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Abstract: A soil erosion and sediment transport model (WRF-Hydro-Sed) is introduced to WRF-Hydro.
As a process-based, fully distributed soil erosion model, WRF-Hydro-Sed accounts for both overland
and channel processes. Model performance is evaluated using observed rain gauge, streamflow,
and sediment concentration data during rainfall events in the Goodwin Creek Experimental Watershed
in Mississippi, USA. Both streamflow and sediment yield can be calibrated and validated successfully
at a watershed scale during rainfall events. Further discussion reveals the model’s uncertainty and
the applicability of calibrated hydro- and sediment parameters to different events. While an intensive
calibration over multiple events can improve the model’s performance to a certain degree compared
with single event-based calibration, it might not be an optimal strategy to carry out considering the
tremendous computational resources needed.
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1. Introduction

Eroded by different forcing agents, soil is being lost at a rate that is orders-of-magnitude greater
than its replenishment [1]. Among all the erosive agents, water is the most prevalent and usually
dominates. Moreover, due to the current climate change, the frequency, and the intensity of extreme
rainfall events are projected to increase, which will lead to more intensive erosion [2]. With this in
mind, a lot of soil erosion models have been developed to mainly simulate water-induced erosion.
Based on the numerical algorithms applied, these models can be classified as conceptual, empirical,
and process-based models [3]. The latter, with detailed representation of physical processes, is becoming
the mainstream in both academia and industry [4].

Depending on how processes and parameters are described, process-based models can be further
grouped into semi-distributed and fully distributed models. Semi-distributed models, such as
CREAMS (Chemical Runoff and Erosion from Agricultural Management Systems model [5]), WEPP
(Watershed Erosion Prediction Project [6]), EUROSEM (EUROpean Soil Erosion Model [7]), KINEROS
(KINematic EROsion Simulation [8]), and THREW (TsingHua Representative Elementary Watershed [9])
break down the model domain (a watershed or a catchment) into a series of basic elements such
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as hillslopes, planes and channels, over which the algorithms are applied and physical parameters
are represented [10]. However, since hydrological parameters are lumped over the basic elements,
semi-distributed models are not able to fully account for spatial heterogeneity. Fully distributed
models divide a study domain into grid cells with certain sizes. The spatially distributed input data of
fully distributed models are usually generated by the Geographical Information System (GIS). In this
way, the physical heterogeneity is better represented. With the advances of scientific computation,
several fully distributed, process-based models have been developed over the past three decades.
Notable examples are LISEM (LImburg Soil Erosion Model [11]), SHESED [12] and CASC2D-SED
(CASCade 2 dimensional sediment model [13]). Recently, a physically based hydrological and soil
erosion model has been developed by coupling the Soil Conservation Service model with a 2D fully
Dynamic Wave model and a Hillslope Erosion model by Juez et al. [2] The model is applied over a
Mediterranean watershed to simulate the rainfall-runoff and soil erosion process during two rainfall
events with satisfactory results generated. An efficient approach has been applied on the model for
calibration process, which has largely reduced the computational cost. The model has demonstrated its
potential applicability to large and long-term scale hydro-sedimentary process studies under climate
change [2]. In addition, the distributed model usually simulates the sedimentary processes in 2D mode.
In the study of the replenishment of sediments in a water-worked channel using the 2D shallow water
equation model coupled with Exner equation, Juez points out that the 2D distributed model can better
resolve the bidimensional water and sediment flux compared to the 1D model [14]. Moreover, the 2D
model is more computationally efficient than the complicated 3D model while still meeting research
and engineering requirements [14].

In this study, we present a newly developed, fully distributed, process-based soil erosion and
sediment transport model. Our model is built on WRF-Hydro, which simulates the hydrological cycle
and provides hydraulic parameters for soil erosion and transport. WRF-Hydro was developed as the
hydrological modeling extension package of WRF at the National Center for Atmospheric Research
in Boulder, Colorado [15]. Compared to other hydrological models such as the Variable Infiltration
Capacity model (VIC, [16]) and the Soil and Water Assessment Tool (SWAT, [17]) model, WRF-Hydro’s
advantage is its capability of simulating multi-processes at multi-scales while considering the spatial
distribution of hydrological variables. Besides, WRF-Hydro takes advantage of various available
meteorological and terrain datasets and has been fully coupled with meteorological and climate models
such as WRF. WRF-Hydro’s performance has been evaluated by its applications in flooding [18], water
resource management [19], water budget estimation [20], decadal scale hydroclimatic change [21],
and others. Currently, an instance of WRF-Hydro is running operationally as the National Oceanic and
Atmospheric Administration’s (NOAA) National Water Model, which provides streamflow forecasts
on 2.7 million river reaches of the contiguous United States. However, until this study, WRF-Hydro
does not include a sediment module, which limits its capability in water quality-related forecasts
and studies.

