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Abstract: In this paper, forced convection of a multiwalled carbon nanotube (MWCNT)–water
nanofluid (NF) in a new flat plate solar collector (FPSC) equipped with elliptical pipes instead of
circular ones is investigated. The three-dimensional conservation equations were solved in the
domain with the finite volume method (FVM) based on the semi-implicit method for pressure linked
equations (SIMPLE) algorithm. The laminar-turbulent range of the Reynolds number (Re) and the
volume fraction of the NF (φ) were 50–12,000 and 0–0.1, respectively. The optimization process was
accomplished through the comparison of diverse parameters to attain the optimal case with the highest
exergy efficiency. In this study, it was concluded that, in the case of using elliptical pipes instead of
circular tubes, the time that the fluid was inside the FPSC increased, which led to an increase in the
outlet temperature, while the exergy efficiency of the FPSC increased. Additionally, it was observed
that using elliptical pipes enhanced the outlet fluid temperature, energy efficiency, and exergy
efficiency. Generally, while the trend of exergy efficiency variation with effective parameters was
rising, applying elliptical pipes caused the efficiency to increase. In addition, the exergy efficiency
variation decreased when these parameters were changed. The highest value of exergy efficiency
was 7.1%. On the other hand, for each specific FPSC, there was a unique mass flow rate at which
the exergy efficiency reached its maximum value, and for higher mass flow rates, the efficiency
was slightly diminished and then remained unchanged. Finally, the highest exergy efficiency was
achieved for φ = 0.10%.

Keywords: nanofluid; flat plate solar collector; elliptical pipe; exergy optimization

1. Introduction

The use of solar energy offers numerous advantages, especially in Iran, where levels of radiation
from the sun are much higher than average and where many provinces lack any centralized
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infrastructure to support a national energy supply. As the demand for energy is rapidly rising
in Iran, using the necessary technology to convert energy from the sun’s rays into useful energy is very
important for the vast majority of the population. Solar energy possesses a significantly higher potential
in comparison with other renewable energies, such as wind, biomass, ocean, hydro, and geothermal
sources. There are many sorts of systems that employ solar energy collectors as an input energy
source in order to drive a process. Within all of these systems, the flat plate solar collector (FPSC)
has a simple design and low costs of construction compared with other collector types. In addition
to direct solar radiation absorption, they can also absorb diffuse radiation. The results of numerical
and empirical research show that FPSC performance is dependent on a lot of factors, including pipe
diameter, wind velocity, solar radiation, FPSC material, flow rate, and channel depth. However,
one suitable solution to promote the efficiency of FPSCs is utilizing a heat sink below the absorber plate
instead of pipes. It can augment the wetted surface between the fluid and absorber and also intensify
the outlet temperature of the fluid. Furthermore, employing mixers in heat exchangers is not only one
way to remove the laminar sub-layer but also a means of improving heat transfer by creating local
turbulence [1–6]. The aim of this work is to examine the impact of using a heat sink and mixer on the
energetic and exergetic performance of FPSCs. Another method is increasing the transmission of heat
between the fluid and solar absorbing plate. One way to achieve this is through the use of nanofluids
(NFs) in FPSCs. Many researchers have reported the application of NFs in thermal systems [7–13].
In this regard, Baniamerian et al. [14] employed computational fluid dynamics (CFD) to determine
the aerodynamic coefficients of parabolic trough collectors. They realized that for the solar farm to
operate properly, the impact of the vortices formed around the collectors by the wind must be taken
into account. In another numerical investigation, Ziapour and Rahimi [15] investigated the natural
convection of transmission of heat in a horizontal absorber FPSC. Their results show that as the cosine
wave amplitude is enhanced, the collector enclosure irreversibility declines. Ajay and Kundan [16]
conducted research on the performance assessment of NF-based parabolic solar collectors.

