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Abstract: Drought is a complex phenomenon whose characterization is best achieved from
a multivariate perspective. It is well known that it can generate adverse consequences in society.
In this regard, drought duration, severity, and their interrelationship play a critical role. In a climate
change scenario, drought characterization and the assessment of the changes in its pattern are
essential for a proper quantification of water availability and managing strategies. The purpose of
this study is to characterize hydrological droughts in the Rhine River in a multivariate perspective for
the historical period and estimate the expected multivariate drought patterns for the next decades.
Further, a comparison of bivariate drought patterns between historical and future projections is
performed for different return periods. This will, first, indicate if changes can be expected and,
second, what the magnitudes of these possible changes could be. Finally, the underlying uncertainty
due to climate projections is estimated. Four Representative Concentration Pathways (RCP) are
used along with five General Circulation Models (GCM). The HBV hydrological model is used to
simulate discharge in both periods. Characterization of droughts is accomplished by the Standardized
Runoff Index and the interdependence between drought severity and duration is modelled by
a two-dimensional copula. Projections from different climate models show important differences in
the estimation of the number of drought events for different return periods. This study reveals that
duration and severity present a clear interrelationship, suggesting strongly the appropriateness of
a bivariate model. Further, projections show that the bivariate interdependencies between drought
duration and severity show clearly differences depending on GCMs and RCPs. Apart from the
influence of GCMs and RCMs, it is found that return periods also play an important role in these
relationships and uncertainties. Finally, important changes in the bivariate drought patterns between
the historical period and future projections are estimated constituting important information for
water management purposes.

Keywords: multivariate drought events; hydrological modelling; climate change; copulas

1. Introduction

Droughts belong to the ranks of increasingly important phenomena, affecting water and food
supply. A detailed analysis of droughts can help mitigate their effects and manage the water resources
in a more efficient way. The knowledge and assessment of the repercussions of changes in the pattern
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of drought events is a key issue in present and future decisions. In this context, several researchers
have assessed a change in drought characteristics which are attributable to global warming [1–3].

However, a clear definition, a proper understanding, forecasting, and managing of droughts is
a complex task due to the variety of temporal and spatial scales at which droughts occur, together with
their diverse direct and indirect causes and consequences [4]. Different classifications of droughts have
been proposed and are defined in different contexts [5–7]. For example, droughts can be expressed
in terms of meteorological, agricultural, hydrological, or regional aspects, and for their definition,
a number of indices have been introduced. Some of these indices depend on a single parameter such
as the Standardized Precipitation Index (SPI) calculated from precipitation time series while others
are defined in a multivariate perspective. The use and selection of an appropriate index to analyze
droughts depends on the purpose of the research [8]. However, there seems to be a scientific consensus
that there is no best drought index and that a quest for the best index is useless [9]. A comparison
of different drought indices can be seen in [10], in which variations of droughts over several regions
in the world during the last millennium are examined. Details can be found in [11–14]. In a climate
change scenario, several studies addressing changes in droughts using the SPI have been performed.
For instance, Ref. [15] analyzed future changes in meteorological droughts in the Lower Mekong
River Basin concluding that the Mekong Delta is expected to experience a significant increase in
drought events.

Hydrological drought refers to a lack of water in the hydrological system, manifesting itself in
abnormally low levels in lakes, reservoirs, and groundwater [9]. The Standardized Runoff Index
(SRI) has been used in various studies to characterize hydrological droughts. It can be understood as
a standardized difference or anomaly in regards to a normal situation. In a study, Ref. [16] showed
a comparison of SRI behavior with that given by the SPI. They conclude that on time scales ranging
from monthly to seasonal, the SRI is a useful complement to the SPI for depicting hydrological aspects
of droughts. A study comprising seven large river basins around the world analyzed the propagation of
forcing and model uncertainties on hydrological drought characteristics [3] using the runoff index (RI).
The drought characteristics’ total drought magnitude and duration were considered independently.
This means, droughts were addressed in a univariate realm. Analyzing the statistical properties of
drought magnitude, the results showed supporting evidence of the influence of the Representative
Concentration Pathways (RCP) on this characteristic. The authors also concluded that, on average,
more severe droughts can be expected in the study regions under the RCP8.5 by the end of the 21st
century. Furthermore, from all the basins investigated, the Rhine at Lobith exhibits the strongest
increase in drought magnitude and duration under this scenario.

