundwater; MODFLOW; ANN; groundwater modeling; arid regions; groundwater aquifer

1. Introduction

Groundwater modeling for sustainable management is an important field in regions that use
groundwater as their main water supply. The matter becomes more serious where the recharge to the
aquifer is limited and the groundwater is depleting at an alarming rate (Figure 1). So, it is a hot issue
and relevant research has been addressing various issues of groundwater worldwide [1–3]. However,
there are several challenges in groundwater modeling used to provide some of the basic information
for engineering designs, sustainable groundwater planning, and environmental impact assessment.
Challenges exist in understanding system dynamics and the flow patterns, analyzing the groundwater
responses to stresses in the system, and assessing the sustainable groundwater yield. In short,
groundwater modeling is an area of continued research, as identified by several publications [4–9].
The groundwater flow is governed by the well-known Boussinesq equation. A variety of computer
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programs have been developed to solve this equation. Mainly, finite element or finite difference
techniques are used for this purpose. MODFLOW, PLASM, and AQUIFEM-1 to AQUIFEM-N are
a few examples of such software [8,10]. MODFLOW provides the most commonly used solution of
the equation based on finite differences. This model has been used by several researchers from the
early 1980s to 2020 [4,11–15]. In spite of the long-term use of numerical modeling for groundwater,
there remains space for further research in this field of specialization because of the unique problems
with various aquifers [16,17].
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associated with solving the problems of groundwater flow modeling with unknown boundary 
conditions and aquifer parameters. They have sought solutions to these problems by using 
approximate and numerical methods applicable to a specific groundwater flow situation 
characterized by its hydraulic behavior of diaphragm walls of cut and cover tunneling and an 
underground enclosure. They used pumping tests data to obtain the aquifer parameters (hydraulic 
conductance and specific storage) by the Theis method [20]. Pujades et al. [21] used pumping tests 
data to obtain the same aquifer parameters by Cooper and Jacob’s method [22]. Although the 
previous studies have provided guidelines to solve the problem of unknown boundary conditions 
and for the estimation of aquifer parameters, their pragmatism can only be evaluated by applying 
them to diverse cases with site-specific constraints [23–26]. 

A part of the Saq Aquifer in Qassim, Saudi Arabia also has no well-defined boundary conditions. 
In the first objective of the present study, we addressed the problem of the boundary conditions and 
other aquifer parameters using hit and trial and the calibration subroutine of MODFLOW. There is 
also a need to address the above-mentioned problem through alternative, relatively simpler, 
modeling techniques. Several artificial intelligences based techniques have been found as useful 
alternatives, e.g., artificial neural networks (ANN), adaptive neuro fuzzy inference systems (ANFIS), 
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(SVR), bidirectional long short-term memory (Bi-LSTM) network, and gated recurrent unit (GRU). 
Elbaz et al. [27,28] integrated PSO-ANFIS with genetic algorithm models to predict the earth pressure 
balance for the performance of a shield via tunneling at a site in China. The very small error found 
between the observed and simulated earth pressure balance showed the high performance of their 
models. Recently, Gao et al. [29] used GRU for solving a similar problem in Luoyang, China. 
Although the application of these deep learning arterial intelligence models in the field of 
groundwater predictions is relatively rare to date, some researchers used the ANN, ANFIS, and SVR 
to simulate groundwater-levels [30–36]. 
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Figure 1. Depletion of groundwater levels of Saq Aquifer in Qassim Region.

The modeling of aquifers becomes highly challenging if the boundary conditions are not well
defined for their certain parts. Pujades et al. [18,19] comprehensively identified the difficulties associated
with solving the problems of groundwater flow modeling with unknown boundary conditions and
aquifer parameters. They have sought solutions to these problems by using approximate and numerical
methods applicable to a specific groundwater flow situation characterized by its hydraulic behavior
of diaphragm walls of cut and cover tunneling and an underground enclosure. They used pumping
tests data to obtain the aquifer parameters (hydraulic conductance and specific storage) by the Theis
method [20]. Pujades et al. [21] used pumping tests data to obtain the same aquifer parameters by Cooper
and Jacob’s method [22]. Although the previous studies have provided guidelines to solve the problem
of unknown boundary conditions and for the estimation of aquifer parameters, their pragmatism can
only be evaluated by applying them to diverse cases with site-specific constraints [23–26].