Previous research on FPSCs with serpentine pipes has shown that their exergy efficiency is a
function of temperature and flow rate [17]. The energy efficiency relationship of FPSCs does not
include these parameters. A correlation was developed by Shojaeizadeh and Veysi [18] for the exergy
efficiency optimization of an H2O-alumina NF collector. Said et al. [19] carried out an energetic and
exergetic assessment of an FPSC filled with an aqueous aluminum oxide NF. In recent years, new
studies have been conducted in similar fields [20–35]. Although the usage of NFs for the increased
efficiency of FPSCs has been assessed, there is no study investigating the impacts of using elliptical
tubes and aqueous, multiwalled carbon nanotube (MWCNT) NF-based heat sink solar collectors on
the efficiency of exergy of solar collectors. Therefore, this study is expected to fill the research gap on
the usage of elliptical tubes in NF-based FPSCs. The other objective of this survey is to numerically
examine the impacts of φ on the energetic and exergetic performances of NF-cooled FPSCs using the
finite volume method (FVM).

2. Methodology

2.1. Physical Model

The 3D schematic of a simulated FPSC equipped with elliptical tubes is presented in Figure 1.
In addition, Table 1 shows the diverse specifications of the FPSC. For modeling, the useful energy
gained by the FPSC was computed using analytical equations. Then, the useful energy received by the
coolant, the leaving temperature of the coolant, and exergy efficiency were computed. The turbulent
flow of the NF was assumed to be steady and incompressible. The inlet and outlet boundary conditions
were uniform velocity and zero relative pressure, respectively. The Al-made absorber plate was painted
black matte and exposed to a heat flux that was calculated from the empirical findings of Reference [36]
for a reference FPSC (Table 2). Because the influences of overall heat loss are considered in calculating
useful energy received by the FPSC, the other walls of the heat sink are assumed to be an insulator [37].
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Figure 1. Schematic of the problem. 

Table 1. Properties of the flat plate solar collector (FPSC) simulated in this paper. 

Properties Symbol Quantity 

Dimensions of FPSC Lc × Wc (mm) 200 × 92.5 

Slop of FPSC β 35° 

Number of glass covers N 1 

Emissivity of glass covers εg 0.85 

Thickness of plate δp (mm) 0.1 

Emissivity of plate εp 0.9 

Conductivity of plate kp (W·m−1·K−1) 211 

Optical efficiency η0 0.68 

Thickness of insulators δi (mm) 2.0 

Conductivity of insulators ki (W·m−1·K−1) 0.05 

Table 2. Empirical results of Khorasanizadeh et al. [36] for the reference FPSC. 

Time IT (W·m−2) Ta (°C) Tin (°C) Vw (m·s−1) 

09:00 560 33 44.5 6 

09:30 630 33 45 6 

10:00 750 34 46 5 

10:30 830 35 47 6 
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12:30 1020 38.5 54 6 

13:00 978 40.5 56 6 

13:30 914 40.5 57 5 

14:00 834 41 60 5 

14:30 780 41 61 4 

Figure 1. Schematic of the problem.

Table 1. Properties of the flat plate solar collector (FPSC) simulated in this paper.

Properties Symbol Quantity

Dimensions of FPSC Lc ×Wc (mm) 200 × 92.5
Slop of FPSC β 35◦

Number of glass covers N 1
Emissivity of glass covers εg 0.85

Thickness of plate δp (mm) 0.1
Emissivity of plate εp 0.9

Conductivity of plate kp (W·m−1
·K−1) 211

Optical efficiency η0 0.68
Thickness of insulators δi (mm) 2.0

Conductivity of insulators ki (W·m−1
·K−1) 0.05

Table 2. Empirical results of Khorasanizadeh et al. [36] for the reference FPSC.

Time IT (W·m−2) Ta (◦C) Tin (◦C) Vw (m·s−1)

09:00 560 33 44.5 6
09:30 630 33 45 6
10:00 750 34 46 5
10:30 830 35 47 6
11:00 925 36 50 6
11:30 992 37 51 5
12:00 1006 38 53 5
12:30 1020 38.5 54 6
13:00 978 40.5 56 6
13:30 914 40.5 57 5
14:00 834 41 60 5
14:30 780 41 61 4
15:00 734 39.5 62 5
15:30 626 41 63 6
16:00 607 41 64 6
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2.2. Conservation Equations

The conservation equations used in this study are as follows:

∂
∂xi

(ρui) = 0 (1)

∂
∂x j

(
ρuiu j

)
= −

∂P
∂x j

+
∂
∂x j

[
µ

(
∂ui
∂x j

+
∂u j

∂xi

)]
+

∂
∂x j

(
−ρu′i u

′

j

)
(2)

