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Abstract: Chlorophyll a (Chl-a) concentration, which reflects the biomass and primary
productivity of phytoplankton in water, is an important water quality parameter to assess
the eutrophication status of water. The band combinations shown in the images of Donghu
Lake (Wuhan City, China) captured by Landsat satellites from 1987 to 2018 were analyzed.
The (B4 − B3)/(B4 + B3) [(Green − Red)/(Green + Red)] band combination was employed to construct
linear, power, exponential, logarithmic and cubic polynomial models based on Chl-a values in Donghu
Lake in April 2016. The correlation coefficient (R2), the relative error (RE) and the root mean square
error (RMSE) of the cubic model were 0.859, 9.175% and 11.194 µg/L, respectively and those of the
validation model were 0.831, 6.509% and 19.846µg/L, respectively. Remote sensing images from 1987
to 2018 were applied to the model and the spatial distribution of Chl-a concentrations in spring and
autumn of these years was obtained. At the same time, the eutrophication status of Donghu Lake was
monitored and evaluated based on the comprehensive trophic level index (TLI). The results showed
that the TLI (

∑
) of Donghu Lake in April 2016 was 63.49 and the historical data on Chl-a concentration

showed that Donghu Lake had been eutrophic. The distribution of Chl-a concentration in Donghu
Lake was affected by factors such as construction of bridges and dams, commercial activities and
enclosure culture in the lake. The overall distribution of Chl-a concentration in each sub-lake was
higher than that in the main lake region and Chl-a concentration was highest in summer, followed by
spring, autumn and winter. Based on the data of three long-term (2005–2018) monitoring points in
Donghu Lake, the matching patterns between meteorological data and Chl-a concentration were
analyzed. It revealed that the Chl-a concentration was relatively high in warmer years or rainy years.
The long-term measured data also verified the accuracy of the cubic model for Chl-a concentration.
The R2, RE and RMSE of the validation model were 0.641, 2.518% and 22.606 µg/L, respectively,
which indicated that it was feasible to use Landsat images to retrieve long-term Chl-a concentrations.
Based on longitudinal remote sensing data from 1987 to 2018, long-term and large-scale dynamic
monitoring of Chl-a concentrations in Donghu Lake was carried out in this study, providing reference
and guidance for lake water quality management in the future.

Keywords: Donghu Lake; Landsat; chlorophyll-a (Chl-a); band combination; eutrophication; spatial
and temporal dynamics
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1. Introduction

Urban lakes have ecosystem service functions such as water supply, drainage, microclimate
regulation and other economic and cultural values such as aquatic sports, aquaculture and
recreation [1–3]. In recent years, with the growth of population, the expansion of cities and the
development of industry, urban lakes have received increasing point source and non-point source
pollution [4]. Eutrophication of lakes is a series of changes in the ecosystem of lakes due to excessive
nutrient input, resulting in the proliferation of phytoplankton such as algae and deterioration of water
quality [5,6]. According to the Report on the State of the Ecology and Environment in China 2018 released
by the Ministry of Ecology and Environment of the People’s Republic of China, among 111 major
lakes (reservoirs) across the country, 70 (63.1%) were at or below the Grade III standard. Among 107
lakes (reservoirs) under the monitoring of nutritional status, 66 (61.7%) were under mesotrophic status
and 31 (29.0%) had slight eutrophication. Eutrophication of lakes has been becoming increasingly
prominent and lake ecosystems have been deteriorating rapidly, posing serious threats to China’s
water resources and water environment [7]. Therefore, it is of great urgency to quickly and accurately
monitor changes in lake water quality and assess lakes’ eutrophication status. Donghu Lake used to be
an open water lake with good water quality, however, after more than half a century of strong human
interference, its buffering capacity against environmental stress has been weakened and it has been
seriously polluted to date. Serious algal blooms have occurred in Donghu Lake [8]. Hence, it is an
ideal model to study the changes in the eutrophication status of urban lakes.

Chlorophyll a (Chl-a) concentration, which is commonly used to indicate the biomass and primary
productivity of phytoplankton in a water body, is an important water quality parameter to assess the
degree of eutrophication [9]. The traditional method of manual sampling can accurately measure
Chl-a concentration in local water bodies, but it is expensive, time-consuming and subject to the
influence of different conditions such as the weather [10]. Moreover, it is impractical to apply this
method to water bodies with large spatial and temporal span and it fails to synchronously provide
the spatial distribution data of Chl-a concentration in the whole water body [11]. Remote-sensing
monitoring technology has the advantages of high speed, wide range, high frequency, dynamism,
long time series and low cost [12,13], which allows for long-term monitoring of water quality on a
large scale [14]. At present, there are mainly empirical, semi-empirical and analytical methods for
remote-sensing inversion of Chl-a concentration [15,16]. A large amount of in-depth research has
been done on the inversion of Chl-a concentration in lakes and many models have been established to
improve inversion accuracy. Gilerson et al. [17] used the Red and Near-Infrared band combination
in MERIS image to retrieve Chl-a concentration in coastal and inland waters. Gitelson et al. [18]
established a three-band model with an R2 of 0.81 for the estimation of the Chl-a concentration of
Case II waters. Yacobi et al. [19] carried out remote sensing modelling inversion on the mesotrophic
lakes in Israel, a subtropical region, and the model did not require large-scale parameter calibration
according to environmental factors. Remote sensing inversion of major lakes such as Taihu Lake [20],
Poyang Lake [21,22], Dianchi Lake [23], Erhai Lake [24], Chaohu Lake and Dongting Lake has also
been conducted in China [25,26]. It can be seen that, so far, remote sensing technology has been mainly
used to measure Chl-a concentration in large lakes. As a typical urban lake, the change of water quality
in Donghu Lake was closely related to the development of Wuhan City. Given that the current research
on Donghu Lake mainly focuses on TN and TP [5,27–29], sediment [30], bacterioplankton [31,32],
aquatic vegetation, etc., and few studies have been conducted on the prolonged changes of Chl-a
concentration in medium and small urban lakes, it is difficult to accurately assess the long-term
dynamic changes of urban lakes.