A part of the Saq Aquifer in Qassim, Saudi Arabia also has no well-defined boundary conditions.
In the first objective of the present study, we addressed the problem of the boundary conditions
and other aquifer parameters using hit and trial and the calibration subroutine of MODFLOW.
There is also a need to address the above-mentioned problem through alternative, relatively simpler,
modeling techniques. Several artificial intelligences based techniques have been found as useful
alternatives, e.g., artificial neural networks (ANN), adaptive neuro fuzzy inference systems (ANFIS),
particle swarm optimization-neuro fuzzy inference systems (PSO-ANFIS), support vector regression
(SVR), bidirectional long short-term memory (Bi-LSTM) network, and gated recurrent unit (GRU).
Elbaz et al. [27,28] integrated PSO-ANFIS with genetic algorithm models to predict the earth pressure
balance for the performance of a shield via tunneling at a site in China. The very small error
found between the observed and simulated earth pressure balance showed the high performance of
their models. Recently, Gao et al. [29] used GRU for solving a similar problem in Luoyang, China.
Although the application of these deep learning arterial intelligence models in the field of groundwater
predictions is relatively rare to date, some researchers used the ANN, ANFIS, and SVR to simulate
groundwater-levels [30–36].
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Panahi et al. [37] used convolutional neural network and SVR models to map groundwater but did
not address the challenges associated with the in-depth-analysis of groundwater levels. Fan et al. [38]
applied machine learning methods to analyze pumping tests to determine the aquifer parameters.
They concluded that the machine learning models can successfully help to analyze the pumping tests
for the estimation of aquifer parameters. Chen et al. [39] compared the application of machine learning
in groundwater modeling with numerical techniques. They found that the performance of machine
learning models (ANN and SVR) is better than that of hydraulic models for short-term predictions.
However, hydraulic techniques of groundwater simulations are based on physical laws and these
are much better methods than the artificial intelligence models in general (Table 1). Nevertheless,
extensive aquifer data is required for use of these models. Their study showed that further research
is required to further explore the use of ANN in the field of groundwater modeling. Accordingly,
the second objective of the present paper is to find a simple solution to the problem of undefined
boundary conditions of aquifers using ANN and ANFIS models.

Table 1. Comparison of GCM with data-driven models ANN and ANFIS.

Characteristics Hydraulic Model ANN/ANFIS Remarks

Computational
expenses (need high

speed computers and
time for computations)

High Moderate

- Comparatively higher computing facilities are
required for hydraulic models.

- Moderate computing power may function
adequately for the ANN. [8,39]

Data and model
processing requirements Complex Moderately

complex

- Requires precise values of aquifer parameters
and high resolution mesh with lower
computational time steps.

- Data of a specific aquifer are used to predict the
future water levels and quality parameters in
ANN/ANFIS application. [8,10,32,33,39]

Model Type Physically
distributed

Black-box (data
driven)

- Hydraulic models incorporate physical processes
and laws involved in predicting groundwater
levels and quality parameters.

- ANN/ANFIS are data-driven models and do not
involve any physical processes. These models
only use the data observed during training,
testing, and predictions. [10,32,33,39]

Model bias Moderate to good
Good for

specific data
but limited in

generality

- The biases are of varying magnitude (wide range
of variation) in hydraulic model projections.

- The biases are limited to a certain range in most
cases of data-driven model projections, but
ANNs/ANFIS lack generality. [8,10,32,33,39]

Long-term future
predictions

Easy, once the
model is

calibrated
Challenging

- Long-term future predictions are easy once the
hydraulic model is calibrated and validated.