∂
∂xi

(ρuiT) =
∂
∂x j

[
µ
( µ

Pr
+
µt

Prt

)
∂T
∂x j

]
(3)

where ρ, ui, µ, ú, and uj respectively stand for the density, velocity, viscosity, fluctuated velocity, and
axial velocity. In addition, ρu′i u

′

j denotes the turbulent shear stress, which is obtained as

− ρu′i u
′

j = µt

(
∂ui
∂x j

+
∂u j

∂xi

)
(4)

in which µt denotes the turbulent viscosity, which is computed as

µt = ρCµ
k2

ε
(5)

where k is the turbulent kinetic energy, which is determined as

∂
∂xi

[ρkui] =
∂
∂x j

[(
µ+

µt

σk

)
∂k
∂x j

]
+ Gk − ρε (6)

ε is the dissipation, which is computed as

∂
∂xi

[ρεui] =
∂
∂x j

[(
µ+

µt

σε

)
∂ε
∂x j

]
+ C1ε

ε
k

Gk + C1ερ
ε2

k
(7)

where Gk is given as

Gk = −ρu′i u
′

j

∂u j

∂xi
(8)

where Cµ = 0.09, C1ε = 1.44, C2ε = 1.92, σk = 1.00, σε = 1.30, and Prt = 0.90 [38]. For all variables, 10−6

was considered to be the convergence criterion. The considered NF is Newtonian, and its properties
are temperature dependent [39]:

ρ(T) = 5.3738× 10−10T5
− 9.59976× 10−7T4 + 6.93809× 10−4T3

− 0.255822T2 + 47.8074T− 2584.53 (9)

CP(T) = −4.51782× 10−8T5 + 7.61613× 10−5T4
− 5.12699× 10−2T3 + 17.2363T2

− 2894.85T + 198532 (10)

k(T) = 5.15307× 10−11T5
− 8.15212× 10−8T4 + 5.138× 10−5T3

− 1.61344× 10−2T2 + 2.52691T − 157.532 (11)

µ(T) = −4.37087× 10−13T5 + 7.38482× 10−10T4
− 4.99292× 10−7T3 + 1.68946× 10−4T2

− 2.86313× 10−2T + 1.94641 (12)

The equation of spectral radiative transfer follows Equation (9) [40].

dIv(r, s)
ds

= −(Kav + Ksv)Iv(r, s) + KavIb(v, T) +
Ksv

4π

∫
4π

dIv(r, s′)ϕ(s, s′)dΩ′ + S (13)



Water 2020, 12, 2294 5 of 17

where Iv is spectral radiation intensity, which is computed as [41]

Iv(r, s) = εv(rw)Ib(v, T) +
ρw(rw)

π

∫
n.s′<0

Iv(r, s′).
∣∣∣n.s′

∣∣∣dΩ′ (14)

2.3. First Law Modeling

The useful energy gained by the coolant of the FPSC is determined as [40]

.
Qu, f =

.
m f cp(Tout − Tin) (15)

where ṁf is the mass flow rate, cp is specific heat capacity, and Tin and Tout are entering and leaving
fluid temperatures.

The useful energy gained by the FPSC is determined as

.
Qu, f = Ac

[
S−UL

(
Tpm − Ta

)]
(16)

where Ac, Ta, and Tpm are respectively the absorber area, ambient temperature, and the average
temperature of the absorber plate. In Equation (16), S is the absorbed solar radiation by the plate:

S = η0IT (17)

where η0 is the optical efficiency of the FPSC:

η0 = (τα) = 1.01τα (18)

In addition, IT can be determined as

IT = IbRb + Id

[
1 + cosβ

2

]
+ Iρgr

[
1− cosβ

2

]
(19)

where Id, Ib, and I are diffuse radiation, beam radiation, and solar radiation on the horizontal surface,
respectively. In addition, Rb is the beam radiation tilt factor, which can be computed as follows:

Rb =
cos(ϕ− β) cos(δ)cos(ω) + sin(ϕ− β)sin(δ)

cos(ϕ)cos(δ)cos(ω) + sin(ϕ)sin(δ)
(20)

where δ is the declination angle, ω is the hour angle, and ϕ is latitude.
UL is the overall heat loss coefficient, which is obtained as