In this paper, the architecture and algorithms of the WRF-Hydro-Sed model, the study area,
and datasets used as well as the calibration method are presented in Section 2. Results of model calibration
and validation are detailed in Section 3. Section 4 discusses the model’s uncertainty, the validity of
applying calibrated parameters to different events, the relationship between landscape patterns and soil
erosion as well as the limitation of current model regarding long-term simulation under climate change.
A conclusion is given in Section 5.

2. Materials and Methods

2.1. WRF-Hydro

The structure and schematic representation of WRF-Hydro-Sed are shown in Figures 1 and 2,
respectively. WRF-Hydro is an integrated modeling platform that incorporates a land surface model
(LSM), grid aggregation/disaggregation, subsurface flow routing, surface overland flow routing,
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channel routing, lake and reservoir routing, and a conceptual base flow model. In this study the
soil erosion and sediment transport processes are built on WRF-Hydro’s overland flow and channel
flow routings.
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2.1.1. Overland Flow Routing

In WRF-Hydro, the surface runoff is generated through infiltration-excess and saturation-excess of
a supersaturated soil column. It can be routed either two-way or one-way (along the largest gradient
of slope), depending on the routing method specified in the model name list. As the physics and
algorithms of both routing options are identical, only the equations used for two-way routing are
presented here. The overland flow is assumed to be fully unsteady and non-uniform. The diffusive
wave formulation, which is a simplification of Saint-Venant equations for a shallow water wave,
is applied:

Continuity Equation:
∂h
∂t

+
∂qx

∂x
+
∂qy

∂y
= ie (1)
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Momentum Equation:
S f x = Sox −

∂h
∂x

S f y = Soy −
∂h
∂y

(2)

where h is the surface flow depth (L), qx, qy are the unit discharge in x and y direction, respectively
(L2 T−1) (in 1-way routing only discharge in the steepest direction is calculated), and ie is the infiltration
excess (L T−1). S f x, S f y are the friction slope in x and y directions, Sox, Soy are the bed slope in x and y
directions, and ∂h

∂x , ∂h
∂y are the gradient of surface flow depth in x and y directions.

Manning’s equation is used to calculate qx and qy in order to solve Equation (1),

q = αhβ, β = 5/3

α =
S1/2

f
n

(3)

where q is the unit discharge in x or y direction (L2 T−1), h is the surface flow depth (L), S f is the friction
slope in x or y direction, n is the Manning roughness coefficient of land surface.

Since WRF-Hydro’s performance is steady with the one-way routing in a parallel mode, we use
the one-way overland routing method to simulate overland flow and provide the hydraulic parameters
needed to drive the sediment model.

2.1.2. Channel Flow Routing

Once overland flow gets into the channel network, the water will be routed as channel flow.
Currently, WRF-Hydro provides three channel routing options: Muskingum, Muskingum-Cunge,
and Diffusive Wave Routing. As the first two options are usually applied for vector-based reaches, we use
the third option for gridded channel routing. An explicit, one-dimensional, variable time-stepping
diffusive wave formulation is used as follows:

Continuity Equation:
∂A
∂t

+
∂Q
∂x

= qlat (4)

Momentum Equation:
∂Z
∂x

= −S f (5)

where A is the cross-section area (L2), t is the time (T), Q is the flow discharge, which is the product
of cross-section area and mean flow velocity perpendicular to cross-section area (L3 T−1), qlat is the
unit discharge of the lateral flow (L2 T−1), Z is the water surface elevation, which is the sum of bed
elevation and water depth (L), S f is the friction slope.