The long-term remote sensing inversion of Chl-a concentration in Donghu Lake is expected to
provide a certain theoretical basis and technical reference for its ecological management and sustainable
development, and lay a solid foundation for the long-term continuous and dynamic monitoring of
water quality. The objectives of this study are to (1) develop the best algorithm for retrieving Chl-a
concentration in Donghu Lake using Landsat series images and validate the reliability of the model
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with the measured data collected in the past ten years; (2) explore a pattern matching mode between
meteorological data and measured Chl-a values; (3) produce maps of historic Chl-a concentration data
in spring and autumn seasons from 1987 to 2018; and (4) assess the eutrophication level of Donghu
Lake from 1987 to 2019.

2. Materials and Methods

2.1. Study Area

Located in the northeast of the Wuchang District, Wuhan City, Hubei Province, Donghu Lake
(30◦30′ ~ 30◦36′ N, 114◦19′ ~ 114◦31′ E) is now one of the largest urban lakes in China (Figure 1). It is
composed of Guozheng Hu, Tangling Hu, Xiaotan Hu, Tuan Hu, Hou Hu, Miao Hu and other sub-lakes.
Its outline is shaped like an equilateral triangle, with a length of about 11.39 km from east to west, a
width of about 9.57 km from north to south, a coastline of about 120 km, an average depth of 2.21 m
and a maximum depth of 4.75 m [33]. Donghu Lake has an average water storage capacity of about
6.2 × 107 m3 per year and a water area of 33.09 km2. The lake region has a north subtropical monsoon
humid climate, with an annual average temperature of 16.3 ◦C, a monthly average temperature varying
from 3.3 ◦C to 29 ◦C, an average annual precipitation of 1204 mm and an average annual evaporation
of 1473 mm. The precipitation in this region is mainly in the spring and summer seasons, accounting
for about 75% of the annual rainfall. The Donghu Lake basin has a maximum longitudinal distance of
17 km and maximum transverse distance of 18 km. The basin belongs to typical alluvial landform of
residual hills, rivers and lakes, which is comprised of lakes, branching streams, headlands, beaches,
hills, valleys, hillocks and plains. It covers a total area of 128.74 km2, including 38% of development
land, 26% of water area, 20% of forest area and 6%, 9% and 1% of cultivated land, shrub grassland and
unused land, respectively.
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Figure 1. Study area and in situ chlorophyll-a (Chl-a) sampling locations.

According to the data from the Donghu Lake Monitoring Department (http://www.whdonghu.
gov.cn), the overall water quality of Donghu Lake in 2019 was Grade III and that of some sub-lakes was
Grade V or Inferior to Grade V. In summer and autumn, algae proliferated in Miao Hu, Shuiguo Hu and
other sub-lakes, causing serious eutrophication in Donghu Lake [31]. Therefore, it is of great scientific
significance for lake environmental monitoring to use remote sensing monitoring methods to explore
the water quality of Donghu Lake in different historical periods on a large spatial and temporal scale.

2.2. In Situ Measurements of Water Quality Parameters

The basic data used for establishing and verifying a remote sensing inversion model of Chl-a
was mainly based on the morphological characteristics and hydrological conditions of Donghu Lake.
A total of 97 sampling locations were evenly distributed using the network point method (Figure 1).

http://www.whdonghu.gov.cn
http://www.whdonghu.gov.cn
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Field sampling was carried out on each sub-lake from 17 April to 18 April 2016, which coincided with
the time of Landsat-8 OLI flying over Donghu Lake on 18 April 2016. The data used to verify the
accuracy of the long-term inversion model of Chl-a concentration were mainly from the three fixed
monitoring points set up by the Donghu Experimental Station of Lake Ecosystems, Chinese Academy
of Sciences. The sampling dates were around the 15th of each month from 2005 to 2018.

The measured data were spot sampled with GPS. Multiparameter Water Quality Sonde (YSI
EXO 2, Yellow Springs, OH, USA) was used to measure parameters such as Water Temperature (T),
Dissolved Oxygen (DO), pH and Turbidity (Turb), and a Secchi disk was employed to measure Water
Depth (WD) and Secchi depth (SD). The surface water samples (0.5 m below the water surface) and
the bottom water samples (0.5 m from the lake bottom) of the same amount were first collected with
a 5 L plexiglass water sampler, blended thoroughly, then stored in a 1 L polyethylene water sample
bottle [34]. The water samples were brought back to the laboratory on the same day for an analysis of
water quality parameter.

2.3. Methods

2.3.1. Laboratory Analysis

The TP, TN and CODMn were analyzed using the standard Chinese method (Environmental
quality standards for surface water, 2002). The Chl-a concentration was measured using the
Ethanol-Spectrophotometry Method (Shimadzu UV-2550, Nakakyo, Kyoto, Japan). First, 300 mL of
water sample was filtered by a 47 mm GF/F glass fiber filter membrane which was later transferred to a
10 mL centrifuge tube. Next, 10 mL of 90% ethanol was added into this tube for extraction at room
temperature in the dark for 24 h. The supernatant was centrifugally extracted and its absorbance at
665 nm and 750 nm (E665 and E750) was determined. Finally, a drop of 1 M hydrochloric acid was
added for acidification and the absorbance at 665 nm and 750 nm (A665 and A750) was measured again.
The Chl-a concentration was calculated as follows:

Chl− a =
27.9× [(E665 − E750) − (A665 −A750)] ×Va

Vb
(1)

where Chl-a represents the chlorophyll a concentration (µg/L), Va denotes the constant volume of
ethanol from which Chl-a is extracted (mL) and Vb is the volume of water sample (mL).

The results of Chl-a concentration at these 97 sampling locations of Donghu Lake showed that the
Chl-a values varied from 7.81 µg/L to 265.61 µg/L, the mean value was 46.98 µg/L and the standard
deviation was 40.15 µg/L.

