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Abstract: Climate change can bring about substantial alternatives of temperature and precipitation
in the spatial and temporal patterns. These alternatives would impact the hydrological cycle and
cause flood or drought events. This study has developed an ensemble climate-hydrology modeling
system (ECHMS) for long-term streamflow assessment under changing climate. ECHMS consists of
multiple climate scenarios (two global climate models (GCMs) and four representative concentration
pathways (RCPs) emission scenarios), a stepwise-cluster downscaling method and semi-distributed
land use-based runoff process (SLURP) model. ECHMS is able to reflect the uncertainties in climate
scenarios, tackle the complex relationships (e.g., nonlinear/linear, discrete/continuous) between
climate predictors and predictions without functional assumption, and capture the combination of
snowmelt– and rainfall–runoff process with a simplicity of operation. Then, the developed ECHMS
is applied to Kaidu watershed for analyzing the changes of streamflow during the 21st century.
Results show that by 2099, the temperature increment in Kaidu watershed is mainly contributed
by the warming in winter and spring. The precipitation will increase obviously in spring and
autumn and decrease in winter. Multi-year average streamflow would range from 105.6 to 113.8 m3/s
across all scenarios during the 21st century with an overall increasing trend. The maximum average
increasing rate is 2.43 m3/s per decade in October and the minimum is 0.26 m3/s per decade in January.
Streamflow change in spring is more sensitive to climate change due to its complex runoff generation
process. The obtained results can effectively identify future streamflow changing trends and help
manage water resources for decision makers.
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1. Introduction

1.1. Significance and Motivation

Climate change is one of the most profound global changes in the 21st century that has brought
about a series of impacts on the stability of earth system and human beings [1,2]. According to the
Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), the global mean
surface temperature is likely to increase by 0.3–4.8 ◦C relative to the base period of 1986–2005 [3,4].
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At the same time, climate change also brings about substantial alternatives of precipitation in the spatial
and temporal patterns. These changes would have implications for evaporation, snowmelt, infiltration
and runoff, altering the hydrological cycle and causing flood or drought events [5]. Accompanying
with the increasing demands for water resources in recent years, the security of water resources
is challenged by climate change [6]. For pursuing sustainable water resources management in the
context of climate change, it is urgent to clearly understand how climate change influences streamflow
generation from the perspective of water supply.

1.2. Literature Review

Numerous studies have been conducted to quantitatively investigate climate change impacts
on streamflow in recent years [7]. For example, Qin and Lu [8] explored Heshui watershed’s flood
frequency during the 21st century, where the Long Ashton Research Station Weather Generator
was used for processing the outputs of global climate model (GCMs) and then the semi-distributed
land use-based runoff processes (SLURP) model was used for predicting future streamflow. Umut
and Okan [9] evaluated the streamflow of the Izmir-Tahtali freshwater basin; where an artificial
neural networks-based downscaling model was employed to produce the fine-scale precipitation
and temperature from GCMs; the downscaled outputs were transformed to runoff by means of a
monthly parametric hydrological model. Zhou et al. [10] investigated the streamflow response to
climate change in the Lake Dianchi watershed; the statistical downscaling model (SDSM) and the soil
and water assessment tool (SWAT) model were used to connect the outputs of GCMs and streamflow.
Eldho and Ghosh [11] incorporated two GCMs, the nonparametric kernel-regression-based statistical
downscaling model, and the variable infiltration capacity (VIC) model into an ensemble for streamflow
prediction in Godavari River basin. Gorguner et al. [12] developed a hydro-climate model by coupling
the weather research and forecasting (WRF) model to the physically based watershed environmental
hydrology (WEHY) model for obtaining the projected future inflows to Demirkopru Reservoir.