The friction slope S f is solved as follows:

S f =
(Q

K

)2
(6)

K =
Cm

n
AR

2
3 (7)

where K is the flow conveyance coefficient (L3 T−1), Cm is the dimensional constant (1.0 for SI units),
n is the Manning roughness coefficient, R is the hydraulic radius (L).
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2.2. Soil Erosion and Sediment Transport Model

The sediment algorithm is adapted from the CASC2D-SED model, which is a fully distributed,
physically based hydrological and upland erosion model developed at Colorado State University.
CASC2D-SED is capable of reproducing hydrograph and sediment graph at different grid scales [22].
The code is converted from C to Fortran, and then incorporated into WRF-Hydro as an independent module.

On watershed scale, the annual gross erosion includes upland erosion, gully erosion as well as
local bank erosion [13]. In the model, three sediment size groups—sand, silt, and clay—are included.
Each sediment group can be presented in three states: suspended, deposited, or in bed layer. The bed
layer represents the original soil layer and thus serves as the source of the sediment to the model
domain. Once eroded from the bed layer, the sediment becomes suspended. After settling down,
it goes into deposited.

As shown in Figure 2, sediment is first eroded from and transported through overland area by
surface runoff. At the beginning of each time step, the total transport capacity is calculated with the
revised USLE [23] over upland area. With the transport capacity, the suspended sediment is transported
first, followed by the deposited part. At last, if there is still transport capacity left (excessive transport
capacity), it will be used to erode the bed layer. During these processes, both the wash load and bed
load transportation are considered. The different treatment of transport of the fine materials as wash
load and coarse materials as bed load are achieved mainly by assigning different settling velocities to
different sediment size groups.

In the channel, the sediment is carried by streamflow through the river network delineated in the
model, meanwhile settling and resuspension processes are calculated. According to the Engelund and
Hansen (1967) equation [24], the transport capacity is calculated for each sediment group separately in
the channel. With the transport capacity, the suspended part of each sediment group is transported first
by advective process. Then, bed material will be transported with excessive capacity. Channel erosion
is not considered by the model yet. The different treatment of fine materials and coarse materials is
accomplished by the differences in transport capacity as well as settling velocity between sediment groups.

Once sediment is transported from the “source grid (where the sediment comes from)” to the
“sink grid (where the sediment goes to)”, all the transported materials will stay in suspension first and
then settle down at assigned settling velocities. By the end of each computational step, the deposited
sediment is added to the original layer and the net accretion/erosion is updated.

2.2.1. Overland Sediment Routing

The revised USLE [23] is applied to predict soil loss from upland area (sheet and rill), which is
caused by rainfall and associated overland flow. In a single grid, the transport capacity is calculated
as follows:

Tovrl = 58390× S1.664
o × q2.035

×K ×C× P× dx× dt (8)

where Tovrl is the overland transport capacity (L3), here in the model m3, q is the unit flow discharge
(L2 T−1), in this study m2/s, K is the soil erodibility factor, which is in t/acre, C is the dimensionless
cropping-management factor, P is the conservation practice factor, which is dimensionless, dx is the
grid size (L), which is m in this study, and dt is the time step (T), which is in second. In this study,
dx and dt are the same as those used in overland routing. So is the water surface slope. The overland
sediment transport capacity is used to transport suspended sediment first, and then the deposited
sediment if any. After the suspended and deposited sediment in the source grid are transported, if there
is still transport capacity left, the remaining capacity will be used to erode the original bed layer.
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2.2.2. Channel Sediment Routing

The Engelund and Hansen (1967) [24] equation is applied to calculate the sediment transport
capacity for each sediment size group in channels. For each size group, the suspended part is
transported by advective process first and the transport capacity will be subtracted by the amount
of the suspended sediment transported. Then, the excessive capacity is used to transport deposited
material. The amount of the deposited material that can be transported is limited by excessive transport
capacity as well as advective processes. After the transport of suspended material and deposited
material, if there is still any transport capacity left, it won’t be used as channel erosion is not considered
in the current version of the model.