- High expertise and experience of specific
problem is required for long-term future
predictions by ANN/ANFIS. Expertise is
required for the normalization and
de-normalization of data. [8,10,32,33,39]

The third objective of this study is the use of ANN/ANFIS models for long-term future predictions
of groundwater levels to explore the aquifer depletion. Most of the Gulf countries are water-stressed
and require sustainable groundwater planning and management [40]. The Saq Aquifer in the Qassim
Region of Saudi Arabia represents a unique characteristic of arid regions, i.e., the aquifer recharge
is almost negligible, but the groundwater pumping is continuous to meet municipal and irrigation
requirements. The entire aquifer can ultimately dry sometime in the future if the present pumping
trends continue without appropriate remedial measures. A simple but reliable groundwater model is
required for this purpose. Hence, three ANN and an ANFIS models were investigated in this study
and the best one was used for long-term predictions of groundwater-levels. It is worth mentioning
here that most of the modelling based on ANN/ANFIS in past research dealt with only the short-term
predictions of groundwater-levels [34–37,41,42]. Khedri et al. [42]. applied five various data-driven
techniques for the simulation of groundwater levels. Their study only dealt with the short-term
predictions of groundwater levels. According to them, models based on artificial intelligence could
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predict groundwater levels properly for one to two future months, but in the case of forecasting for
three future months, the performance of these techniques was substandard. Long-term predictions
using ANN/ANFIS is a challenging and novel research area, which is addressed properly in this paper.
A state-of-the-art model was developed by writing a code in MATLAB for the long-term simulation of
groundwater-levels using ANN/ANFIS.

Although there is no conceptual difference between our model and the classical ANN model,
in the classical neural network toolbox, the user cannot, (i) define initial weights of the links and
bias values, (ii) define different types of activation functions between the layers, (iii) outline different
training algorithms (the 12 algorithms), and (iv), most importantly, users don’t have the option to
select the type of the division of the database for the cross validation into subsets. Our new code
facilitates defining the initial weights of the links and bias values, changing the number of hidden
layers, neurons in each hidden layer, activation functions, training algorithms, and division of data
base (i.e., randomly, index, group) for the cross validation into subsets (training, validation and testing).
The new ANN code is developed in a MATLAB environment due to the limitations of neural network
toolbox. As author used different combinations of the above-mentioned parameters, the results of the
present study show an optimized architecture of the ANN model.

It is worth mentioning here that long-term predictions for time series problems no doubt require
deep learning models, such as recurrent neural networks (RNN), LSTM, convolutional neural networks
(CNN), etc. For long-term predictions, we adopted a simple approach by changing the targets and
predictions into groundwater-level-changes, instead of groundwater-levels, and make it a conventional
ANN/ANFIS simulation problem. Hence, we have tackled the problem of long-term simulations by
training the ANN/ANFIS model for the prediction of changes in groundwater levels instead of the
direct simulation of water levels. The normalization and de-normalization were made for target and
predicted groundwater level changes, respectively. This makes the problem of long-term predictions
similar to that dealt with the classical ANN/ANFIS models for short-term predictions. The impacts of
various pumping rates on groundwater levels are studied to find an optimal solution for reducing the
depletion of Saq aquifer.

The results of ANFIS are added in this research to check the efficiency of a hybrid type artificial
intelligence model. ANFIS integrates the neural networks with the fuzzy rule-based system to
accommodate the system uncertainties. First, this integrated approach develops a fuzzy model that
derives its input variables from the fuzzy rules defined based on the input-output data. Next, the neural
network tweaks these rules and generates the final ANFIS model.

2. Materials and Methods

2.1. Methodological Framework

In the present study, we used two types of techniques, including the hydraulic model MODFLOW
and the data-driven models (ANN and ANFIS), to explore the Saq Aquifer depletion. A brief comparison
of these models is given in Table 1. A framework illustrating the overall methodology is shown in
Figure 2. The method used in this study comprised three main steps. The first step consisted of data
collection regarding groundwater-levels, pumping rates, well locations, and aquifer parameters of the
study area. We normalized the data regarding pumping rates and groundwater-levels for ANN and
ANFIS models. The second step was to calibrate/train/test/validate the hydraulic and ANN/ANFIS
models. Part of the data (say 23 years out of 38 years, i.e., 60%) was used for training/calibration and
the remainder was used for testing/validation. So, the data were divided into three parts, namely 60%,
20%, and 20%, respectively, for the training, testing, and validation of ANN/ANFIS models and two
parts, 60% and 40%, for the calibration and validation of the hydraulic model. Coding was prepared
in MATLAB to develop an ANN and ANFIS to accomplish the required objectives. In the third step,
the models were applied for future predictions of groundwater levels to study the aquifer depletion.
The rate of groundwater use is increasing day after day because of the population increase and the
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ever-rising standards of living. According to a report from the Ministry of Water and Electricity
Saudi Arabia, the population growth rate is about 3% in the Riyadh and Qassim Regions [43]. A total
of four future scenarios for various pumping rates were examined to explore the aquifer depletion.
Three scenarios were built with an increase in the prevailing water extraction rate by 1%, 2% and
3% per year from 2020 to 2070. The fourth scenario was examined by continuing a constant rate of
pumping from 2018 to 2070 without any change in the pumping rate as observed in 2018.Water 2020, 12, x FOR PEER REVIEW 6 of 20 
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Figure 2. Groundwater Modeling Framework to Explore the Impacts of Pumping on Depletion
of Aquifer.