UL = Ut + Ub + Ue (21)

where Ub, Ut, and Ue are the back loss coefficient, top loss coefficient, and edge loss coefficient,
respectively. Ut is calculated with Equations (22)–(26) [40]:

Ut =

 N

C
Tpm

[
Tpm−Ta

N+ f

]e +
1

hw


−1

+
σ
(
Tpm + Ta

)(
T2

pm + T2
a

)
1

εP+.0059Nhw
+

2N+ f−1+0.133εP
εg

−N
(22)

f = (1 + 0.089hw − 0.1166hwεP)(1 + 0.07866N) (23)

C = 520
(
1− 0.000051β2

)
(24)
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e = 0.43
(
1−

100
Tpm

)
(25)

hw = 2.8 + 3Vw (26)

where hw and Vw are the convection coefficient of wind and wind velocity, respectively. N is the
number of glass covers, and σ is the Stefan–Boltzmann constant.

In addition, Ub can be expressed as follows:

Ub =
k
L

(27)

The energy efficiency of the FPSC, η, is calculated as

η =

.
Qu, f =

.
m f cp(Tout − Tin) − Ppump

ITAc
(28)

where pump is pumping power and is defined as follows [42]:

Ppump =
P f low

ηpumpηmotor
(29)

where ηpump and ηmotor are the efficiency of the pump and motor, respectively. Additionally, Pflow is the
dynamic pressure drop of the fluid and is calculated as follows:

P f low =

.
m f ∆P

ρ
(30)

2.4. Second Law Modeling

Exergy is the energy that is available for use. The rate of the exergy equation is defined as
follows [42]:

.
Ein −

.
Eout −

.
Eloss −

.
Edes =

.
Es (31)

where ĖS is the rate of storage exergy, with the assumption that the FPSC operates at a steady state
equal to zero. Ėin is the inlet exergy rate and includes the rate of inlet exergy by the inlet fluid to the
FPSC (Ėin,f ) and the rate of inlet exergy of absorbed solar radiation (Ėin,Q).

The rate of inlet exergy by the inlet fluid to the FPSC is defined as follows [36]:

.
Ein, f =

.
mcp

(
Tin − Ta − Taln

(Tin
Ta

))
+

.
m∆Pin
ρ

(32)

where ∆Pin is the difference between the pressure of the inlet fluid and ambient. The rate of inlet exergy
of absorbed solar radiation is defined as follows [36]:

.
Ein,Q = η0ITAc

(
1−

Ta

Ts

)
(33)

With the assumption that the sun is a black body, T = 5777 K. According to the influence of the
atmosphere on the depletion of solar radiation, Ts is the apparent temperature of the sun, which is
about 0.75 of the sun’s temperature and is approximately equal to 4333 K [43].

Ėout is the rate of outlet exergy and includes the rate of outlet exergy by the exiting fluid of the
FPSC (Ėout,f ) [36].

.
Eout, f =

.
mcp

(
Tout − Ta − Taln

(Tout

Ta

))
+

.
m∆Pout

ρ
(34)
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where ∆Pout is the difference between the pressure of the outlet fluid and ambient pressure. Ėloss is the
rate of exhausted exergy and includes the rate of exergy exhausted from the plate to ambient (Ėi,p) and
exhausted optical exergy (ĖL,optical).

The rate of exhausted exergy from the plate to ambient is defined [36]:

.
El,p = ULAc

(
Tpm − Ta

)(
1−

Ta

Tpm

)
(35)

Because of the optical properties of the plate, a part of the solar radiation is not absorbed. The
exhausted optical exergy of the FPSC is calculated [44,45]:

.
EL,optical =

(1− η0)
.
Ein,r

.
Ein,r

= 1− η0 (36)

Ėdes is the rate of destroyed exergy due to temperature gradients between the plate and sun
(Ėd,∆Tp-s), temperature gradients between the plate and fluid (Ėd,∆Tf ), pressure drop from the
inlet to outlet caused by the viscosity of the fluid, and the effects of walls of the heat sink (Ėd,∆P).
These parameters are calculated as follows, respectively [36]:

.
Ed,∆Tp−s = η0ITAcTa

(
1

Tp
−

1
Ts

)
(37)

.
Ed,∆Tp−s =

.
mcpTaln

(Tout

Ta

)
−

.
mcpTa

Tout − Tin
Tp

(38)

.
Ed,∆Tp−s =

.
m∆pTaln

(
Tout
Tin

)
ρ(Tout − Tin)

(39)

The exergy efficiency of the FPSC is defined as the ratio of exergy increase of the fluid in the FPSC
to the exergy of the solar radiation entering the FPSC, and it is calculated as follows [46,47]:

ψ =

.
Eout, f −

.
Ein, f

ITAc
(
1− Ta

Ts

) (40)

By combining Equations (27)–(36), the exergy efficiency of water-based FPSCs equipped with
elliptical tubes is achieved.