It is generally recognized that the discharge regime of the Rhine River will be affected by climate
change [17]. Some studies show that important changes in discharge time series are projected due
to climate change, including the mean, low, and high flows [18] for the mid- and end of the 21st
century. Furthermore, mean and high flows are estimated to vary importantly between seasons
(winter, summer). Others reported a change in the flow generation mechanism in the Rhine River
under climate change [19]. Added to this, an increase in the frequencies of both low and high flows
are projected.

In general, the analysis of droughts in the context of climate change are addressed by characterizing
them by a single attribute. In other words, droughts are seen as a univariate phenomenon. An estimation
of the possible changes of drought events due to climate change from a multivariate perspective has
not yet been addressed. The aim of the present study is to fill this gap and to model hydrological
drought events as a multivariate phenomenon in the context of climate change applied in the Rhine
River at Lobith. To achieve this, we characterize droughts as a multivariate phenomenon in both
a historical and projection period and analyze variations in their multivariate pattern, i.e., analyze the
expected changes in the joint duration–severity behavior for different recurrence intervals (frequencies).
Runoff simulation is performed by the application of the rainfall–runoff model HBV to simulate
daily streamflow. Bias corrected time series from five General Circulation Models (GCM) and four
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RCPs from the latest IPCC assessment report AR5 are used (a detailed description is found in [20].
The (multivariate) drought patterns are then characterized for both the historical as well as the projection
period and then compared. The number of projected drought events is calculated for each driving model.
This characterization of drought patterns in both historical and projection periods will give an inside
into the effect of climate change on the development of drought seen as a multivariate phenomenon

2. Methods

2.1. Study Area and Input Data

The study area corresponds to the Rhine basin at gauging station Lobith with an area of 160,000 km2.
It is a warm temperate, humid area with warm summers with an average annual temperature of
T = 8.7

◦

C and annual precipitation of P = 1038 mm. The dominant land covers in the area consist
predominantly of forest (25%), cropland (38%), and grassland (9%). The altitude varies between 15 and
4075 m a.s.l. with a mean value of 497 m a.s.l. The average discharge over the area in the 1971–2000
period was 457 mm with an average runoff coefficient of 0.44. More information and description of the
study area can be found in the introductory paper of the Inter-Sectoral Impact Model Intercomparison
Project Phase 2 ISI-MIP2 [21].

Projected discharge time series were obtained by running the calibrated rainfall–runoff model
HBV. Calibration and validation were carried out using the WATCH forcing data set and followed the
ISI-MIP2 protocol (www.isimip.org). In this protocol, detailed information can be found as specification
of periods for calibration and validation, spin-up, and projection periods, among others. WATCH
data are based on the 40-year ECMWF Re-Analysis (ERA-40) and reordered reanalysis data [22,23].
The rainfall–runoff model is forced using the bias-corrected outputs [20] of the five general circulation
models: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and Nor-ESM1-M [24].
The uncertainty ranges for precipitation and temperature associated with these models are comparable
with all models of the Coupled Model Intercomparison Project Phase 5, CMIP5 (protocol-report
www.isimip.org).

Four future emission scenarios described by RCPs were considered in this study, namely, RCP2.6,
RCP4.5, RCP6.0, and RCP8.5. Referring to the two extreme climate conditions, RCP2.6 represents
a scenario in which greenhouse gas emissions peak in the 2010–2020 period, whereas the latter (RCP8.5)
assumes that emissions continue rising in the present century [25].

Information is divided into three periods: historical (1971–2000), mid-century (2036–2065),
and end-century (2070–2099) in order to model and characterize drought characteristics and their
interrelationship in different periods of time.

2.2. Hydrological Model

The conceptually based semi-distributed HBV model was used in this study. The HBV model
concept [26] was developed by the Swedish Meteorological and Hydrological Institute (SMHI) in the
early 1970s and modified at the Institute of Hydraulic Engineering, University of Stuttgart, Germany.
The HBV model comprises routines for the calculation of snow accumulation and melts, soil moisture,
as well as runoff generation, runoff concentration, and flow routing in the river network. Soil moisture
was calculated by balancing precipitation and evapotranspiration using field capacity and permanent
wilting point. Runoff generation was simulated by a nonlinear function of the actual soil moisture and
precipitation. The runoff concentration was modelled by two parallel nonlinear reservoirs representing
the direct discharge and the groundwater response. The Muskingum method was used for flood
routing between the river network nodes. The physical meaning of model parameters and their range
is given in Supplementary Table S1. Additional information about the HBV model in general and the
University Stuttgart subtype can be found in the specialized literature [27,28].