Generally, a common method for the climate change impact analysis of hydrology mainly focuses on
pairing climate variables from GCM with hydrologic models. Data-driven and physically process-based
models are frequently used in climate downscaling and hydrological simulating. Statistical or dynamic
downscaling methods are employed for refining the coarse resolution outputs of GCM and reducing the
scale gap between GCMs and hydrological models. In practical application, the statistical downscaling
approach is widely used due to its less computational efforts [12]. Most statistical downscaling
approaches are established based on empirical mathematical functions relating GCM resolution climate
variables and local observation data, which also require long, standardized observational time series
of data for fitting and validating the statistical relationship [13,14]. As for hydrological modeling,
distributed physically based models (e.g., SWAT and VIC) are more popular as it can provide detailed
information about the flow characteristics within the watershed [15,16]. However, these distributed
physically based models often need amounts of parameters that are difficult to obtain due to the
nonlinearities of processes and spatial heterogeneity [17].

1.3. Research Gap

Kaidu watershed is one sub-basin of Tarim basin (the largest inland basin in China) with cold–arid
climate characteristics. This watershed is less interpreted by human activities and mainly covered by
grassland. The river originates from the Southern Tienshan mountain and the streamflow is contributed
by both snowmelt and precipitation. Though several research works related to climate-change impact
analysis have been conducted in the Kaidu watershed, there are still some challenges [18–20]. This
is a macroscale watershed (about 12 × 103 km2) with complicated topography and varied elevation,
leading to the complex climate and hydrological systems and plagued with tremendous variabilities.
As a result, the relationships between large-scale atmospheric variables and the corresponding
watershed-scale climate factors may be varied, which cannot be reasonably expressed through either
linear expressions or continuous mathematical functions [14,21]. This is a data-scarce region that the
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national metrological stations and hydrological stations only include Bayanbulak and Dashankou
station. Long and continuous records of high-quality observed local hydro-meteorological variables
(e.g., temperature and precipitation) may be lacking in the cold–arid mountainous region. The scarce
data brings great challenges to the usages of downscaling and hydrological models that largely depend
on long, and continuous data. As a result, these challenges call for a proper climate-hydrology model
that can not only run without complicated data sources, but also simulate snowmelt process.

1.4. Novelty and Objective

Stepwise cluster analysis (SCA) is a nonparametric statistical tool in tackling discrete and
nonlinear systems based on a multivariate analysis of variance [22]. It can describe the complex
relationship between the predictors and predictands as a cluster tree, without the assumptions of
functional relationships [23]. Therefore, the SCA-based statistical method can be used for climate
downscaling in Kaidu watershed when the relationship between the large-scale atmospheric variables
and watershed-scale climate factors is nonfunctional and discrete, as well as the data are not temporally
continuous. From the perspective of hydrological model, SLURP is a semi-distributed model, which is
able to simulate the physical process of runoff generation with a simplicity of operation. The SLURP
model can not only simulate the process of snowmelt with a degree-day method in meso- and
macro-scale watersheds, but also avoid the data and computational demands of the fully distributed
models [8]. Consequently, the combination of SCA and SLURP model is promising in exploring the
hydrological responses to climate change in the Kaidu watershed. To our best knowledge, few studies
have been conducted by combining the two models for this watershed.

Therefore, the objective of this study is to propose an ensemble climate-hydrology modeling
system (ECHMS) for the assessment of streamflow response to climate change. ECHMS integrates
GCMs, the SCA downscaling method and SLURP model into a framework; each model has a unique
contribution in the climate-change impact analysis. In detail, ECHMS is able to (1) reflect the
uncertainties associated with climate models and emission scenarios due to the differences in model
physical mechanisms and human activities; (2) tackle the complex relationships between predictors
and predictions without functional assumption; (3) capture the snowmelt process and simulate the
hydrological process with a simplicity of operation; and (4) generate long-term streamflow under
a changing climate for sustainable water resources management. Then, the developed ECHMS is
applied to the Kaidu watershed, a cold–arid region in northwest China for predicting streamflow in
the 21st century. The obtained results are expected to help managers gain reliable information on water
resources and make adaptive decisions.