Ti =
Q×Ci × dt

2.65
(9)

Ci = 0.05×
( G

G− 1

)
×

V × S f√
(G− 1) × g× di

×

√
Rh × S f

(G− 1) × di
(10)

where Ti is the sediment transport capacity in the channel for sediment type i (L3), Q is the flow
discharge (L3 T−1), Ci is the sediment concentration of type i by weight, dt is the time step of channel
routing (T), G is the specific gravity of sediment and was set to 2.65 in this study, V is the depth-averaged
velocity in channel (L T−1), S f is the friction slope, Rh is the hydraulic radius (L), g is the gravity
acceleration (L T−2), di is the diameter of sediment type i (L). Calculated transport capacity is used to
transport the suspended sediment first and then the previously deposited sediment.

2.3. Study Site and Data Availability

We applied the WRF-Hydro-Sed model on the Goodwin Creek Experimental Watershed (GCEW),
Mississippi, USA to assess its performance (Figure 3). GCEW is located at northwest Mississippi, close
to Batesville. The watershed has a drainage area of 21.3 km2 with an outlet located at its southwest
corner (89◦54′50” W, 34◦13′55” N). The Goodwin Creek is a tributary of the Long Creek, which flows
into the Yocona River, one of the main rivers of the Yazoo River Basin [13]. The weather is hot and
humid in summer and mild in winter, with an average annual rainfall of 1440 mm and a mean annual
runoff of 145 mm during 1982 to 1992 [9]. Within the watershed, the elevation ranges from 68 m to
130 m above sea level. Around 50 percent of the watershed has a slope less than 0.02 and 15 percent has
a slope larger than 0.03 [9]. The channels in the watershed extend mainly from northeast to southwest
with an average slope of 0.004. Based on the State Soil Geographic Database [25], soils within the
watershed are mainly silt loam and sandy loam, with the former one dominating. According to
the 24-category Land Use Categories by the U.S. Geological Survey (USGS), the most common land
cover types in this watershed are “dryland cropland and pasture”, “irrigated cropland and pasture”,
and “deciduous broadleaf forest”.

GCEW was originally established in 1977 and has been operated by the U.S. Department of
Agriculture (USDA) National Sedimentation Laboratory (NSL) to study the influence of land use and
upland erosion on sedimentary process and channel stability and to test numerical models. It is highly
instrumented, with 32 standard recording rain gauges distributed uniformly within the watershed,
14 stream gages and supercritical flow structures located along the channel to collect discharge and
sediment concentration data. In addition, periodic surveys are conducted to track land use conditions,
channel geometry, and channel migration. In this study, rainfall data from 16 rain gauges and the
streamflow and sediment concentration data at the outlet (MSGC1) was collected to calibrate and
validate the model (Figure 3). The data interval is ~15 min.
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2.4. Model Setup

WRF-Hydro supports the coupling between hydrological components and atmospheric models.
However, as the focus of this study is to introduce the sediment module instead of investigating
the interaction between atmosphere and hydrological processes, WRF-Hydro is used in a “one-way
coupled” mode.

The Noah land surface model with multi-parameterization options (Noah-MP) [27] is responsible
for simulating land surface physics in the model (Figure 1). In this study, Noah-MP has a domain
of 14 km × 11 km with a spatial resolution of 1 km. To drive the land surface model, static land
surface physiographic data was generated using the WRF Pre-processing System (WPS). The land use
information was interpolated from the 24-category USGS land use database derived from the 1-km
Advanced Very High Resolution Radiometer (AVHRR) satellite images [28].

The meteorological forcing data is from the North American Land Data Assimilation System Phase
2 Forcing Dataset (NLDAS-2 hereafter, [29]). NLDAS-2 contains incoming longwave and shortwave
radiation, near surface wind, specific humidity, air temperature, surface pressure as well as rainfall
intensity with hourly temporal resolution. In this study, the 1/8-degree NLDAS-2 was regridded
to 1 km to match the Noah-MP grid. Given its coarse resolution, the rainfall intensity of NLDAS-2
might not be able to fully represent the condition of such a small watershed. Therefore, we replaced
NLDAS-2′s original rainfall data field with interpolated precipitation from the records at the 16 rain
gauges using the inverse distance weighting interpolation method.