2.3.2. Image Acquisition and Pre-Processing

Since the launch of the Landsat-1 in 1972, the United States has launched a total of 8 Landsat
satellites [35]. Not only the resolution of remote sensing images but also the wavelength was kept at
the same level. The image data captured by Landsat satellites from 1987 to 2018 was selected in this
study and the spatial resolution of all these images was 30 m. The path and row of Landsat-8 OLI
remote sensing images in Donghu Lake were 123 and 39, respectively, according to the United States
Geological Survey (http://www.usgs.gov). The remote sensing images from 19 April 1987 to 8 August
2011 were captured by the Landsat-5/TM sensor, the remote sensing images in 2012 were acquired
by the Landsat-7/ETM+ sensor and the remote sensing images from 26 April 2013 to 15 September
2018 were captured by the Landsat-8 OLI sensor. However, the Scan-Line Corrector (SLC) of the
Landsat-7/ETM+ sensor failed in 2003 [36], resulting in gaps in the data. Therefore, the interpolation
method was used to patch the images in 2012. The cloud cover of remote sensing images in this
study area was less than 20%. Radiation correction and geometric correction of all these images were
completed with ground control points and a digital elevation model. Each image was projected onto the
WGS84-UTM coordinate system and pre-processing such as radiometric calibration and atmospheric

http://www.usgs.gov
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correction was carried out. The images used for establishing a model of Chl-a concentration were
captured by Landsat-8 OLI on 18 April 2016 and the cloud cover of the image was 5.9%. Research
showed that with the water temperature rising in Donghu Lake in the spring, algae multiplied in large
numbers and the maximum biomass production occurred in summer and autumn [8,31]. Therefore,
images captured in spring and autumn seasons were selected to analyze the distribution of Chl-a in
Donghu Lake over the years. If images captured in certain months could not be used due to some
factors, such as oversized cloud cover, those acquired in the adjacent months were used (Table 1).

Table 1. Landsat image acquisition date and sensor type.

Landsat Date Sensor Landsat Date Sensor Landsat Date Sensor

19April 1987 Landsat-5/TM 23 October 1997 Landsat-5/TM 28 April 2008 Landsat-5/TM
26 September 1987 Landsat-5/TM 17 April 1998 Landsat-5/TM 8 November 2008 Landsat-5/TM

8 June 1988 Landsat-5/TM 26 October 1998 Landsat-5/TM 14 March 2009 Landsat-5/TM
30 October 1988 Landsat-5/TM 6 May 1999 Landsat-5/TM 24 October 2009 Landsat-5/TM

11 February 1989 Landsat-5/TM 27 September 1999 Landsat-5/TM 27 April 2010 Landsat-5/TM
18 November 1989 Landsat-5/TM 27 May 2000 Landsat-5/TM 5 November 2010 Landsat-5/TM

27 April 1990 Landsat-5/TM 31 October 2000 Landsat-5/TM 4 March 2011 Landsat-5/TM
2 September 1990 Landsat-5/TM 8 March 2001 Landsat-5/TM 8 August 2011 Landsat-5/TM

16 May 1991 Landsat-5/TM 18 October 2001 Landsat-5/TM 14 March 2012 Landsat-7/ETM+
23 October 1991 Landsat-5/TM 12 April 2002 Landsat-5/TM 16 April 2013 Landsat-8 OLI

16 April 1992 Landsat-5/TM 14 October 2002 Landsat-5/TM 19 October 2013 Landsat-8 OLI
18 October 1992 Landsat-5/TM 15 April 2003 Landsat-5/TM 15 May 2014 Landsat-8 OLI

19 April 1993 Landsat-5/TM 24 October 2003 Landsat-5/TM 22 October 2014 Landsat-8 OLI
12 October 1993 Landsat-5/TM 1 April 2004 Landsat-5/TM 16 April 2015 Landsat-8 OLI

5 March 1994 Landsat-5/TM 24 September 2004 Landsat-5/TM 25 October 2015 Landsat-8 OLI
29 September 1994 Landsat-5/TM 20 April 2005 Landsat-5/TM 18 April 2016 Landsat-8 OLI

9 April 1995 Landsat-5/TM 11 September 2005 Landsat-5/TM 27 October 2016 Landsat-8 OLI
11 October 1995 Landsat-5/TM 07 April 2006 Landsat-5/TM 16 February 2017 Landsat-8 OLI
10 March 1996 Landsat-5/TM 16 October 2006 Landsat-5/TM 30 October 2017 Landsat-8 OLI
4 October 1996 Landsat-5/TM 10 April 2007 Landsat-5/TM 8 April 2018 Landsat-8 OLI
30 April 1997 Landsat-5/TM 30 October 2007 Landsat-5/TM 15 September 2018 Landsat-8 OLI

(a) Radiometric Calibration

In order to eliminate errors caused by the sensor and determine its accurate radiance values, it was
necessary to convert the recorded original un-calibrated digital number (DN) value into the surface
reflectance of the top-of-atmosphere spectral radiance through radiometric calibration to accurately
retrieve the features of ground objects [37,38]. The DN value of remote sensing images was converted
into radiance by using absolute calibration coefficient and the formula is [11,39–41]:

L = DN/A + L0 (2)

where L is the top-of-atmosphere spectral radiance [W/(m2
·sr·µm)], DN is the original pixel gray value

recorded by the sensor, A is gain(W−1
·m2
·sr·µm), and L0 is offset [W/(m·sr·µm)]. Both A and L0 can be

found in the header files of Landsat satellites.