The HBV hydrological model was setup for the Rhine catchment at Lobith. The model was
calibrated using the robust parameter estimation (ROPE) algorithm [27] where the Nash–Sutcliff

www.isimip.org
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efficiency (NSE) [29] coefficient was used as objective function. The calibration and validation of the
model was performed for the periods 1991–1998 and 1999–2006, respectively. The modelling time
steps were daily and the evaluation of objective function was performed on a monthly time step for
the calibration and validation period.

2.3. Estimation of Drought Characteristics

Drought is characterized by two variables, namely, the severity of an event and the associated
duration of that event, both derived from the calculated SRI set. The index (SRI) is calculated
through the quantile function of the standardized normal distribution applied on the fitted univariate
cumulative distribution function (CDF) of the data.

Drought duration is defined as the aggregated time in which the SRI is negative and preceded
and followed by positive SRI values [30]. Drought severity is estimated as the sum of the SRI values
during a drought event. Mathematically:

S = −
∑d

i=1
SRIi. (1)

S refers to severity and d denotes the duration of the drought event. As SRI takes only negative
values in a drought event, S is a positive real number. Different time scales can be defined in the
calculation of the SRI [30]. In this study a 3-month time scale was adopted. With this, we particularly
intended to focus on seasonal components of droughts. Larger time scales (for example, 1-year) likely
do not reflect some droughts occurrences. In agreement with this, [16] concluded that the use of
monthly to seasonal scales for the calculation of SRI is useful for depicting hydrologic aspects of
droughts. Descriptive statistics of duration and severity for the historical period are summarized in
Supplementary Table S2. Minimum, maximum, and average duration values as well as minimum,
maximum, and average severity is presented.

2.4. Bivariate and Probabilistic Model

In this section, only the basic concepts of the bivariate copula models are introduced. More details
can be found in the given literature below. In general, copula functions represent a method for
modelling the interrelation between different random variables (a comprehensive summary can be
found in [31]. In the present case, it is aimed to find an adequate probabilistic model to represent
the dependence structure of drought severity and drought duration. One of the advantages of using
copulas to represent the interdependence between variables is that copulas display this interdependence
in its purest or essential form [32]. A key point in using copulas and a fundamental characteristic
is its ability of constructing the dependence structure between random variables independently of
the choice of the marginal distributions [31]. Another important and interesting property of copulas
is that it can express whether the corresponding dependence is different for different quantiles of
the modelled variables [33]. Mathematically, a copula is a function C : [0, 1]d → [0, 1] with uniform
marginals. d represents the dimension on which the copula is applied to. In other words, it is defined
on the d-dimensional unit hypercube.

A key result which allows an expression of the interrelationship between drought duration
and severity in terms of a two-dimensional copula is that any multivariate distribution function
H(t1, t2, . . . , td) with marginals

{
Fi,αi

}n

i=1
can be represented with a copula [34]. In a two-dimensional

space, having fitted F1,α1 , F2,α2 , Cθ representing the distributions for duration, severity, and copula,
respectively, with parameters α1,α2,θ, a joint model can be constructed [31].

It is of common use in the literature to define the variables U, V to represent F1(x) and F2(y) to
construct a 2-dimensional model. F1(x) and F2(y) represents the cumulative distribution function
of the random variables X and Y, respectively. In a parametric realm and in order to construct
a bivariate copula model, several families can be considered and have been used in recent studies in
hydrological applications (see, for example, [35]). These models may depend on one or more parameters.
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This study analyzes five different families which are of common use in hydrological applications [36]:
Frank, Gumbel-Hougaard, Clayton, Ali-Mikhail-Haq (AMH), and Farlie-Gumbel-Morgenstern (FGM).
Their definitions are given in Supplementary Table S3.