With a disaggregation factor of 20, the hydrological physical processes are simulated at the spatial
resolution of 50 m. The subsurface routing, overland routing and channel routing of WRF-Hydro
are all activated. The time step of the overland routing and channel routing is six seconds. Since the
sediment processes are driven by the overland flow and channel flow, the setup of the sediment model
highly depends on that of the hydrological model. The sediment model is calculated on the same grid
as the hydrological model (50 m), with a time step of six seconds as well. Model tests and simulation
were carried out on Louisiana Optical Network Initiative (LONI)’s QB2 and NCAR’s Cheyenne super
computers. In a serial mode, it took 2.5 h to conduct a 2-year simulation of streamflow with sediment
module deactivated, and 30 min to finish a 24 h sediment simulation.



Water 2020, 12, 1840 8 of 23

2.5. Model Calibration

In this study, the streamflow, sediment concentration, sediment flux and sediment yield were selected
as the major variables to calibrate and validate the hydro- and sediment model. A stepwise calibration
was performed where first the hydro-parameters and then the sedimentation parameters were calibrated.
The streamflow was calibrated first manually through trial and error, and then automatically using the
NCAR developed calibration toolbox, which is based on the Dynamically Dimensioned Search (DDS)
calibration methodology [30]. Once finished, the calibrated hydro-parameters were used to drive the
sediment module and the sediment parameters were then calibrated manually.

2.5.1. Streamflow Calibration

Streamflow was calibrated for a 3-year rainfall event on 17 October 1981 (calibration event hereafter),
which started at 21:19 and lasted for approximately five hours. The average rainfall intensity is 14.7 mm/h
and total rainfall is 74.4 mm. Calibrated hydro-parameters were selected based on sensitivity analysis and
previous studies [23,31,32].

The calibration was carried out through two ways: automated calibration using the NCAR developed
calibration toolbox and manual calibration based on trial and error. The reason for calibrating the model
in two ways is that the automated calibration tools, which are usually based on standard objective metrics,
may weigh more on timing error while weighing less on amplitude error, or the other way around,
and thus may result in unreasonable results [33]. A manual evaluation, if executed in a rational way,
can take the advantage of both visual inspection and standard metrics. While laborious and highly
dependent on researchers’ experience, the manual calibration may produce a better result.

Before calibration, a two-year run was performed starting from 1 January 1981 to let the model
reach an equilibrium state before the calibration rainfall event. The results from each calibration were
statistically evaluated using the correlation coefficient, Root Mean Square Error (RMSE), Nash-Sutcliffe
coefficient (NSE) and Kling-Gupta efficiency (KGE). A detailed description of relevant equations is
provided in the Supplementary Materials.

The Dynamically Dimensioned Search tool [30] was used for automated calibration. The objective
function is the weighted NSE and logNSE:

ObjFn = 0−
(

NSE
2

+
log NSE

2

)
(11)

NSE = 1−

∑T
t=1(Ot − Pt)

2∑T
t=1

(
Ot −Ot

)2 (12)

where NSE is the Nash-Sutcliffe coefficient, Ot is the observed streamflow at time t, Pt is the modeled
streamflow at time t, Ot is the average of observed streamflow.

Table 1 summarizes the hydro-parameters calibrated by automated calibration with their lower
and upper limits and default values. These parameters are mostly related to the land surface model.
The hydro-parameters were adjusted within a reasonable bound of values through a 300-iteration
automated run. With 32 processors, it took 10 h to finish the automated calibration.

For manual calibration, the refkdt and RETDEPRTFAC in Table 1 were selected as they were
identified as the most sensitive parameters by the automated calibration and previous studies [23,31,32].
In addition, channel parameters including channel bottom width (Bw) in meters, channel side slope
(Chsslp) and Manning roughness coefficient (MannN) were also calibrated.
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Table 1. Calibrated hydro-parameters using the NCAR developed calibration tool.

Parameter
Values

Description
Min Max Initial

bexp 0.4 1.9 1.0 Multiplier on pore size distribution index

smcmax 0.8 1.2 1.0 Multiplier on saturation soil moisture content

dksat 0.2 10 1.0 Multiplier on saturated soil hydraulic conductivity

refkdt 0.1 4 1.0 Surface runoff parameter

slope 0 1 0.3 Linear scaling of “openness” of bottom
drainage boundary

RETDEPRTFAC 0.1 20,000 1.0 Multiplier on maximum retention depth before flow is
routed as overland flow.