(b) FLAASH Atmospheric Correction

Substances in the atmosphere such as water vapor, aerosol and cloud particles are bound to
exert a certain influence on the reflectance spectrum of ground objects, resulting in a difference
between the spectrum received by the sensor and the spectral information of the ground objects
themselves [6,42]. Therefore, atmospheric correction should be carried out on the images to remove
the effects of the atmosphere, so as to obtain real physical parameters such as reflectance of ground
objects and surface temperature. In this study, FLAASH Atmospheric correction of ENVI software
(Exelis Visual Information Solutions, v.5.3, Broomfield, CO, USA) was used to set parameters such as
Landsat sensor type, aerosol model, aerosol retrieval and atmospheric model [38,43,44]. The spectral
curves of water body images before and after correction are shown in Figure 2a.
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(c) Water Information Extraction

As an urban lake, Donghu Lake has had a relatively fast development in tourism and industry
and the urban construction in this basin has been rapid, both of which have made its coastline undergo
tremendous changes in the past 30 years. In order to ensure the accuracy of remote sensing inversion
of Chl-a concentration, it was imperative to extract water body information from each image and
to eliminate the effects of some elements such as greenways and man-made structures. The main
means of water body information extraction included manual delineation, threshold segmentation
and vector extraction [45,46]. The Feature Extraction tool in ENVI 5.3 was used to extract the vector
diagram of Donghu Lake, the region of interest (ROI) was established with vector files [37] and the
atmospheric-corrected images were cropped to obtain the scope of Donghu Lake, as shown in Figure 2b.

2.3.3. Comprehensive Trophic Level Index

Eutrophication evaluation of lakes is a quantitative description of lakes’ trophic levels at a certain
stage during their development process [47]. Through the analysis of a series of parameters of a
water body and the correlations among them, the eutrophication status of lakes can be evaluated,
the eutrophication development process can be analyzed and its development trend can be predicted,
which can help to provide a scientific basis for water quality management and eutrophication control
of lakes [7,14]. In this study, the comprehensive trophic level index (TLI) is adopted. It is an evaluation
index system suitable for the eutrophication status of lakes in China according to the survey data
of 26 lakes. The evaluation method uses a continuous value of 0–100 to grade the trophic status
of a lake. A lake whose TLI (

∑
) is below 30 is oligotrophic, 30 ≤ TLI (

∑
) ≤ 50 is mesotrophic,

TLI (
∑

) > 50 is eutrophic, 50 < TLI (
∑

) ≤ 60 is slight eutrophic, 60 < TLI (
∑

) ≤ 70 is moderate eutrophic
and TLI (

∑
) > 70 is extremely eutrophic. The calculation formula is as follows [1,26]:

TLI(
∑

) =
m∑

j=1

W j·TLI( j) (3)

where TLI (
∑

) denotes the comprehensive trophic level index, Wj represents the relative weights of the
trophic state index of parameter j and TLI (j) is the trophic level index of j parameter j.

Chl-a is the reference parameter and the normalized relative weight calculation formula for
parameter j is:

W j =
ri j

2∑m
j=1 ri j2

(4)

where rij is the correlation coefficient between the j parameter and the reference parameter Chl-a and m
denotes the number of evaluation parameters.
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The correlation coefficients rij and ri j
2 between the reference parameter Chl-a and other parameters

of lakes in China are shown in Table 2.

Table 2. Correlation coefficients rij and ri j
2 between some parameters and Chl-a of lakes (reservoirs)

in China.

Parameter Chl-a TP TN SD CODMn

rij 1 0.84 0.82 −0.83 0.83

ri j
2 1 0.7056 0.6724 0.6889 0.6889

Note: This table is cited from China’s Lake Environment. The correlation coefficient rij in this table was derived
from the results of survey data of 26 major lakes in China.

The formula for calculating the trophic level index is:

TLI(Chl− a) = 10(2.5 + 1.086ln Chl− a)
TLI(TP) = 10(9.436 + 1.624ln TP)
TLI(TN) = 10(5.453 + 1.694ln TN)

TLI(SD) = 10(5.118− 1.94ln SD)

TLI(CODMn) = 10(0.109 + 2.661ln CODMn)

(5)

where the unit of Chl-a is mg/m3, the unit of transparency (SD) is m and that of other indexes is mg/L.

3. Results

3.1. Selection of Landsat Spectral Bands

A remote sensing inversion of Chl-a concentration of a water body calculates the Chl-a values
based on measured values and models. The basic concept is to establish a fitting model that uses
remote sensing signals or data to extract information on this water body. The aim of this study is
to assess Chl-a concentration by using the statistical correlation between the spectral band or band
combinations and the measured Chl-a values.

The band information of the Landsat series satellites used in this research is shown in Table 3.
Among those bands of Landsat-8 OLI images on 18 April 2016, Band 8 is the Panchromatic, which is
a black and white panchromatic image with a resolution of 15 m and is mainly used to enhance the
resolution. Band 9 is the Cirrus with the characteristic of strong water vapor absorption and is mainly
used for cloud detection. Band 10 and Band 11 are bands in the thermal infrared (TIR) with a resolution
of 100 m, which are mainly used to sense thermal radiation targets [15,48]. Therefore, the above bands
were removed in the study and the rest were used to build the model.

Table 3. Band specifications for Landsat sensors. The bands used in this study are shown in bold.

Spectral Channel Landsat-8 OLI Landsat-7/ETM+ Landsat-5/TM
Bands Wavelength (µm) Bands Wavelength (µm) Bands Wavelength (µm)

Band 1 Coastal 0.43–0.45 Blue 0.45–0.52 Blue 0.45–0.52
Band 2 Blue 0.45–0.51 Green 0.52–0.60 Green 0.52–0.60
Band 3 Green 0.53–0.59 Red 0.63–0.69 Red 0.63–0.69
Band 4 Red 0.64–0.67 Near-Infrared 0.77–0.90 Near-Infrared 0.76–0.90
Band 5 Near-Infrared 0.85–0.88 Near-Infrared 1.55–1.75 Near-Infrared 1.55–1.75
Band 6 SWIR 1 1.57–1.65 Thermal 10.40–12.50 Thermal 10.40–12.50
Band 7 SWIR 2 2.11–2.29 Mid-Infrared 2.08–2.35 Mid-Infrared 2.08–2.35
Band 8 Panchromatic 0.50–0.68 Panchromatic 0.52–0.90
Band 9 Cirrus 1.36–1.38
Band 10 TIRS 1 10.60–11.19
Band 11 TIRS 2 11.50–12.51
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In SPSS Statistics software (IBM, v.22, New York, NY, USA), a Pearson correlation analysis was
used for analyzing the correlation between the remaining 7 bands, commonly used band combinations
and the measured Chl-a values collected in April 2016 at 97 sampling locations (Table 4).