In order to find the optimum parameter values of the models, the (normalized rank-based)
pseudo-likelihood function [31] lθ is used. Given a continuous model Cθ with associated density cθ,
lθ is given by Equation (2):

lθ =
n∑

i=1

ln
[
cθ

( Ri
n + 1

,
Si

n + 1

)]
(2)

in which the pairs
{
(Ri, Si)

}n
i=1 represent the ranks of the variables duration and severity and θ

represents the parameter (set) of the bivariate model. In order to find the most appropriate kind of
dependence structure from the different copula families, the empirical copula (Equation (3)) is used to
approximate the theoretical copula in terms of the root mean square error (RMSE):

Cn(u, v) =
1
n

n∑
i=1

1
( Ri

n + 1
≤ u,

Si
n + 1

≤ v
)

(3)

in which 1(·) represents the indicator function. The model for the return period as a function of the joint
relationship for drought duration and severity and of the corresponding marginals can be expressed
as [37]:

TDS =
E(L)

P(D ≥ d, S ≥ s)
=

E(L)
1 + FDS(d, s) − (FD(d) + FS(s))

, (4)

which represents the recurrence interval for the event severity S greater than a certain value s and
duration D greater than a certain value d. E(L) represents the expected value of arrival time L.
The bivariate function FDS(d, s) is modelled by a copula so that FDS(d, s) = Cθ(u, v) after finding
an optimum parameter θ and selecting the most appropriate model (Equations (2) and (3) respectively).

3. Results and Discussion

3.1. Hydrological Modelling and Projected Changes in Water Availability

The NSE for the calibration and the validation period are 0.90 and 0.84, respectively.
The rainfall–runoff model HBV is able to reproduce the peak flow and the low flow conditions very well,
similar to results presented elsewhere with NSE varying between 0.49 and 0.83 [38]. The model captures
the dynamics of flow and reproduces the seasonal behavior in good agreement with observations in
both the calibration and validation period (Supplementary Figure S1). Following, the calibrated model
was forced with the bias corrected GCM precipitation and temperature time series from the five GCM
models and the four RCPs to project future runoff. Figure 1 shows the percentage change in mean
discharge from present to the mid-century (2036–2065) and end-century (2070–2099) for all scenarios
(over all GCMs/RCPs). A strong variation among GCM for any given RCP is found, well in agreement
with other reports for the Rhine River [3,39,40]. For example, RCP2.6 projects a percentage of change in
mean discharge from −5% to +17% during mid-century, reflecting the important uncertainty associated
to GCMs. The variation in the percentage in the mean discharge does not increase/change uniformly
from low concentration pathways (RCP2.6) to high concentration pathways (RCP8.5). This is observed
in all GCM outcomes for both the mid- and end-century. This previous result has also been observed
in a number of catchments in Europe [41], in other continents [42,43], and globally [44].
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likelihood function 𝑙ఏ  (Equation (2)), the RMSE associated to the optimum parameters was 
calculated from the empirical and theoretical copula. Each of the five GCMs was considered. Results 
for the historical period are given in Table 1. It is observed that there is not a unique copula which 
best fits in all cases. According to this, the differences between the Frank family and FGM family are 
rather similar. Nevertheless, the Frank copula performs slightly better in more cases. This is also 
observed when fitting the models in the projection periods in which the Frank copula performs 
(slightly) better in most cases. Given this, the Frank copula was adopted to model the bivariate 
duration–severity dependency in both the historical and projected period. In order to visually check 
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scatterplots of the empirical copula and simulated pairs originating from the best fit model [31] are 
compared. This is accomplished through the conditional distribution of the fitted copula applied to 
randomly generated numbers in the unit interval (transformed space). N = 500 simulations are 
performed. Results for the historical period and end-century projection period for the scenario 
RCP8.5 and model GFDL-ESM2M are exemplarily displayed in Figure 2. A good agreement is 
observed between the empirical and theoretical copula. This means, the selected Frank model 
appropriately represents the bivariate interdependency of the two drought characteristics. The 
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Figure 1. Percentage change in mean flow for the four Representative Concentration Pathways
(RCPs) and five General Circulation Models (GCMs) for the two periods 2036–2065 (a) and 2070–2099
(b) are shown.

3.2. Drought Characteristics and Copula Selection

The SRI is calculated using HBV rainfall–runoff model projections from all scenarios. From this
index, drought duration and severity are derived. The statistics of duration and severity for the
historical period are given in Supplementary Table S2. The correlation coefficient between drought
duration and severity for this period is ρ = 0.94, suggesting strongly the appropriateness of considering
a bivariate model between these two variables.