2.5. Nanofluid

The thermophysical properties of an NF are defined by the following relations [48]:

ρn f = (1−ϕ)ρ f + ϕρnp (41)

(
cp

)
n f

=
(1−ϕ)

(
ρcp

)
f
+ ϕ

(
ρcp

)
np

ρn f
(42)

The Patel et al. [49] model is supposed to be a general tool to predict the thermal conductivity of
MWCNT-NFs. However, the model is not able to appropriately predict higher temperatures of NFs.

kn f = k f

(
1 +

knpϕd f

k f (1−ϕ)dnp

)
(43)
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The viscosity of the MWCNTs–water correlation [49,50] is defined as follows:

µn f = µ f
(
1− 0.50437ϕ+ 1.744ϕ2

)
(44)

2.6. Verification and Grid Independence

A mesh study was conducted for the FPSC to evaluate the changes in the results versus grid size.
As Table 3 illustrates, four sets of mesh were generated and employed to obtain the outlet temperature
of the coolant. The outcomes show that a grid size of 3,728,623 nodes is suitable to perform the
required simulations.

Table 3. Grid independence test.

Nodes Tout (◦C) Error (%)

3,243,983 66.6782 2.22
3,599,007 70.5134 1.05
3,728,623 70.7811 0.02
3,954,131 70.7834 -

Computer software validation was performed using the method of Khorasanizadeh et al. [36].
In their study, the properties of an FPSC were evaluated by empirical measurements. Based on Figure 2,
it is clear that there is a remarkable coincidence between the empirical [36] and numerical results in
terms of the outlet temperature of the fluid. The maximum error between empirical and numerical
results in Figure 2 is about 12.5% at 9 a.m.
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Figure 2. Comparison between the results of this study with the empirical results of Khorasanizadeh et al. [36]
in terms of outlet fluid temperature.

3. Results

In this section, first, the FPSC exergy analysis is presented in two different conditions, and then
the optimization case is investigated.

3.1. Energy and Exergy Analysis

The total heat loss coefficient, mean temperature of the absorber plate, FPSC outlet temperature,
and energy and exergy efficiencies of a simple FPSC (with circular tubes) and of a novel FPSC equipped
with elliptical tubes at different hours of the day are reported in Tables 4 and 5, respectively. All of
these values are based on numerical results and analytical correlation.
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Table 4. Results of reference solar FPSC.

Time UL (W/m2
·K) Tpm (◦C) Tout (◦C) η (%) ψ (%)

09:00 7.33 48.11 58.59 54.29 3.34
09:30 7.37 49.06 59.61 57.48 3.53
10:00 7.32 51.32 61.04 57.78 3.95
10:30 7.49 52.41 62.61 64.40 4.21
11:00 7.56 54.25 65.82 63.00 4.35
11:30 7.52 57.07 67.07 63.68 4.58
12:00 7.56 58.42 69.23 61.91 4.60
12:30 7.77 59.31 70.26 61.54 4.55
13:00 7.76 60.46 72.04 61.48 4.54
13:30 7.40 60.57 72.61 60.16 4.68
14:00 7.73 63.22 75.13 58.64 4.67
14:30 7.55 63.47 75.77 57.57 4.56
15:00 7.77 63.89 76.41 56.91 4.41
15:30 7.94 64.09 76.91 56.28 4.21
16:00 7.97 65.11 77.82 55.62 4.15

Table 5. Results of novel FPSC.