Table 4. Correlation coefficient of Landsat-8 OLI band combinations with Chl-a concentration.

Band r p Band r p Band r p

B1 −0.458 ** 0.0000 B3/B2 −0.288 * 0.0111 B3/(B1 + B4) −0.607 ** 0.0000
B2 −0.458 ** 0.0000 B3/B4 −0.609 ** 0.0000 B3/(B2 + B4) −0.532 ** 0.0000
B3 −0.500 ** 0.0000 B4/B1 −0.265 * 0.0197 B3/(B1 + B2 + B4) −0.582 ** 0.0000
B4 −0.414 ** 0.0002 B4/B2 0.400 ** 0.0003 B4/(B1 + B2) −0.065 0.5755
B5 −0.166 0.1494 B4/B3 0.605 ** 0.0000 B4/(B1 + B3) 0.214 0.0615
B6 −0.087 0.4542 B1/(B2 + B3) 0.526 ** 0.0000 B4/(B2 + B3) 0.606 ** 0.0000
B7 −0.062 0.5941 B1/(B2 + B4) 0.391 ** 0.0004 B4/(B1 + B2 + B3) 0.313 ** 0.0056

B1/B2 0.444 ** 0.0001 B1/(B3 + B4) 0.475 ** 0.0000 (B1 − B2)/(B1 + B2) 0.462 ** 0.0000
B1/B3 0.546 ** 0.0000 B1/(B2 + B3 + B4) 0.479 ** 0.0000 (B1 − B3)/(B1 + B3) −0.263 * 0.0210
B1/B4 0.284 * 0.0122 B2/(B1 + B3) −0.240 * 0.0352 (B1 − B4)/(B1 + B4) 0.268 * 0.0183
B2/B1 0.465 ** 0.0000 B2/(B1 + B4) −0.500 ** 0.0000 (B2 − B3)/(B2 + B3) −0.321 ** 0.0044
B2/B3 0.342 ** 0.0023 B2/(B3 + B4) 0.003 0.9770 (B2 − B4)/(B2 + B4) 0.401 ** 0.0003
B2/B4 −0.399 ** 0.0003 B2/(B1 + B3 + B4) −0.312 ** 0.0057 (B3 − B4)/(B3 + B4) −0.826 ** 0.0000
B3/B1 −0.534 ** 0.0000 B3/(B1 + B2) −0.523 ** 0.0000 (B4 − B3)/(B4 + B3) −0.826 ** 0.0000

* p < 0.05, ** p < 0.01.

The results of the analysis showed that the correlations between the measured Chl-a values and
the band combinations were significantly improved. The correlations between B3/B4, B3/(B1 + B4),
B4/(B2 + B3), (B4 − B3)/(B4 + B3) and Chl-a values were stronger, reaching above 0.6, of which
(B4 − B3)/(B4 + B3) [(Green − Red)/(Green + Red)] possessed the highest correlation [r (97) = −0.826,
p < 0.01]. Thus, it was confirmed that band combinations had higher correlation coefficients with Chl-a
concentration, which was consistent with previous studies [13,14,24].

3.2. Chl-a Algorithm Development

The data of 65 sampling points collected in April 2016 were randomly selected to establish the model.
In Origin software (OriginLab Corporation, v.2018, Northampton, MA, USA), the (B4 − B3)/(B4 + B3)
was taken as the independent variable and the measured Chl-a values were the dependent
variables. Common models such as linear, exponential, power, cubic and logarithmic models
were established [10,14,38,42], with the correlation coefficient (R2), the root mean square error (RMSE)
and the relative error (RE) as evaluation indexes (Figure 3) [15,22,49,50].
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The results showed that the R2 of the linear, cubic and quadratic models was greater than 0.6,
the RE was lower than 10% and the RMSE was lower than 15 µg/L. Thus, it can be seen that the
precision of those models can meet the requirements of the remote sensing inversion. Among those
common models, the cubic model (Figure 3e) had the highest accuracy, an optimal fit and a closer
correlation with the measured Chl-a values, for it had an R2 of 0.859, an RE of 9.175% and an RMSE of
11.194 µg/L. The cubic model was established by data which were randomly selected from different
sampling locations six times, and its results were relatively stable with an R2 varying from 0.735 to
0.859 and an RMSE ranging from 11.194 to 19.438 µg/L. Therefore, the (B4 − B3)/(B4 + B3) was selected
as the band combination to retrieve Chl-a values in this study and a cubic model to retrieve Chl-a
concentration in Donghu Lake was established based on Landsat-8 OLI data.

Chl− a = 2712.52x3 + 1817.63x2
− 1100.95x + 149.71 (6)

where Chl-a represents the chlorophyll a concentration (µg/L) and x is the reflectance band ratio of
(B4 − B3)/(B4 + B3).

3.3. Validity of the Algorithm

The data collected in the remaining 32 sampling points were used to verify the accuracy of the
model. The established model of band combination (Formula 6) was applied to the Landsat-8 OLI
ratio images on 18 April 2016. The pixel reflectivity of the 32 points was extracted and band math was
performed to obtain the model predictions of Chl-a values, which were then fitted with the measured
Chl-a values (Figure 4a). The R2, RE and RMSE of both the inversion values and the measured values
were 0.831, 6.509%, 19.846 µg/L, respectively, which indicated that the model constructed in this
study can well retrieve the actual Chl-a concentration. The outliers emerging at Miao Hu, Hou Hu
and Shuiguo Hu may be caused by frequent outbreaks of cyanobacteria blooms which resulted from
culture-based fisheries practices, sewage discharged after agritainment activities and business activities
such as pleasure boats. However, it cannot be ruled out that this may be caused by systematic errors in
experimental analysis.
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Figure 4. (a) Landsat-predicted versus actual Chl-a concentration. (b) Landsat-predicted versus actual
Chl-a concentration (three long-term monitoring points from 2005 to 2018). The 1:1 line is represented
by the red dashed line and the black solid line represents the observed correlation between the Landsat
estimated values and actual measured values.