After fitting each of the five copula models (Supplementary Table S3) through the pseudo-likelihood
function lθ (Equation (2)), the RMSE associated to the optimum parameters was calculated from the
empirical and theoretical copula. Each of the five GCMs was considered. Results for the historical
period are given in Table 1. It is observed that there is not a unique copula which best fits in all
cases. According to this, the differences between the Frank family and FGM family are rather similar.
Nevertheless, the Frank copula performs slightly better in more cases. This is also observed when
fitting the models in the projection periods in which the Frank copula performs (slightly) better in most
cases. Given this, the Frank copula was adopted to model the bivariate duration–severity dependency
in both the historical and projected period. In order to visually check the appropriateness of the
selected copula in terms of replicating the observed bivariate pattern, scatterplots of the empirical
copula and simulated pairs originating from the best fit model [31] are compared. This is accomplished
through the conditional distribution of the fitted copula applied to randomly generated numbers in the
unit interval (transformed space). N = 500 simulations are performed. Results for the historical period
and end-century projection period for the scenario RCP8.5 and model GFDL-ESM2M are exemplarily
displayed in Figure 2. A good agreement is observed between the empirical and theoretical copula.
This means, the selected Frank model appropriately represents the bivariate interdependency of the
two drought characteristics. The remaining scatterplots are omitted showing the same good agreement.
However, a summary is given in Figure 3 in which sets of the same size of the scatterplot are simulated
for comparison. This figure shows the theoretical against the empirical cumulative function for all
driving models.
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Table 1. RMSE from different copula fit and different GCM models, period 1971–2000.

Model/Copula Clayton Frank FGM Gumbel AMH

GFDL-ESM2M 0.056 0.017 0.018 0.114 0.092
HadGEM2-ES 0.058 0.020 0.017 0.113 0.101

IPSL-5 0.053 0.016 0.014 0.117 0.102
MIROC-ESM 0.053 0.016 0.017 0.103 0.095
Nor-ESM1-M 0.055 0.023 0.024 0.120 0.092

Water 2020, 12, x FOR PEER REVIEW 7 of 14 

 

Model/Copula Clayton Frank FGM Gumbel AMH 
GFDL-ESM2M 0.056 0.017 0.018 0.114 0.092 
HadGEM2-ES 0.058 0.020 0.017 0.113 0.101 

IPSL-5 0.053 0.016 0.014 0.117 0.102 
MIROC-ESM 0.053 0.016 0.017 0.103 0.095 
Nor-ESM1-M 0.055 0.023 0.024 0.120 0.092 

 

 

 

 

 

 

 

 

 

Figure 2. Comparison of calculated dependence (blue points) and simulated dependence (red points) 
from fitted by the Frank copula model for present (a) and end-century (b) period for the driving model 
GFDL-ESM2M. 

 

 

 

 

 

 

 

 

Figure 3. Empirical against theoretical cumulative distribution function from fitted Frank copula. 
Results correspond to the historical period (1971–2000) and all five driving GCMs. 

  

Figure 2. Comparison of calculated dependence (blue points) and simulated dependence (red points)
from fitted by the Frank copula model for present (a) and end-century (b) period for the driving
model GFDL-ESM2M.

Water 2020, 12, x FOR PEER REVIEW 7 of 14 

 

Model/Copula Clayton Frank FGM Gumbel AMH 
GFDL-ESM2M 0.056 0.017 0.018 0.114 0.092 
HadGEM2-ES 0.058 0.020 0.017 0.113 0.101 

IPSL-5 0.053 0.016 0.014 0.117 0.102 
MIROC-ESM 0.053 0.016 0.017 0.103 0.095 
Nor-ESM1-M 0.055 0.023 0.024 0.120 0.092 

 

 

 

 

 

 

 

 

 

Figure 2. Comparison of calculated dependence (blue points) and simulated dependence (red points) 
from fitted by the Frank copula model for present (a) and end-century (b) period for the driving model 
GFDL-ESM2M. 

 

 

 

 

 

 

 

 

Figure 3. Empirical against theoretical cumulative distribution function from fitted Frank copula. 
Results correspond to the historical period (1971–2000) and all five driving GCMs. 

  

Figure 3. Empirical against theoretical cumulative distribution function from fitted Frank copula.
Results correspond to the historical period (1971–2000) and all five driving GCMs: (a) GFDL-ESM2M,
HadGEM2-ES and IPSL-5; (b) MIROC-ESM and Nor-ESM1-M.