2. Material and Methods

In this study, an ECHMS was developed and applied to Kaidu watershed. The detailed framework
of ECHMS is displayed in Figure 1. In ECHMS, eight climate scenarios (two GCMs and four
representative concentration pathways (RCPs)) are set for gaining future climate change data and
reflecting the uncertainties in climate models caused by physical mechanisms and human activities.
The stepwise cluster analysis technique is applied to downscaling raw GCMs into site-scale, and then
the downscaled data (e.g., temperature and precipitation) can represent the possible climate variations
of Kaidu watershed. These climate data will be forced into calibrated SLURP model to generate
future streamflow. Finally, future streamflow will be assessed to point out the characteristics of Kaidu
watershed in the 21st century.
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Figure 1. The framework of the ensemble climate–hydrology modeling system (the flowchart of semi-
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Figure 1. The framework of the ensemble climate–hydrology modeling system (the flowchart of
semi-distributed land use-based runoff process (SLURP) is derived from Sun et al. [24]).

2.1. Problem Statement of Study Area

Kaidu watershed is a cold–arid region, located between 42◦14′ N–43◦21′ N and 82◦58′ E–86◦05′ E
in northwest China (as shown in Figure 2). The watershed covers an area of 18,827 km2 with a
large contrast in elevation (from 1400 to 4778 m a.s.l.). As recorded in the meteorological station of
Bayanbulak (with an elevation of 2487 m a.s.l.), the annual temperature of this basin is −4.5 ◦C, and the
minimum temperature is about −48.1 ◦C. It has an average annual pan evaporation of 1100 mm and
precipitation of 262.6 mm [24]. Due to the variation in elevation, this basin is characterized with
strong gradients in both temperature and precipitation. The annual temperature and precipitation in
Dashankou Station (with an elevation of 1400 m a.s.l.) are 7.5 ◦C and 99.6 mm, respectively. Besides,
precipitation also varies with seasons and more than 80% of the annual precipitation occurs from
May to September. The gross annual amount of surface water resources of the basin is approximately
3.3 × 109 m3.

Due to climate change and human activities, the annual temperature and precipitation in Kaidu
watershed has increased with decadal rates of 0.34 ◦C and 6.07 mm in the last century. If the
increase in precipitation falls short of the temperature increase, evaporation may intensify and thus
aggravate drought. Because the climate is an important driver of the hydrological cycle, the warming
climate inevitably alters the distributions of water resources. In particular, temperature can directly
affect glaciers, the most important source of water resources in Kaidu watershed, and thus can
significantly affect the water resources and environmental conditions. Therefore, evaluating the future
climate variation is very important for ecological environment and water resource management in
Kaidu watershed.
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Figure 2. Kaidu watershed.

2.2. Data Collection and Analysis

The datasets include (1) the GCMs used for climate projection, (2) the observed meteorological
data used for both climate projection and hydrological model running, (3) spatial data for watershed
delineation (i.e., DEM (digital elevation model) and land cover), and (4) hydrometric data for streamflow
simulation. In detail, the GCMs (with periods of 1985–2000 and 2010–2099) used in this study were
HadGEM and MIROC, under RCPs of 2.6, 4.5, 6.0 and 8.5, which were downloaded in the Coupled Model
Inter-comparison Project (CMIP5) from the program for Climate Model Diagnosis and Inter-comparison
(PCMDI) website (http://www-pcmdi.llnl.gov). The predictors (including surface temperature, wind
speed, surface upwelling longwave radiation, etc.) ranging from 1971–2000 were obtained from the
National Centers for Environmental Prediction (NCEP) for SCA calibration and validation [21]. DEM
with resolution of 90 m are obtained from the Geospatial Data Cloud Website (http://www.gscloud.cn).
Land cover types in the year 2000 were prepared by the Resource and Environmental Sciences
Data Centre Chinese Academy of Sciences (http://www.resdc.cn). Meteorological data ranging from
1971–2010 (including daily temperature, precipitation, wind speed, and sunshine hours) were obtained
from two stations (i.e., Bayanbulak and Danshankou). Due to the spatial heterogeneity of temperature
and precipitation, the temperature input for elevation differences is derived with a lapse rate of
0.75 ◦C per 100 m, and precipitation is increased by 1% per 100 m based on the data obtained from the
monitoring stations [25]. The streamflow data (from 1971 to 2010) for the watershed were collected
from Dashankou hydrometric station.