3.4. Validity of the Algorithm Based on Measured Data from 2003–2018

The inversion model (Formula 6) of Chl-a concentration was applied to the Landsat images
from 2005 to 2018 so as to do band math and extract the inversion values. The band combination



Water 2020, 12, 2192 10 of 18

used by Landsat 8-OLI was (B4 − B3)/(B4 + B3) and that of Landsat 7/ETM+ and Landsat 5/TM was
(B3 − B2)/(B3 + B2).

With the Image Analysis tools of ArcGIS software (Esri, v.10.2, Redlands, CA, USA), band function
was extracted. According to the coordinates of three long-term monitoring points set up by Chinese
Academy of Sciences, 74 images with a similar transit time and sampling dates from 2005 to 2018 were
used to extract Chl-a values of those monitoring points, which were then fitted with Chl-a values of
measured points to verify the accuracy of the long-term remote sensing inversion model (Figure 4b).
It was found that the R2, RE and RMSE of both the predicted values and the measured values were
0.641, 2.518% and 22.606 µg/L, respectively. The accuracy was mainly affected by the fact that the
sampling dates were not completely consistent with the dates when those satellites flew over Donghu
Lake. However, the model can reveal the approximate Chl-a concentrations in Donghu Lake in different
historic periods and also provide a reference for the long-term remote sensing dynamic monitoring of
the lake.

3.5. Application of the Algorithm and Comparison of the Measured Data

The Chl-a values were collected at 97 sampling locations of Donghu Lake in April 2016. Next,
a Kriging interpolation analysis was conducted with ArcGIS 10.2 and mapping was established after a
classification was made (Figure 5a). Comparing those values with Chl-a values retrieved by a remote
sensing inversion model (Figure 5b), we can find that the distribution areas of the peak values of Chl-a
concentration revealed by the two methods were consistent.
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Figure 5. Comparison of the observed (a) and Landsat-predicted (b) Chl-a concentration distribution
map on 18 April 2016.

An analysis of the spatial distribution of Chl-a concentration showed that some sub-lakes such as
Shuiguo Hu, Yujia Hu, Miao Hu, Tuan Hu and Hou Hu had higher Chl-a concentration (40.3–265.5 µg/L),
while some sub-lakes such as Guozheng Hu, Tanglin Hu and Xiaotan Hu had relatively better water
quality (7.8–39.4 µg/L). The spatial distribution of Chl-a concentration was closely related to the
distribution of pollution sources along its shore. For urban development, the Wuhan municipal
government connected Shuiguo Hu with the seriously polluted Shahu Lake, which was surrounded
by commercial areas and densely populated residential areas. After that, a large amount of sewage
was discharged into Donghu Lake, resulting in high temperatures of its water body, high levels of
nutrients such as nitrogen and phosphorus, and severe water pollution. Separated from the main
body of Donghu Lake for the construction of municipal works, Miao Hu and Yujia Hu had gentler
water flows and weaker water exchanges, which led to relatively slow processes of their sewage
purification. With dense villages, towns and factories around them, some sub-lakes such as Tuan
Hu and Hou Hu had many branching streams and widely scattered fishing grounds. Hence, a large
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amount of domestic, industrial, fishery and agricultural sewage was discharged into these lakes,
resulting in high Chl-a concentration in some areas. As the key planning areas of the Donghu Lake
Scenic Area, some sub-lakes such as Xiaotan Hu, Tiane Hu and Shaoji Hu were planted with many
aquatic plants, which exerted certain effects on the purification of their water quality. The main lake
area of Donghu Lake, which consists of Guozheng Hu, Tangling Hu etc., had a large water area and a
strong self-purification ability. Thus, the eutrophication status of the main lake area was better than
that of other sub-lakes.