Time UL (W/m2
·K) Tpm (◦C) Tout (◦C) η (%) ψ (%)

09:00 7.15 47.08 53.23 64.04 6.34
09:30 7.21 48.02 54.24 67.83 6.88
10:00 7.08 50.27 55.51 68.18 7.77
10:30 7.25 51.33 57.49 75.98 8.34
11:00 7.32 53.21 59.61 74.34 8.71
11:30 7.35 56.00 62.29 76.44 9.21
12:00 7.34 57.32 63.71 74.28 9.98
12:30 7.51 58.14 64.40 73.81 8.75
13:00 7.56 59.32 65.87 73.78 8.62
13:30 7.30 59.52 66.01 72.78 8.93
14:00 7.60 62.13 68.82 69.14 8.87
14:30 7.38 62.42 68.99 69.08 8.81
15:00 7.59 62.64 69.11 66.58 8.51
15:30 7.67 63.01 69.25 65.84 8.01
16:00 7.69 64.12 69.34 65.63 7.88

It is clear that the energy and exergy efficiencies of the novel FPSC increase by about 30% and
60%, respectively, compared with the reference FPSC, owing to the more wetted surface between the
plate and fluid. Furthermore, the mean temperature of the plate and the outlet temperature of the
FPSC continuously increase during the day because of the FPSC inlet temperature of the fluid that is
taken from the reservoir and which is constantly increasing due to FPSC performance in a closed loop
and due to the heat retained in the reservoir. Furthermore, in all conditions, the inlet radiation flux rate
rises from morning to midday hours and then diminishes. The energy efficiency has the same trend.
However, the reason for the decreasing energy efficiency after the afternoon hours is the increasing
inlet fluid temperature and also the increasing temperature of the absorber plate as time passes, which
intensifies the losses.

It is clear from Tables 4 and 5 that the change in UL in different hours is significant, so in the
condition of the FPSC with a simple heat sink, the relative difference between UL at 10:00 and that at
16:00 is about 9%. This difference is greater than that in other cases. This fact shows that the assumption
of constant UL, as some researchers have considered, is not valid [12], and it is necessary to apply its
changes in measurements. Therefore, it is clear that the usage of the novel FPSC with elliptical tubes
may lead to more energy and exergy efficiencies. Hence, in the next sections, the employment of an NF
in a novel FPSC is analyzed.
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3.2. Using a Nanofluid and Exergetic Optimization

For both conditions in which the FPSC is used, the lowest exergy and energy values are observed
at 9 a.m., and both energy efficiency and exergy efficiency are dependent on the IT and radiation angle.
At 9 a.m., the IT is less, and the angle between the direct sun radiation horizon and the vertical to the
FPSC surface is high. Hence, the sun radiation absorption is less. In addition, the FPSC performance,
due to the change in IT and radiation angle, and the change in temperature of the FPSC inlet water are
always transient. These conditions are of high importance in the early hours of the day and are factors
that decrease efficiency. The effect of changing Ta, IT, Tin, η0, and ṁ parameters on exergy efficiency in
different ϕ for the optimal condition (novel FPSC) at this time was studied to optimize the FPSC from
the exergy viewpoint. Therefore, when different values were considered for one parameter, the value
at 9 a.m. was assigned to other parameters. The results related to the influence of changing various
parameters on the exergy analysis are shown in Figures 3–7.
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In Figure 3, the exergy efficiency variation with sun radiation flux for different φ is shown. In the
period of changing radiation flux, from 300 to 1200 W/m2, for all conditions, an increasing trend for the
exergy value is observed. With increasing radiation of the sun, the temperature of FPSC outlet fluid
rises, and this increase leads to an exergy efficiency increase. The exergy efficiency variation with FPSC
inlet fluid temperature for different φ is demonstrated in Figure 4. For base fluid conditions, the exergy
efficiency first increases until the temperature reaches 65–70 ◦C, and then it decreases. On the one
hand, with Tin intensification, the outlet temperature rises, which leads to an exergy efficiency increase.
On the other hand, Tin intensification means that the fluid temperature inside the FPSC increases,
which raises the thermal loss. Therefore, there is one optimum Tin, and above this temperature, the
effect of exergy efficiency reduction due to higher thermal loss is greater than its increase because of the
increased fluid outlet temperature. However, for NF conditions, the exergy efficiency rises in response
to the increased inlet temperature. The variation in exergy efficiency with ambient temperature for
different φ is shown in Figure 5. For all three conditions, exergy efficiency decreases as ambient
temperature increases. In this figure, the effect of using mixers on increasing exergy efficiency due to the
heat transfer rate between the fluid and FPSC is perfectly clear. In Figure 6, the influence of increasing
optical efficiency on exergy efficiency for different φ is demonstrated. By increasing optical efficiency
for all three FPSC conditions, radiation absorption by the absorber plate is enhanced, which causes the
fluid temperature inside the FPSC to rise, and therefore, the exergy efficiency rises. In Figure 7, the
effect of changing the fluid mass flow rate passing through the FPSC is shown for different mass flow
rates from 0.0 to 0.1 kg/s. The applied mass flow rate for three conditions was about 0.055 kg/s. From
the results presented in Figure 7, it is understood that in the simulation conditions, parameters such as
ambient temperature, inlet fluid temperature, optical efficiency, radiate flux, and FPSC cross-section
have the same values as those in Tables 4 and 5, which are observed at 9:00 a.m. For the FPSC with the
base fluid, the optimum mass flow rate that causes the maximum exergy efficiency should be 10 times
lower, i.e., 0.005 kg/s. Consequently, the exergy efficiency is 5.3% instead of 4%. Nevertheless, for the
condition in which the NF is used, the maximum exergy efficiency occurs with the highest mass flow
rate of 0.1 kg/s.