3.3. Drought Events

The number of drought events is calculated for every driving model and RCP. Figure 4 shows this
information for the two projection periods 2036–2065 and 2070–2099. Differences in the projections are
further quantified and compared for each case.
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The number of drought events is observed to be clearly GCM and RCP dependent. For the first
projection period, the number of events is expected to vary between n = 22 and n = 37 calculated over
all GCMs and RCPs. Similar projections are observed in the 2070–2099 period for which the number of
events varies within the range 23 ≤ nevents ≤ 40.

Exploring the differences in the projections associated to GCMs (Figure 4), we observed a larger
uncertainty in the number of events in the 2070–2099 period, especially for RCP4.5 and RCP6.0 compared
to the 2036–2065 period. The maximum difference (d1) between the predicted number of drought events
in the 2036–2065 period over all GCMs occurs by RCP4.5 and RCP8.5 with d1 = 11. This difference
increases to d2 = 17 in the 2070–2099 period for RCP4.5. On the other hand, the uncertainty associated
to RCPs is observed to be smaller yet not negligible. By fixing every driving model (i.e., analyzed
separately), the maximum difference is estimated to be d = 10 for both projected periods and associated
to the models IPSL-CM5A-LR and GFDL-ESM2M for the first and second period, respectively.

3.4. Duration–Severity Drought Patterns and Return Periods

Return periods associated to drought events were calculated through the fitted Frank copula
(Supplementary Table S3). To each return period, all combinations GCM-RCP were considered.
Results divided by GCM are summarized in Figure 5 showing the duration–severity relationship for
the historical period and expected relationship for the mid- and end-century as a function of return
periods 2, 5, and 10 years. For a better visual interpretation, results are also grouped according to RCPs
in the Supplementary Figure S2.

The characterization of drought events indicate that the association between drought duration
and severity is case dependent (Figure 5). We find that both low and high return periods present
small and important variations in the bivariate patterns when compared. These variations are clearly
GCM-RCP dependent showing different patterns for both mid-century and end-century. In regards to
the historical period, Figure 5 shows that the (bivariate) duration–severity interdependence is expected
to change in the future.

The differences in the projected bivariate patterns can be visualized comparing two models,
namely, GFDL-ESM2M and MIROC-ESM-CHEM. Considering the same 2036–2065 projected period
and same return period Tr = 10, model 1 (GFDL-ESM2M) shows severity values between 12 and
14 (over all RCPs) for the duration in the range 0 ≤ d ≤ 10 months (Figure 5). The driving model 2
(MIROC-ESM-CHEM) shows, on the other hand, a clearly larger spread among RCPs with values
varying from 11.5 to around 15 for the duration in the same range.
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To explore and compare the different projections between GCMs and related uncertainties,
Supplementary Figure S2 groups the projected patterns according to RCPs. Important differences are
observed between GCMs. In general, higher differences in the projections are estimated for Tr = 10
compared to smaller return periods.

Overall, a clear and common tendency across all GCMs cannot be reported. Rather, results indicate
there are important differences in the projected bivariate patterns. This is particularly clear for return
period Tr = 10. Further, uncertainty associated to GCMs exceeds uncertainty attained by RCPs.
Similar to these results, other authors have also found larger uncertainties in projected droughts
associated with GCMs compared to the uncertainty introduced due to RCPs [45,46].



Water 2020, 12, 2288 10 of 14

Additionally to the last point, we underline that runoff projections from impact models for future
drought studies are generally highly uncertain [9]. Uncertainty in GCMs is often the most relevant
source, overruling the uncertainty introduced by the impact models. In a study on seven large river
basins which includes the Rhine River at Lobith, GCM uncertainties mostly dominate over hydrological
model uncertainty for the projection of runoff drought characteristics [3]. They also found for the Rhine
that the GCM related uncertainty is much higher (more than four times) than that associated with
impact (hydrological) models and that the difference grows continuously until the end of the century.
In other regions, similar results have been found. Disagreements for GCM projections compared to
hydrological model selection for the mid- and end-21st century analyzing runoff in a catchment in
the Ecuadorian Andes [47] was also reported. In that study, an ensemble of seven different model
structures and eight GCMs was utilized. Similar conclusions were drawn for drier environments in
Southeast Australia [48] and in a snow-dominated area in Canada [49]. In a study addressing climate
change impacts on European river floods under different warming conditions, [50] concluded that the
contribution of GCM uncertainty to overall uncertainty is, in general, higher than the hydrological
model-related uncertainty. Moreover, [51] showed that GCM uncertainty dominates over hydrological
model uncertainty in Mediterranean and Atlantic regions in Europe for all analyzed warming levels
(1.5, 2.0, and 3.0 ◦C). Hence, the conclusion is that the general patterns found for the variability of
projections between GCMs and RCPs are likely to be similar for other impact models, overlying and
masking some of projected changes in the mid- and long-term.