4. Discussions

4.1. Seasonal and Inter-Annual Changes of Chl-a Concentration

The Chl-a values measured at three fixed monitoring points were combined with the temperature
and precipitation data of Donghu Lake obtained from China Meteorological Administration for analysis
(Figure 6 and its enlarged version, Figure S1 in the Supplementary Materials). The data monitored
showed that the peak values of Chl-a concentration at points I, II and III all occurred in summer
(July–September) with the monthly average temperature exceeding 24 ◦C. The lowest values appeared
in winter and spring seasons (December–February) with the monthly average temperature under
10 ◦C. Chl-a concentration in Donghu Lake obviously varied in different seasons, with the highest
concentration in summer, followed by autumn, spring and winter [20,51,52]. Located at the edge
of the lake, point I had the greatest seasonal difference in Chl-a concentration, while point II in the
main lake region had the smallest. Previous studies showed that the Chl-a concentration in lakes
increased gradually in spring and reached the highest level in summer, and then decreased gradually
in autumn and reached the lowest level in winter. The variations of Chl-a concentration were closely
related to the climate changes of Donghu Lake. With a north subtropical monsoon humid climate,
the Donghu Lake has four distinct seasons. It is warm and humid in spring with a rise in temperature,
resulting in the steady growth of algae. In summer, it is warm and rainy so that the number of algae in
this region reaches the maximum in August on account of the proper water temperature. It is sunny
and mild in autumn and the temperature gradually goes down in October, which curbs the growth
and reproduction of algae. A cold and dry climate in winter is not suitable for the survival of algae.
During winter, the metabolism of algae is suspended and it becomes dormant [53,54].
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The inter-annual variance analysis from 2005 to 2018 indicated that the Chl-a concentration at
points I, II and III ranged from 3.4 to 158.1µg/L, 2.8 to 117.2µg/L and 0.6 to 118.6µg/L respectively. As for
the annual mean, the standard deviation and variance at point I were 11.24 and 126.35, those at point II
were 9.67 and 93.56 and those at point III were 10.51 and 110.45. It can be found that the inter-annual
difference at point I was the largest and that at point II was the smallest. Meteorological data showed
that there was a matching pattern between the mean annual temperature and precipitation of Donghu
Lake and the peak values of Chl-a concentration. The higher values of Chl-a concentration at three
points mainly occurred in 2005 (17.6 ◦C, 1108 mm), 2007 (18.1 ◦C, 1031 mm), 2010 (17.2 ◦C, 2032 mm),
2013 (18.2 ◦C, 1491 mm), 2015 (17.5 ◦C, 1442 mm) and 2016 (17.2 ◦C, 1827 mm), while relatively lower
values appeared in 2008 (17.3 ◦C, 1009 mm), 2011 (17.2 ◦C, 968.9 mm), 2012 (17.0 ◦C, 1395 mm) and 2017
(17.3 ◦C, 1074 mm). Donghu Lake had higher Chl-a concentration values in rainy years or warmer years.
This was because in warmer years such as 2005, 2007 and 2013, its higher water temperatures were
conducive to the mass reproduction of algae and in rainy years such as 2010 and 2016, large amounts
of urban sewage were discharged into the lake, resulting in an increase in the nutrients in the water
body and thus enhancing the proliferation of algae [55]. In addition, the construction of the Donghu
Lake Greenway and the Donghu Lake Tunnel projects in 2015 and 2016 may have also impacted the
water quality of Donghu Lake, resulting in its abnormally high Chl-a concentration.

An inversion model (Formula 6) of Chl-a concentration was applied to the Landsat series images
of Donghu Lake from 2005 to 2018 to obtain the values of Chl-a concentration in the entire lake from
each image and calculate the annual mean values of Chl-a concentration of those years (Figure 6).
By comparing the annual mean values of Chl-a concentration retrieved by the remote sensing model
with those acquired by calculating the data collected at three measured points, we can find that the
variation trends of these two sets of data were similar, which verified the reliability of the remote
sensing inversion model.

4.2. Distribution of Chl-a Concentration in Spring and Autumn from 1987 to 2018

An inversion model (Formula 6) of Chl-a concentration was applied to images of Donghu Lake
captured by Landsat series satellites from 1987 to 2018. A total of 64 scenes in spring and autumn
seasons were selected (Figure S2 in the Supplementary Materials). In the past 30 years, the Chl-a
concentration in Donghu Lake has varied in the range of 20–200 ug/L. The higher values, even the peak
ones, of Chl-a concentration were commonly found in sub-lakes such as Yujia Hu, Tuan Hu, Miao Hu
and Shuiguo Hu. The Chl-a concentration in the regions between the edges of these lakes and the land
was higher than that in the centers of the lakes. The water quality of Guozheng Hu and Tangling Hu
was relatively good. According to the perennial analysis of Chl-a concentration, the southern part
(Miao Hu, Yujia Hu) of Donghu Lake had the highest Chl-a concentration, followed by the western part
(Shuiguo Hu), the eastern part (Tuan Hu, Hou Hu) and the northern part (Tangling Hu, Xiaotan Hu).

In spring, the Chl-a concentration in the eastern (Tuan Hu, Hou Hu) and southern (Yujia Hu,
Miao Hu) parts of Donghu Lake was obviously higher than that in the northern (Tangling Hu,
Shaoji Hu, Xiaotan Hu) and western (Shuiguo Hu, Tiane Hu) parts. In autumn, the peak values of Chl-a
concentration appeared in the southern (Yujia Hu, Miao Hu, Lingjiao Hu) and eastern (Tuan Hu) parts.
The area of Donghu Lake was relatively small and the meteorological conditions of each sub-lake,
such as light and temperature, were similar. However, the input levels of nutrients and conditions at
the bottoms of these sub-lakes were quite different. Being less affected by human activities, the western
part of Donghu Lake, including Shaoji Hu and Tiane Hu, had a shallow water depth, high transparency
and excellent water quality, thus providing good conditions for the growth of aquatic plants and
imposing restraints on that of algae. The water flow of Guozheng Hu in the main lake region was faster.
Some studies have shown that the too fast water flow and frequent water exchanges will effectively
restrain the growth and aggregation of algae by damaging the growing and breeding environment
of algae [22,47]. There were quite a few branches and bays of sub-lakes, such as Tuan Hu and Hou
Hu in the eastern part of Donghu Lake, where culture-based fisheries have been developed [33].
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In spring, the Chl-a concentration in Donghu Lake was generally low, but the pollution in it was
still serious, for a large amount of sewage had been discharged into it from the dense commercial
districts, residential districts and universities around Miao Hu and quite a few villages and towns
around Lingjiao Hu. In autumn, the overall Chl-a concentration in Donghu Lake was relatively high
and the difference of Chl-a concentration between different regions in the whole lake became smaller.
The peak values of Chl-a concentration mainly appeared in relatively closed sub-lakes such as Yujia
Hu, Miao Hu, Tuan Hu and Lingjiao Hu.