Finally, the novel FPSC equipped with elliptical tubes and filled with the water-based NF
(ϕ = 0.10%) is suggested as the optimum case, with maximum exergy efficiencies in almost all ranges
of flow velocities in the present investigation.
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Figure 8 illustrates temperature contours for the reference and novel FPSC filled with the NF at
the middle plane. As observed in this figure, in the case of using elliptical tubes, the heat diffusion in
the pipes is clearly increased. Furthermore, Figure 9 shows velocity contours for the reference and
novel FPSC filled with the NF at the middle plane.Water 2020, 12, x 13 of 17 
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4. Conclusions

In this contribution, we studied the optimization of a novel FPSC equipped with elliptical tubes
in a closed circuit for three conditions from the viewpoint of exergy analysis by assuming that UL
is the only variable parameter and that the fluid temperature is not equal to ambient temperature.
The effects of using elliptical tubes instead of circular ones and of using an NF through a fluid passage
were studied, and the following results were obtained:

• An increase in solar radiation flux and optical efficiency entails an exergy efficiency increase for
all conditions.

• The exergy efficacy diminishes as ambient temperature increases, but by increasing the FPSC inlet
fluid temperature, the exergy efficacy rises to a certain temperature and then declines.

• With the use of an NF, the exergy efficiency always intensifies with a boost of inlet temperature.
• For higher mass flow rates of the base fluid, the efficiency first slightly declines and then remains

unchanged. However, by using an NF, the maximum exergy efficiency occurs with the highest
mass flow rate.

• Generally, using elliptical tubes and an NF enhances the exergy efficiency. In fact, while the trend
of exergy efficiency variation with effective parameters is increasing, applying the elliptical tubes
causes the efficiency to increase.

• The temperature increase entails an exergy efficiency increase to a certain point, and then this
efficiency is diminished for higher values.
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Nomenclature

A area (m2)
cp specific heat capacity (J kg−1 K−1)
Ė rate of exergy (W)
hw wind convection coefficient (W m−2)
I solar intensity (W m−2)
Ib beam radiation (W m−2)
Id diffuse radiation (W m−2)
IT daily average hourly (W m−2)
Iv spectral radiation intensity (W m−2)
K thermal conductivity (W m−1 K−1)
M mass flow rate (kg s−1)
N number of glass covers
P pressure (Pa)
Ppump pumping power (W)
S section of solar radiation (W m−2)
T temperature (K)
Ta ambient temperature (K)
Tpm mean temperature of absorber plate
U velocity (m s−1)
u’ fluctuated velocity (m s−1)
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U total loss coefficient (W m−2 K−1)
Vw wind speed (m s−1)
Greek symbol
α absorption coefficient
ε emission coefficient or dissipation
η Efficiency
η0 optical efficiency of collector
µ viscosity (kg m−1 s−1)
µt turbulent viscosity (kg m−1 s−1)
ρ density (kg m−3)
σ Stefan–Boltzmann constant (W m−2 K−4)
ϕ latitude angle
Ω hour angle
Subscripts
a ambient
c collector
f fluid
in inlet
out outlet
p absorbent plate
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