2.2. Study Area

Our study area included one of the most important cities of the Al-Qassim region, the Buraydah,
and its surroundings, as shown in Figure 3. Buraydah is the capital of the region and is located between
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longitudes 43◦50′55.99′′ and 44◦ 8′ 59.85′′ E and latitudes 26◦10′47.28′′ N and 26◦27′5.60′′ N. It has
mainly dry weather [44]. The average annual rainfall in the area is about 125 mm [4,45].Water 2020, 12, x FOR PEER REVIEW 7 of 20 

 

 

Figure 3. Map of the study area showing the locations of pumping wells (after Alotaibi et al. [44]. 
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The water supply to the region is mainly dependent upon groundwater. The Saq Aquifer, which is
one of the well-known aquifers in Saudi Arabia, is the major source of water supply. The cross-section
of the Saq Aquifer is shown in Figure 4. The outcrop of the Saq aquifer is very vast. It encompasses
nearly 1200 km only in Saudi Arabia, joining the Jordanian border as far south as longitude 45◦ E and
latitude 24◦30′ N. It is a confined aquifer with a variable thickness changing from 700 m in its northern
part to 400 m in its southern part. The average thickness of the aquifer in the study area is nearly
500 m [4,45].
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The subsurface strata comprise medium- to course-sized sandstone. There are some local
areas containing fine sandstone also. The Saq aquifer groundwater has an electrical conductivity of
approximately 0.276 S/m. The pumping wells are partially penetrating, having an average depth of
about 650 m. The screen of the wells is 125 m long [4].

2.3. Description of Hydraulic Model (MODFLOW)

The well-known Bossinesq equation governs groundwater flow is expressed as:
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where the values of the hydraulic conductivities are represented by Kxx, Kyy, and Kzz in the x, y,
and z directions, respectively, h represents the groundwater-head, the specific storage of the aquifer is
expressed by Ss, W represents a source/sink, and time is expressed by t. The finite difference scheme is
applied to obtain the numerical solution to the above equation in the MODFLOW. The input and output
data for MODFLOW is presented in Table 2. Selection of the mesh size and appropriate boundary
conditions is highly challenging task in the case of the Saq aquifer. In this paper, a rectangular type
mesh of 30 × 20 km was developed by creating 80 rows and 70 columns. The number of rows and
columns in the mesh were increased significantly to obtain denser mesh near the pumping wells for
simulating the groundwater levels as precisely as possible. As mentioned earlier, the aquifer thickness
(in the vertical direction) was 500 m, above which there was an impermeable cover. The upper layer
above the 500 m thick aquifer is about 628 m [4,45]. The average ground surface level is around 600 m
from the mean sea level. The pumping wells are partially penetrating wells with a screen length
of 125 m, so the confined part of the 500-m thick aquifer is divided into four layers, each of 125 m,
to simulate the screen effects precisely. In this way, five layers with thicknesses of 631, 125, 125, 125,
and 125 m were considered, while the top layer was considered impermeable (Figure 5).

The parameters of the aquifer below the 600 m soil cover were found by the pumping test.
The transmissivity of the aquifer was found to be 4500 m2/day. The aquifer is confined, homogeneous,
and isotropic. The hydraulic conductivity of the aquifer was found to be 3.6 m/day and was the
same in all the three directions (Kxx = Kyy = Kzz). The recharge from the surface to the aquifer is
negligible. The seepage from the basement and the deep groundwater outflow were considered
negligible. The aquifer is very large and has known boundaries only at its ends and outcrops. There is
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continued pumping with negligible recharge, so the boundary conditions change continually. Hence,
the choice of boundary conditions for the study area was a difficult task. The general head boundary
condition was the appropriate choice and was adjusted by calibration. This is further explained in the
calibration section.