4.3. Trophic State Assessment

According to the results of an investigation in Donghu Lake on 18 April 2016, the TLI (Chl-a),
TLI (TP), TLI (TN), TLI (SD), TLI (COD) and TLI (

∑
) were 64.38, 58.49, 58.68, 56.35, 79.15 and

63.49, respectively. The water quality of Donghu Lake was moderate eutrophication. The higher
comprehensive TLI appeared in sub-lakes such as Miao Hu (TLI (

∑
) = 74.5), Shuiguo Hu (TLI (

∑
) = 80),

Tuan Hu (TLI (
∑

) = 66.7), Yujia Hu (TLI (
∑

) = 69.6) and Hou Hu (TLI (
∑

) = 66.2), and the lower
ones occurred in Guozheng Hu (TLI (

∑
) = 60.3) and Tangling Hu (TLI (

∑
) = 60.8). All of these were

consistent with the results of remote sensing inversion of Chl-a concentration.
The comprehensive trophic level index was calculated and graduation statistics were carried out

with remote sensing inversion results of Chl-a values of spring and autumn seasons from 1987 to
2018 (Figure 7). The TLI of Donghu Lake varied substantially in different periods and it was mostly
mesotrophic and eutrophic. More than 70% of the total lake area was in the status of mesotrophication
or eutrophication. The results indicated that the water pollution in Donghu Lake has been relatively
serious during its history.
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Connected with the Yangtze River, Donghu Lake used to be an open water lake with intense
water exchanges and good water quality and its water levels depended on the fluctuation of the
Yangtze River, according to historical data. In the 1950s, Wuhan’s municipal government made great
efforts to develop iron and steel enterprises. The construction of the Wufeng Sluice and the Qingshan
Central Pump during that time led to the complete separation of Donghu Lake and the Yangtze
River and transformed Donghu Lake from a natural lake into an inland water body. Donghu Lake
was in the stage of transition from a mesotrophic lake to a eutrophic one. In the 1960s, hundreds of
factories and enterprises were built around the lake and the surrounding population increased rapidly,
which caused an increase in sewage discharge. At the same time, a large number of dams and bridges
were built and fisheries were vigorously developed, which led to the separation of the branches of
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Donghu Lake and a weakened water mobility. The surface flow velocity was only 5–10 cm/s and
water at the bottom layer was basically stagnant. Human-induced eutrophication became increasingly
prominent in the 1970s when Sha Hu was connected to Donghu Lake for city drainage. A large
amount of organic matters, inorganic fertilizers, pesticides, poisonous substances and heavy metals
such as cadmium (Cd) and manganese (Mn) were discharged into this lake. The peak volume of the
sewage discharged into it exceeded 3 × 105 t/d per day. The transparency of the water body and the
coverage of aquatic plants decreased and the biodiversity and resource storage drastically declined.
The water in Donghu Lake became muddy and smelly and the ecological balance was destroyed.
Donghu Lake at that time became extremely eutrophic. In the 1980s, the number of plankton boomed
in the branching streams. In 1985, serious cyanobacterial blooms broke out across the whole lake. In the
1990s, Wuhan’s government began to treat urban sewage by adopting various engineering measures
such as external sewage interception, internal sewage removal, ecological restoration and water level
regulation [30], which improved the water quality of Donghu Lake in the years that followed in spite
of its instability. At the beginning of the 20th century, some sewage interception and decontamination
projects were put into use, and the large sewage draining exits in Miao Hu, the southern part of Donghu
Lake, and the Hongshan District were closed. With these measures, the water quality of Donghu Lake
was tremendously improved. However, it was still in the status of eutrophication.

5. Conclusions

Taking Donghu Lake as the research object, this study built a model between Chl-a values and the
band combination of (B4 − B3)/(B4 + B3) based on the remote sensing band characteristics of Chl-a,
by establishing correspondence between the water quality parameters of Chl-a, TN, TP, COD and SD
collected from 97 locations on 18 April 2016 and remote sensing images captured by Landsat satellites
on the same day. The model was applied to images from 1987 to 2018 to obtain the long-term dynamics
of Chl-a concentration in Donghu Lake. Through analysis, conclusions were reached as follows:

(1) An inversion model of Chl-a concentration was established with remote sensing images and water
quality parameter data. The correlation coefficient (R2) of the model was 0.859, the root mean
square error (RMSE) was 11.194 µg/L and the relative error (RE) was 9.175%. The R2, RE and
RMSE of the verification model were 0.831, 6.509% and 19.846 µg/L respectively. The generated
results were reliable for the inversion of Chl-a concentration.

(2) Based on the measured data and meteorological data from 2005 to 2018 in Donghu Lake,
it was shown that Chl-a concentration in this lake varied in different seasons and was affected
by lake morphology and distribution of surrounding pollution sources, exhibiting obvious
spatio-temporal characteristics. The interannual variance analysis indicated that the Chl-a
concentration in Donghu Lake was relatively high in warmer years or rainy years, and the
seasonal variance analysis showed that Donghu Lake had the highest Chl-a concentration in
summer, followed successively by autumn, spring and winter. The pollution levels of water in
the sub-lakes were higher than those in the main lake area. Among these sub-lakes, Yujia Hu,
Miao Hu and Shuiguo Hu were the three most polluted regions. The comprehensive trophic level
index TLI (

∑
) of Donghu Lake in April 2016 was 63.49, indicating eutrophication at that time.

(3) The accuracy of the model was verified using the data collected over more than ten years in
three long-term monitoring points, which were provided by the Donghu Experimental Station of
Lake Ecosystems, Chinese Academy of Sciences. The R2, RE and RMSE were 0.641, 2.518% and
22.606 µg/L, respectively. The accuracy is sufficient for conducting a remote sensing inversion,
which demonstrates that the Landsat series data can be used for retrieving the long-term Chl-a
concentration in inland lakes.

(4) Historically, Donghu Lake was connected with the Yangtze River. The sub-lakes of Donghu Lake
had high fluidity, good water quality and abundant aquatic plants. However, urbanization and
human intervention have exerted enormous impacts on Donghu Lake. The lake’s biodiversity
has been destroyed and its water quality has declined sharply. The situation has been somewhat
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improved through a variety of engineering measures and ecological management, showing that
the building of the eco-water network of Donghu Lake has been effective for the restoration of its
ecological structure and the improvement of its water quality.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/8/2192/s1,
Figure S1. Comparison between the observed and predicted Chl-a and meteorological data from 2005–2018.
Figure S2: Map of predicted Chl-a concentration distribution in the spring and autumn from 1987 to 2018.
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