2.3. Stepwise Cluster Analysis

SCA is an efficient statistical tool that can establish the relationship between the predictors
and predictands. It can deal with both continuous and discrete variables, as well as the nonlinear
relationships between the variables. It divides the sample sets of predictors (i.e., the data from NCEP)
and independent variables (i.e., temperature and precipitation) into different subsets (or sub clusters)
through a series of cutting and merging operations [22]. The processes of SCA for climate downscaling
can be divided into the following steps:

http://www-pcmdi.llnl.gov
http://www.gscloud.cn
http://www.resdc.cn
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(1) Establishment of cluster principles, the criteria for the cut and merge operation are based on
Wilk’s statistic. According to Wilk’s likelihood ratio criterion, if the cutting point is optimal, the value
of Wilk’s ( Λ =|W|/|W + H|) should be the minimum, where W and H are the within and between the
groups’ matrix, respectively [26].

(2) Tests of optimal cutting points Assuming the optimal cutting point of cluster h is k∗r∗,
and the relevant value of temperature or precipitation is x(h)r∗,k∗r∗ ., then the F-test can be undertaken.

If F
(
P′ , nr∗

h − P′ − 1
)
=

1−Λ(k∗r∗,nr∗
h )

Λ(k∗r∗,nr∗
h )
·

nr∗
h −P′−1

P′ ≥ F1 is satisfied, then cluster h can be cut into two

sub-clusters according to the distribution of xr∗.
(3) Mergence of clusters. The judging criterion is also based on the F-value of two sub-clusters.

In this procedure, only the dependent variable values of observed temperature or precipitation in

the two sub-clusters are useful. If F
(
P′ , ne + n f − P′ − 1

)
=

1−Λ(ne,n f )

Λ(ne,n f )
·
(ne+n f )−P′−1

P′ < F2 is satisfied,

clusters e and f can be merged into a new cluster h.
(4) Prediction. After all the calculations and tests have been completed when all the hypotheses of

further cut or mergence are rejected, a cluster tree can be derived for each dependent variable. Then,
the predictors derived from the GCMs will be forced into the cluster tree, and the predicted dependent
variables (i.e., temperature and precipitation) can be obtained (i.e., yi = y(e

′ )
i , y(e

′ )
i is the mean of

dependent variable i in sub-cluster e′ ) [14].

2.4. SLURP Hydrological Model

The hydrological model used in this study was SLURP, which is a continuous, spatially distributed
basin model to simulate the hydrological cycle from precipitation to runoff [27]. A watershed is
divided into several aggregated simulation areas (ASAs) based on DEM maps through Topographic
Parameterization (TOPAZ). SLURP conceptualizes each ASA into four storage tanks (canopy storage,
snow storage, fast storage and slow storage), representing canopy interception, snowpack, aerated soil
storage and groundwater, respectively [28]. SLURP conducts a vertical water balance based on each of
the land covers in the ASAs at a daily time step. At each time step, the model is applied sequentially to
a matrix of ASAs and land covers. Each ASA must contribute runoff to an identifiable stream channel,
which is connected to the watershed outlet.

In this study, the Kaidu watershed is divided into 183 ASAs. The weather data of each ASA
(i.e., precipitation, temperature, dewpoint temperature, global radiation) is calculated based on local
weather station using the Thiessen polygon method. In each ASA, precipitation is intercepted by the
canopy or evapotranspiration, and any excess falls to the ground or to a snowpack depending on
the air temperature. The evapotranspiration of the rainfall is calculated using the Penman–Monteith
method of the Food and Agriculture Organization (FAO) [29]. If a snowpack exists and the temperature
exceeds a critical value, the snowmelt is computed using a simple degree-day method. Rainfall and
any snowmelt infiltrate through the soil surface into the fast store depending on the current infiltration
rate. If the precipitation factor exceeds the maximum possible infiltration rate, the surface runoff is
generated. Runoffs are accumulated from each land cover within an ASA using a time/contributing
area relationship for each land cover type [24,27,30]. Manning’s equation is used to compute travel
times for each land cover and estimate the velocities for travel both up-stream and down-stream. Then,
the combined runoffs route to the next sub-basin in the way of hydrological storage routing Q = αRβ,
Q (m3/s) is the outflow, R is the combined runoffs routed into the channel in the sub-basin, α and β are
the parameters specified to give the degrees of lag and attenuation required.