Table 2. Input and output data for MODFLOW.

Data Name Description Value

Input Data

Hydraulic conductivity Estimated by pumping test and
Cooper Jacob Method [4,22] Kxx = Kyy = Kzz = 3.6 m/day

Transmissivity Estimated by pumping test and
Cooper Jacob Method [4,22] 4500 m2/day

No of aquifer layers Estimated by previous studies [4] 5 (631, 125, 125, 125, and 125 m)
Mesh size Adopted from previous studies [4] 30 km × 20 km area divided into 80 rows × 70 columns

Pumping rates From Ministry of Environment,
Agriculture and Water, Saudi Arabia For 55 pumping/observational wells (1980 to 2018)

Water levels (a) From Ministry of Environment,
Agriculture and Water, Saudi Arabia For 55 pumping/observational wells (1980 to 2018)

Initial conditions Adopted from previous studies [4] Water levels at the start time of simulations

Boundary conditions Calibrated assuming general head
boundary conditions Challenging task

Output

Water levels (b) Predicted by the model For 55 pumping/observational wells (1980 to 2018) for
calibration and validation

Water levels (c) Predicted by the model For 55 pumping/observational wells (1918 to 2070)
future predictions
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2.4. Artificial Neural Networks (ANN)

The artificial neural network (ANN) model is a data-driven model [41,46]. The ANN is one of the
artificial intelligence techniques that simulates the actions of the human brain with the help of neurons.
ANNs are becoming very common for hydrologic modeling and have been used to solve problems
of applied nature in engineering and science [47,48]. These models may be congregated into two
key categories: feed-forward and feed-back networks [46,47,49]. The most commonly used family of
feed-forward networks contains a layered-network in which the neurons are organized in layers with
unidirectional connections between the layers. This is known as multilayer perceptron (MLP) [47–49].
The input and output data for ANN are presented in Table 3. Figure 6a illustrates an MLP with three
types of layers, including input, output, and hidden layer. The neurons in the input layer act as buffers
for allocating the input signals to neurons in the hidden layer. The input signals can be expressed as
xi (i = 1, 2, . . . , n with n being the total number of input signals). Each neuron j in the hidden layer
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characterizes the sum of its input signals xi after weighting them with the strengths of the respective
connections wij from the input layer. It then calculates its output yj as a function f of the sum of wij × xi.

Table 3. Input and output data/parameters for ANN.

Parameter Name Description Value/Comment

Input Data

Number of hidden layers Adopted to investigate the best
architecture of the model Two to three

Number hidden neurons in each layer Adopted to investigate the best
architecture of the model 5 to 15 (5, 10, 15)

Activation functions Tested various functions -
Training algorithms Tested various training algorithms -

Data base division for training, testing
and cross validation Tested various divisions -

Pumping rates From Ministry of Environment,
Agriculture and Water, Saudi Arabia

For selected pumping/observational
wells (1980 to 2018)

Water levels (a) From Ministry of Environment,
Agriculture and Water, Saudi Arabia

For selected pumping/observational
wells (1980 to 2018)

Output

Water levels (b) Predicted by the model
For selected pumping/observational

wells (1980 to 2018) for
training/testing/validation

Water levels (c) Predicted by the model For 55 pumping/observational wells
(1918 to 2070) future predictionsWater 2020, 12, x FOR PEER REVIEW 11 of 20 
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Three of the built-in functions available in MATLAB (Levenberg Marquardt (LM), Bayesian
regularization, and scaled conjugate gradient) were tested. The LM algorithm combines the merits of
two training algorithms, namely the steepest descent and Gaussian–Newton methods, and searches
for the global minima function to optimize the solution [41,47–49]. Bayesian regularization is a
highly robust training algorithm for simulating the short-term fluctuations in groundwater levels.
However, the Levenberg–Marquardt algorithm yields convergence comparatively more quickly than
Bayesian regularization [49]. The scaled conjugate gradient is an efficient training algorithm with quick
convergence and a high degree of accuracy [49–51].