LKSATFAC 10 10,000 1000 Multiplier on saturated hydraulic conductivity in lateral
flow direction

cwpvt 0.5 2 1.0 Multiplier on canopy wind parameter

vcmx25 0.6 1.4 1.0 Multiplier on maximum rate of carboxylation at 25 ◦C
(umol CO2/m2/s)

2.5.2. Sediment Calibration

Sediment concentration, sediment flux, and sediment yield were calibrated manually via a series
of sensitivity tests following previous studies [9,13,23,34]. Calibrated sediment parameters can be
categorized into two groups: soil-type related and land-use-type related. Soil erodibility factor K
is soil-type related, while cropping-management factor C and conservation practice factor P are
considered to be land-use determined. The calibrated sediment parameters are shown in Table 2.

Table 2. Calibrated sediment parameters and values for sediment model.

Land Use Category C P Soil Type K (t/Acre)

Dryland cropland and pasture 0.01 0.1 Silt loam 0.2
Irrigated cropland and pasture 0.03 0.1 Sandy loam 0.1

Deciduous broadleaf forest 0.001 0.1

3. Results

3.1. Streamflow Calibration

The best results from the automated and manual calibration at the outlet of GCEW are shown in
Figure 4 and the related values of statistical metrics are in Table 3. Overall, both automatically and
manually calibrated hydrographs exhibit a satisfactory performance with a high correlation coefficient
(>0.90), NSE (>0.70) and a low RMSE (<8 m3/s). However, total amount of runoff is overestimated by both
manual and automated calibration. While the automatically calibrated total volume of runoff is closer to
observation, manually calibrated hydrograph fits better with the observed one over the high flow part of
the measured hydrograph around the peaking time. As GCEW is self-drained watershed, we assume that
large river discharge corresponds to large overland runoff flux. With the exponential relationship between
overland runoff flux and transport capacity (Equation (8)), the sediment concentration and sediment flux
during high flow periods should be much larger than during low flow periods. In this case, during a
single rainfall event, the sediment concentration, flux, and total yield ought to be dominated by high flow
period of the runoff event. (The observed sediment concentration and sediment flux graphs shown in
Figure 5a,b justified this assumption as the main sediment event only lasted two hours, which corresponds
to the high flow duration in the observed hydrograph shown in Figure 4). In this case, although the
total volume from the automated calibration is closer to observation than the manually calibrated one,
we chose to use the manually calibrated hydro-parameters to drive the sediment model since the high
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flow part of the manually calibrated hydrograph is much closer to observation. The values of manually
calibrated hydro-parameters are shown in Table 4.
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3.2. Sediment Calibration

Sediment concentration and sediment flux results are shown in Table 5 and Figure 5. Overall,
the sediment concentration and sediment flux show good agreement with measurements at the outlet,
indicating that the model can well reproduce the sediment erosion and transport processes on a
watershed scale. Compared with streamflow, sediment concentration and sediment flux are less well
predicted, with the NSE value of 0.25 and 0.28, respectively. For both sediment concentration and
sediment flux, the simulated rising limbs fit well with the measured ones, while the peak values are
underestimated. The falling limbs recess earlier but last longer. The long recession should inherit from
that of the streamflow, and essentially the overland flow. The total sediment yield simulated during
this event is around 9600 tons, which is 40 percent lower than the measurement. This error is close to
the one reported by [13], which is considered to be acceptable in hydrological engineering.

Table 5. Performance of the simulation of sediment concentration and sediment flux for calibration event.

Location Variable Correlation Coefficient RMSE NSE KGE

MSGC01
(Outlet)

Sediment concentration 0.57 19,692.64 mg/L 0.25 0.44
Sediment flux 0.62 65,321.10 t/d 0.28 0.30

We notice that the model simulated only one peak for sediment flux and sediment concentration,
while the observation exhibited multiple peaks (Figure 5). Such a mismatch can be attributed to the
uncertainty of observation or limitation of model algorithm. Due to the large fluctuation of sediment
concentration during a rainfall event, the point-wise observation data might not be able to detect the
real condition of sediment concentration. Thus, the multiple peaks shown in Figure 5 might not be the
real case. If we assume that the observed multiple peaks are the real condition, the multiple peaks or
rapid fluctuation of the sediment concentration and sediment flux might be attributed to local erosion
of channel or bank collapse, which are currently not represented in the model.