Before future projection, the model is calibrated and verified using observed data. The calibration
of SLURP is conducted during 1971–1995 by an automatic method using the Shuffle Complex Evaluation
algorithm developed at the University of Arizona [31]. Then, the model was validated during the
period 1996–2010 using the values of calibrated parameters. Nash–Sutcliffe efficiency (NSE), coefficient
of determination (R2), and the deviation of volume (DV) were used to address the goodness of fit of the
performance of the hydrological model. The validated results can be found in Sun et al. [2], which shows
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that the model is suitable for future projections. Then, the projected future temperature, precipitation,
sunshine hours, and solar radiative are forced into the validated model for streamflow predictions.

3. Results and Discussion

Figure 3 shows the temperature changes from 2010 to 2099. Results show that different climate
scenarios would result in various annual/monthly temperature projections. By the end of the 21st
century, Dashankou’s temperature would increase by 0.60–0.98 ◦C (RCP2.6), 2.3–2.8 ◦C (RCP4.5)
and 2.4–3.0 ◦C (RCP6.0), and 4.6–5.3 ◦C (RCP8.5); Bayanbulak’s temperature would increase by
0.40–0.42 ◦C (RCP2.6), 2.3–3.1 ◦C (RCP4.5) and 1.8–2.9 ◦C (RCP6.0) and 5.4–5.6 ◦C (RCP8.5), respectively.
The differences in temperature are mainly attributed to the varied physical mechanisms and conditions
of climate models and RCPs. From the perspective of RCPs, temperature increment is the largest under
RCP 8.5 and the smallest under RCP 2.6. This is due to the fact that RCP8.5 is a non-climate-policy
scenario, resulting in severe changes in climate and RCP2.6 represents a rigorous climate policy, mostly
to limit greenhouse gas emissions and, accordingly, low climate change impacts. The greenhouse
emission scenarios under RCP 4.5 and RCP 6.0 are similar to the current situation, which means that
if current industrial activities remain unchanged, future temperature would increase by nearly 3 ◦C.
From the time-scale, temperature difference among the four RCPs is weak in the early 21st century and
gradually increases with time. As shown Figure 3b, the monthly temperature changes in the 2080s reveal
that the temperature in July and August (summer) do not change much. In November, December,
January, February, March and April, the temperature changes are relatively large. For example,
in Dashankou, the temperature increases in December are 4.69 ◦C (RCP4.5 of HadGEM). The results
suggest that the warming in the Kaidu watershed is mainly contributed by the warming in winter
and spring, resulting in a smaller temperature difference during the year. As a result, the duration of
summer may increase, and the winter may become shorter.

Figure 4 depicts the estimated annual precipitation in all scenarios. The results show that
the precipitation shows an overall upward trend. By the end of the 21st century, the decadal
precipitation in Bayanbulak increases by approximately 0.8–4.2 mm (RCP2.6), 3.4–5.6 mm (RCP4.5),
7.1–15.5 mm (RCP6.0) and 12.7–24.6 mm (RCP8.5); the precipitation in Dashankou increases by
about 0.4–0.8 mm (RCP2.6), 2.2–2.8 mm (RCP4.5), 0.9–2.6 mm (RCP6.0) and 2.5–6.8 mm (RCP8.5).
It shows that precipitation variation in Bayanbulak is greater than that in Dashankou. This is because
Bayanbulak is located in a cold mountain area at high altitude, which is more sensitive to climate
change. Besides, the projected precipitation under MIROC is higher than that under HadGEM. Annual
precipitation in most years of the 21st century is about 150–300mm higher than the baseline under
MIROC, and 50–150 mm higher than the baseline under HadGEM. This shows that different GCMs
have a large amount of predicted precipitation due to the inconsistency of physical mechanisms and
initial parameters. Besides, GCM’s ability to predict precipitation is still relatively poor, and there is a
large deviation. The seasonal changes of precipitation summarized in Figure 5 show that precipitation
in spring and autumn in both stations would increase. However, the summer and winter precipitations
present decreasing trends. This means that in the Kaidu watershed, abundant precipitation in spring
and autumn would result in a balanced distribution of rainfall within the year. The decreasing winter
precipitation indicate that winter will become more arid, and the possibility of seasonal drought time
will increase.
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Figure 3. Temperature under different scenarios [(a1)–(a4) are the annual temperature during the
period 2010–2099 and (b1)–(b4) are the monthly average changes in 2080s compared with baseline
period].