The performance of the developed models was tested using Nash–Sutcliffe model efficiency (NSE)
and mean square error (MSE), as explained in the coming sections. Finally, the results were generated
for future groundwater levels using an ANN for Buraydah Qassim up to the year 2070 for various
pumping rate scenarios.

2.5. Adaptive Neuro Fuzzy Inference System

ANFIS is a very popular branch of artificial intelligence models. A combination of fuzzy-if-then
rules are used to describe the input-output relation of a real system in ANFIS [32,33]. The output
of each of these rules is defined by a set of input variables and a constant term. The average of
the weighted output of each rule becomes the concluding output. The functional block of ANFIS,
consisting of fuzzification, inference, and defuzzification processes, is presented in Figure 6b [30,31].

2.6. Model Performance Evaluation

There are numerous statistical indices that are used for the evaluation of model performance.
These indices are based on the comparison of measured and predicted data. It is worth noting that
about 38 years (1980–2018) of data recorded for groundwater levels and pumping rates were used
to check the performance of the models for various stages, including training/calibration, testing,
and validation. A similar approach was adopted in previous studies [44,52].

The parameters adopted in this study to measure the performance of the models are given by the
following equations [44,52,53]. The Nash–Sutcliffe model efficiency (NSE) is given as:

NSE = 1−

∑n
i=1(GWLo

i −GWLp
i )

2∑n
i=1(GWLo

i −GWLavg)2 (2)

where GWL is the variable representing the groundwater level, o is the observed value of GWL,
p represents the predicted value, and n denotes the total number of data points. As per the criteria
adopted by Rauf and Ghumman [54], values from 0.75 to 1.0 of NSE can be categorized as ‘very good’,
0.65 to 0.75 can be considered ‘good’, 0.5 to 0.65 as ‘satisfactory’, and the values between 0.4 and 0.5
represent an ‘acceptable’ performance of the model.
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The mean bias error (MBE) is given as:

MBE =
∑

n
i=1

(
GWLp

i −GWLo
i

)
n

(3)

The positive values of MBE represent overestimated predictions whereas negative values are for
underestimated predictions [54].

3. Results and Discussion

3.1. Hydraulic Model Results

The most important and challenging parameter in the calibration of the hydraulic model was
the adjustment of the general head boundary condition. The results of calibration of MODFLOW
are shown in Figure 7a,b. The NSE value was found to be 0.9. This value of NSE lies in the range of
“very good” according to the criteria adopted by Rauf and Ghumman [54]. Furthermore, our results
are similar to those of Mohanty et al. [55] and Lyons et al. [16], although the hydraulic conductivity
and specific storage were the most sensitive parameters in the calibration phase of their groundwater
hydraulic model, but adjustment of the boundary condition was most crucial issue in our case.
The resultant predicted vs. observed line was close to the 45-degree line, which also showed that the
results of calibration were “very good”. The value of NSE for validation (0.87) was also in the “very
good” range. Figure 8b shows that some of the predicted groundwater depths were underestimated,
whereas others were overestimated. A mean bias error (MBE) value of 0.89 m indicates that, as a
whole, the groundwater levels are slightly overestimated. So, one has to be careful in the judgement of
simulations. A very good NSE value does not guarantee perfect simulations. There should at least be
one other check (Figure 8b) to decide the fate of the model results.
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3.2. ANFIS Results

Figure 8a,b presents the results of ANFIS. It is observed that ANFIS is highly efficient technique
for simulation of groundwater levels. In Figure 8a,b, the NSE is 0.95 and the 45-degree line is very
close to the predicted values of groundwater levels by ANFIS, which shows an excellent performance
of ANFIS. Our results are in line with the past studies by Emamgholizadeh et al. [32] and Das [33].

3.3. ANN Model Results

In the case of ANN models, comparatively better performance was observed for ANNs with
10 hidden neurons in both the two-layer and three-layer architecture, as compared with those having 5
or 15 neurons (see Figure 9a,b). The value of NSE was comparatively higher when the models were
run with 10 neurons. Figure 10a,b illustrates that the ANN performed better in the case with three
layers, as compared with the two-layer architecture. For training, testing, and validation, NSE values
were found to be 0.97, 0.94, and 0.92, respectively, for the three-layer architecture and 0.96, 0.86,
and 0.91, respectively, for the two-layer architecture. The minimum value of NSE in these results was
0.86, which also represents a “very good” performance (NSE range 0.75 to 1 represents “very good”
performance [54].
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Figure 9. Comparison of the ANN results for 5, 10, and 15 hidden neurons in each layer: (a) two-layer
architecture, (b) three-layer architecture.
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Figure 10. Comparison of ANN results for two- and three-layer architecture models with 10 neurons in
each layer; (a) MSE values, (b) NSE values.