3.5. Discussion

Changes in the pattern of drought characteristics estimated here as a bivariate relationship can
unfold as a result of several causes. For instance, precipitation patterns can dynamically and spatially
change. A seasonal shifting and a regionally changing pattern of precipitation has already been shown
for different latitudes [52]. Projections of the pattern of water supply in Germany have shown that
wetter winters are expected for the next decades based on the SPI analysis. This can lead to the delay
of soil drying which might extend into the summer period [53].

It is important to mention that changes in drought characteristics as a result of climate change
is a phenomenon that has been reported to be already unfolding due to spatial–temporal changes in
climate patterns [54]. Important in this regard are hydrological droughts which can cause devastating
impacts on ecological systems and many economic sectors [9] and particularly in agriculture [54].
Although univariate drought analyses and projections are very valuable, we see the additional need to
apply multivariate approaches for a more comprehensive understanding and assessment of droughts.
A key issue is the improvement of predictions and projections of drought characteristics and the
consideration of both natural variability and anthropogenic climate change [4].

Drought is a complex phenomenon and there are many ways of defining it. This study addressed
hydrological droughts. However, a more comprehensive understanding of droughts and their
changes over time could be achieved by incorporating other drought definitions and indexes.
Furthermore, there are other sources of uncertainties as well influencing droughts as, for instance,
hydrological model choice, downscaling approaches, or predictive uncertainty, which are not addressed
in this study and could eventually be investigated in other studies.

As previously stated, results presented here indicating a change in the bivariate drought patterns
for different return periods brings with it some important implications with regard to occurrences of
precipitation such as spatial and temporal (dynamical) changes. This can be translated as, for example,
a change in seasonality together with different duration–severity interrelationships. A further study
can address these expected temporal changes in precipitation occurrences for future projections as
well as changes in projected water generation through different rainfall-runoff models. It is important
to mention that the results presented here are valid only in the study region. However, the applied
methodology can be performed in other areas and its validity will depend on fitting an adequate
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(optimal) probabilistic model for the bivariate duration–severity relationship and the calibration and
validation of a rainfall–runoff model as carried out here.

4. Conclusions

Most studies addressing the relation of climate change impacts and droughts perform their analysis
through univariate statistical approaches where individual drought characteristics are separately
considered. However, droughts have multiple dimensions (e.g., magnitude, frequency, duration) and
hence multivariate approaches provide a deeper insight and a more comprehensive characterization,
especially for future applications. The present study addressed drought events as a multivariate
phenomenon. Bivariate drought patterns were, first, characterized for current climate conditions and,
second, for two projected periods, namely, during the mid- (2036–2065) and end- (2070–2099) part of
the present century. Given the strong interrelationship of drought duration and severity, we developed
a bivariate model by fitting an appropriate copula function. From different models applied, the Frank
copula showed better performance in terms of the RMSE and hence was used to model the bivariate
duration–severity interrelationship. Different GCM-RCP combinations were studied from which the
differences in the joint duration–severity behavior were quantified. The clear identified differences
between projections imply significant uncertainties in the projected joint patterns for the two periods.

Main results for the Rhine River can be summarized as follows: first, the joint behavior of drought
duration and severity is expected to change in the next decades, but no single pattern amongst GCMs
and RCPs can be found for both, mid- and end-century projection periods. Second, the interdependence
drought duration–severity shows distinctly different associations depending on the return period,
GCM, and RCP. By comparing them, both relatively small and important differences are observed.
Third, uncertainty is present to different degrees depending on each particular case analyzed. This is
valid for both projected periods studied.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/8/2288/s1,
Figure S1: H Observed and simulated monthly discharge for calibration and validation period for the River Rhine
at Lobith; Figure S2: Bivariate interdependence duration-severity for return periods 2, 5 and 10 years for the
mid- and end-century and five GCMs separated by RCPs; Table S1: HBV model parameters and their meaning,
Table S2: Statistics of drought events associated with the observation period 1971–2000, Table S3: Used copula
models and associated parameter space.
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