Figure 6 shows the predicted runoff of Kaidu watershed in 2010–2099. There are certain differences
in the runoff across the eight scenarios. For example, under the HadGEM model, the average streamflow
during the period 2010–2099 under the four RCP scenarios are 105.6 m3/s (RCP2.6), 107.4 m3/s (RCP4.5),
107.0 m3/s (RCP6.0) and 111.1 m3/s (RCP8.5), respectively. The average annual streamflow in the
four RCP scenarios under the MIROC model are 108.3 m3/s (RCP2.6), 110.3 m3/s (RCP4.5), 110.6 m3/s
(RCP6.0) and 113.8 m3/s (RCP8.5). In general, the streamflow in the RCP2.6 scenario is the least, and the
streamflow in the MIROC model is higher than that in the HadGEM model, which is consistent with
the changing trends of temperature and precipitation. By comparing various scenarios, the possible
streamflow range of the Kaidu River in the future can be obtained, avoiding the errors caused by the
prediction of a single scenario.
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Figure 4. Projected annual precipitations during the period 2010–2099 [(a,b) are under the models of
HadGEM and MIROC in Bayanbulak station; (c,d) are under the models of HadGEM and MIROC in
Dashankou station]

Mann–Kendall (M–K) test was implemented to analyze the changing trend of annual streamflow
in Kaidu watershed (as shown in Figure 6b). The future streamflow has a significant increasing trend
during the period 2010–2099. The maximum increasing rate is 2.4 m3/s per decade under the RCP
8.5 of MIROC, and the minimum increasing rate is 0.1 m3/s per decade under the RCP 2.6 of MIROC.
However, by the middle or end of this century, the increase becomes unobvious, and even shows a
downward trend. For example, under the RCP2.6 scenario, the projected streamflow would first remain
flattened during the period 2010–2025. This trend may be due to an experiment error by the SCA
method. In the downscaling process, SCA may dilute the peak values of climate variables, resulting
the projected temperature and precipitation being downscaled into a cluster with similar values. Then,
the streamflow would slightly increase before 2050s; after 2050s, a decreasing trend would be observed.
Streamflow under RCP4.5 and RCP6.0 have a stabilized trend and then decline slightly after 2080;
streamflow under RCP8.5 has an obvious increasing trend before 2090; after that, a slight downward
trend would be observed. The increase in streamflow is contributed by increments in precipitation
and temperature. Kaidu is a river that is supplied by precipitation and ice and snow streamflow,
and the increase in temperature leads to an increase in snowmelt streamflow. The slight decrease in
streamflow under RCP4.5 and RCP6.0 around 2080 is caused by precipitation and temperature. In these
two scenarios, the precipitation increased slightly, and the temperature shows a steady state and is
about 2 ◦C higher than the current temperature. The increase in temperature also leads to increased
evaporation, which caused a slight decrease in the streamflow. The downward trend of streamflow in
the RCP8.5 scenario is determined by temperature. This is because the precipitation in this scenario is
increased, and the temperature is 4 to 5 ◦C higher than the baseline. The evaporation is very large,
far exceeding the precipitation, which would lead to a decrease in streamflow.
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Figure 5. Seasonal precipitation changes compared with the baseline.

Figure 6. Projected annual streamflow [(a) time series of streamflow during the period 2010–2099 and
(b) the associated average values and changing trends by Mann–Kendall test].