Further, the performance of the Scaled Conjugate Gradient training function was better than
that of the Levenberg–Marquardt and Bayesian Regularization training functions for the three-layer
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architecture with 10 neurons (Figure 11a–d). Figure 11a shows that the predicted groundwater
levels from scaled the conjugate gradient training function were comparatively closer to the
45-degree line (the 45-degree line shows the perfect matching between the predicted and measured
groundwater-levels). However, as shown by Figure 11b, the results from the other two training
functions, namely Levenberg–Marquardt and Bayesian Regularization, were also not bad. Figure 11c
shows that the NSE values remained in the range of 0.65 to 0.97. So, the overall performance of all
the three models was “good” to “very good”. This is further strengthened by Figure 11d that shows
a very low mean square error in the range of 0.02–0.03. Similar results were observed by previous
studies [30,41,42,49]. This is most probably because a stronger optimization scheme was used in the
scaled conjugate gradient to get a better global minimum with the minimum possible number of
trials [16,54].
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Figure 11. Comparison of the three ANN models. (a) Measured vs predicted groundwater levels,
(b) Measured and predicted groundwater levels with respect to time showing depletion of aquifer,
(c) NSE values, (d) MSE values.

3.4. Comparison of ANN, ANFIS and Hydraulic Model Results

Figure 12 presents a comparison of results from various models with respect to their performance.
It is observed that the performance of ANN and ANFIS models was better in the training stage as
compared to that of the calibration of the MODFLOW. The mean-square-error was lower and the NSE
was higher in the training stage of ANN and ANFIS models as compared with the mean-square-error
and the NSE in the case of calibration of the MODFLOW. Our results support the results found by
recent studies [8,10,32,33,39,55].
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3.5. Long-Term Predictions

The predicted groundwater depths for various pumping rates scenarios are shown in Figure 13.
The forecast of the drawdown up to the year 2070 with respect to the water level in 2018 was found to be
70–105 m (70, 81.65, 93.3, and 105 m) for four different options of pumping rates (keeping pumping rates
constant or increasing by 1%, 2%, and 3% per year as compared to the pumping rate in 2018. The Saq
Aquifer is covered by the Qassim Aquifer, which has contaminated shallow groundwater. Such a large
drawdown in the Saq aquifer may result in a low pressure in the aquifer, allowing contaminated water
from the overlying aquifer to enter into the aquifer. Hence, a serious environmental disaster may occur.
So, it is very important to adopt some sustainable management strategies.Water 2020, 12, x FOR PEER REVIEW 17 of 20 

 

 
Figure 13. Future prediction results of groundwater depths/aquifer depletion for various pumping 
rate scenarios. 

This research will be helpful in finding the sustainable pumping rates for future. For example, 
in case of constant pumping rate, there may be significant increase in the life of the Saq Aquifer. A 33 
% reduction in drawdown can be achieved in long-term (50 years in future) by adopting water 
conservation strategies in comparison to the continuously increasing pumping rates that are required 
to fulfil the water demands of rapidly increasing population. Results of study will facilitate in the 
planning and management of limited water resources in Saudi Arabia, the Gulf Region, and other 
arid regions with similar water stress conditions. 

4. Conclusions and Recommendations 

The hydraulic model MODFLOW predicted the changes in the groundwater levels of the Saq 
Aquifer in the vicinity of water supply pumping stations with 55 wells. ANN models effectively 
simulated the groundwater level changes around the same pumping stations. Two-layered and three-
layered ANN models with 5, 10, and 15 hidden neurons in each layer were examined. Three types of 
training functions were investigated in ANN models. ANFIS has been applied successfully to 
simulate the aquifer depletion. 

The study found that ANFIS can simulate groundwater levels efficiently with NSE up to 0.95. In 
the case of the ANNs, it provided the best performance with 10 hidden neurons in each layer. The 
ANNs with 10 hidden neurons in each layer perform better than those with five or 15 neurons. A 
three-layered architecture with 10 hidden neurons performs better than a two-layered architecture. 
Moreover, the scaled conjugate gradient performs better than the Levenberg–Marquardt and 
Bayesian regularization training functions. The hydraulic model is comparatively more reliable, but 
its performance for the given set of data is not as good as that of the ANN models. 

Future predictions show that a substantial groundwater drawdown (ranging from 70 to 150 m) 
in Saq Aquifer is expected in the next 50 years, with respect to the reference water levels in 2018. 
There may be a serious environmental disaster if precautionary measures are not taken. However, no 
increase in pumping rates may enhance the life of the Saq Aquifer significantly. The drawdown will 
reduce by 33% compared with the drawdown in 2070 in the case of continued pumping at increasing 
rates to meet the water demands of the increasing population. There is hardly any recharge to the 
Saq Aquifer and it may vanish after some time. Therefore, new sources of water should be developed 
as per the goals of the country’s Vision 2030. 

Future research work on how new sources of water can be developed is recommended. 
Improvement in the presentation of the model is also suggested. More effective technology, 
sophisticated data, knowledge of outcrops, and appropriate management are needed for the study 
area. Meteorological, hydraulic, hydrologic, and detailed geological data for the whole of the Qassim 

120

140

160

180

200

220

240

260

280

2020 2030 2040 2050 2060 2070

G
ro

un
dw

at
er

 d
ep

th
 (m

)

Time (years)

Constant pumping rate Increse 1%

Increse 2% Increse 3%

Figure 13. Future prediction results of groundwater depths/aquifer depletion for various pumping
rate scenarios.

This research will be helpful in finding the sustainable pumping rates for future. For example,
in case of constant pumping rate, there may be significant increase in the life of the Saq Aquifer.
A 33 % reduction in drawdown can be achieved in long-term (50 years in future) by adopting water
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conservation strategies in comparison to the continuously increasing pumping rates that are required
to fulfil the water demands of rapidly increasing population. Results of study will facilitate in the
planning and management of limited water resources in Saudi Arabia, the Gulf Region, and other arid
regions with similar water stress conditions.

4. Conclusions and Recommendations

The hydraulic model MODFLOW predicted the changes in the groundwater levels of the Saq
Aquifer in the vicinity of water supply pumping stations with 55 wells. ANN models effectively
simulated the groundwater level changes around the same pumping stations. Two-layered and
three-layered ANN models with 5, 10, and 15 hidden neurons in each layer were examined. Three types
of training functions were investigated in ANN models. ANFIS has been applied successfully to
simulate the aquifer depletion.

The study found that ANFIS can simulate groundwater levels efficiently with NSE up to 0.95.
In the case of the ANNs, it provided the best performance with 10 hidden neurons in each layer.
The ANNs with 10 hidden neurons in each layer perform better than those with five or 15 neurons.
A three-layered architecture with 10 hidden neurons performs better than a two-layered architecture.
Moreover, the scaled conjugate gradient performs better than the Levenberg–Marquardt and Bayesian
regularization training functions. The hydraulic model is comparatively more reliable, but its
performance for the given set of data is not as good as that of the ANN models.

Future predictions show that a substantial groundwater drawdown (ranging from 70 to 150 m)
in Saq Aquifer is expected in the next 50 years, with respect to the reference water levels in 2018.
There may be a serious environmental disaster if precautionary measures are not taken. However,
no increase in pumping rates may enhance the life of the Saq Aquifer significantly. The drawdown will
reduce by 33% compared with the drawdown in 2070 in the case of continued pumping at increasing
rates to meet the water demands of the increasing population. There is hardly any recharge to the Saq
Aquifer and it may vanish after some time. Therefore, new sources of water should be developed as
per the goals of the country’s Vision 2030.

Future research work on how new sources of water can be developed is recommended.
Improvement in the presentation of the model is also suggested. More effective technology,
sophisticated data, knowledge of outcrops, and appropriate management are needed for the study
area. Meteorological, hydraulic, hydrologic, and detailed geological data for the whole of the Qassim
Region should be collected for wide-ranging hydraulic and ANN modeling. A comparison of various
conventional and deep learning artificial intelligence methods is also recommended.
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