Water 2020, 12, 2293 11 of 15

Figure 7 presents the annual streamflow distribution during the 2020s, 2050s and 2080s. Results
show that the difference in streamflow among the RCPs in the 2020s is the smallest, followed by
the 2050s and 2080s. For example, in the 2020s, the average streamflow under HadGEM is around
103 m3/s, while in the 2080s, the average streamflow fluctuates between 106.2 and 121.9m3/s. Such
deviation is similar with those of temperature and precipitation. These results suggest that uncertainty
in different climate scenarios exists, and it would be amplified along with time. Figure 8 describes
the changes in streamflow in different months. January has the lowest average multi-year monthly
streamflow (42.1 m3/s) and July has the highest one (176.1 m3/s). Besides, the streamflow in all months
shows overall increasing trends. The largest increasing rate is 2.43 m3/s in October and the smallest
increasing rate is 0.26 m3/s in January. In general, the increasing rate is high in autumn and spring, and
is low in wither and summer, illustrating that the annual streamflow increment is mainly attributed
to autumn and spring. Results also show that the ranges of streamflow change in July and August
is relatively small. This not only shows the accuracy of climate prediction for summer streamflow,
but also shows that the response of summer streamflow change to climate change is relatively stable.
However, the results of spring (March, April and May) show a great difference among scenarios.
For example, in April, the multi-year average of the minimum predicted streamflow in all scenarios
is 58.2 m3/s, while the multi-year average of the maximum is 128.3 m3/s, with a difference of up to
120%. This illustrates that the spring streamflow is more sensitive to climate change. This may be due
to the complexity of streamflow generation in spring. The Kaidu river is supplied by snowmelt and
precipitation streamflow, so there will be two peaks of streamflow in a year, respectively, in spring and
summer. Due to the combined influence of snow depth and temperature, snowmelt streamflow is more
complicated than precipitation streamflow. Therefore, there is a large uncertainty in the interpretation
of snowmelt streamflow in different climate scenarios.

Figure 7. Distributions of annual streamflow in different periods.
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Figure 8. Monthly streamflow during the period 2010–2099 (the orange color is the range of streamflow,
the black line is the average streamflow, and the white dotted line is the trending line).

4. Conclusions

In this study, an ECHMS has been developed for assessing the streamflow in Kaidu watershed.
The ECHMS consists of multiple climate change scenarios, the SCA and the SLURP model. The modeling
system not only reflects the uncertainty in climate models caused by heterogeneity in physical
mechanism and initial parameters, but also reflects the uncertain information caused by greenhouse gas
emissions. The SCA downscaling method can effectively handle the complex non-linear and discrete
relationships between climate elements and overcome the functional hypothesis of conventional
statistical methods. The SLURP model is a semi-distributed physical model that can effectively model
streamflow processes by snowmelt and rainfall with simplicity of operation.
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Results show that by 2099, the temperature in the Kaidu watershed will increase, with the
RCP8.5 scenario having the largest increase, reaching more than 5 ◦C. Annual warming is mainly
contributed by the warming in winter and spring, resulting in a smaller temperature difference during
the year. This may increase summer duration and shorten winter duration. By the end of this century,
the precipitation shows an increasing trend. Precipitation in spring and autumn will increase more
obviously, resulting in the difference in precipitation between spring, summer and autumn. As a
result, the distribution of rainfall within the year will be balanced. The precipitation in winter has
a decreasing trend, indicating that winter will become more arid. In the future, there is an overall
increasing trend of streamflow with a range from 105.6 to 113.8 m3/s. The increasing rate is high
in autumn and spring and is low in winter and summer. The maximum average increasing rate is
2.43 m3/s per decade in October and the minimum is 0.26 m3/s per decade in January. This illustrates
that the annual streamflow increment is mainly attributed to autumn and spring. Summer streamflow
response to climate change is relatively stable, while spring streamflow change is more sensitive to
climate change.

Through the above results, the temperature, precipitation and streamflow of Kaidu watershed
in 2010–2099 were identified, which is beneficial for local water management. However, there are
still some limitations in this study. For example, there are many GCMs developed by many institutes;
however, only two GCMs are explored in this study to explore their uncertainties. This may be not
enough to provide more accurate projection results. Thus, more GCMs and ensemble outputs of
them should be adopted in future studies. Besides, this study focuses on a data-scarce region with
only two meteorological stations. This may dilute the heterogeneity in climate features in the large
watershed and bring errors in streamflow prediction. In future studies, multiple-source meteorological
data (e.g., reanalysis data and remoting data) are suggested to capture higher-resolution climatic and
hydrological characteristics.
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