3.3. Model Validation

Using calibrated parameters, we validated the model performance on the rainfall event of
28 August 1982. The return period of the event is one year. It started at 23:30 and lasted 4.5 h with an
average rainfall intensity of 10.4 mm/h. The simulation was initialized on 1 January 1981 to assure the
model reached a relatively stable condition before the rainfall event. Figure 6 shows the simulated
and measured hydrographs at the outlet. The model was able to reproduce the measured hydrograph.
The statistical results shown in Table 6 indicate satisfactory simulation skill of the model with a high
NSE (0.86). We notice that the simulated rising limb starts earlier than the measurement and the falling
limb drops slowly and lasts longer. The simulated peak is within 20 min of the measured one and the
simulated peak value (27 m3/s) is 26 percent lower than the measurement (36.4 m3/s). Simulated water
discharge at the outlet is within 10 percent of the measurement.
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Figure 6. Measured (dash line) and simulated (solid line) streamflow at MSGC01 for validation event.

The comparison between simulated and measured sediment concentration and sediment flux
is shown in Figure 7. The model can catch the shape of the observed sediment graphs but with an
overall overestimation for both sediment concentration and flux. Sediment flux is better simulated than
sediment concentration with NSE and KGE 0.09 (vs. −2.26 for concentration) and 0.34 (vs. −0.15 for
concentration), respectively. A comparable model performance in sediment concentration simulation
is also reported by Elliot [35], which was partially attributed to the fact that simulation of sediment
concentration involves an error in both sediment simulation and runoff simulation. Due to the absence
of observation data before 2:00, 28 August 1982, it is impossible to calculate the sediment yield during
the entire event. Yet it is reasonable to assume that the real sediment yield is larger than the estimation
based on the available data (9100 t). Thus, we consider that our model-simulated sediment yield
(14,950 t) is acceptable.

Table 6. Performance of the simulation of streamflow, sediment concentration, and sediment flux for
validation event.

Location Variable Correlation Coefficient RMSE NSE KGE

MSGC01
(Outlet)

Streamflow 0.97 5.09 m3/s 0.86 0.70
Sediment concentration 0.43 30,541.63 mg/L −2.26 −0.15

Sediment flux 0.85 44,922.10 t/d 0.09 0.34

In spite of the acceptable performance of the model in simulating the sediment yield for both
events, the model tends to overestimate the sediment yield for validation events while underestimating
it for calibration events. This difference in model behavior should be partly due to the difference in
initial soil conditions of the two events. According to Rojas [23], the initial soil condition could be much
wetter during the validation event, since a series of preceding rainfall events brought >110 mm rain in
the previous month. Yet there was only one preceding rainfall event bringing ~15 mm rainfall before
the calibration event. In this case, the soil erodibility factor calibrated for the calibration event might
be too large for the validation event, as soil erodibility tends to be smaller in wet conditions than in dry
conditions [36]. Thus, the sediment yield during the validation event is overestimated by the model.
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4. Discussion

4.1. Unceratinty Quantification

For the hydrologic simulation, uncertainty can result from different sources such as forcing data,
model structure, model parameter, and initial and boundary condition uncertainties [37]. Each of these
sources of uncertainty could be investigated and reduced through different treatments such as by
providing more accurate forcing data to reduce the forcing uncertainty or by calibrating the model
parameters to limit the parameter uncertainty. Data assimilation techniques are also used commonly to
reduce the uncertainty due to the initial and boundary conditions in the models and in some cases to
address the parameter uncertainty. Although investigating the model structure uncertainty is possible
via the multi-parameterization scheme of NoahMP as the Land Surface Model used in WRF-Hydro
as well as through different routing options available in WRF-Hydro, such a study was beyond the
scope of this paper. We investigated the impact of the forcing on the model simulation as well as the
parameter uncertainty, a subset of sources of uncertainty, of which the findings are summarized in the
following subsections.

4.1.1. Forcing Uncertainty

Poor representation of meteorological forcing or errors may propagate into the hydrologic
simulation and affect the result in a nonlinear way. Similar to previous WRF-Hydro studies [20,21],
the NLDAS-2 dataset was used in this study as meteorological forcing. As explained in Section 2.4,
in order to better represent the rainfall intensity, NLDAS-2′s rainfall field was substituted with
interpolated rain gauge observation. However, how well the model can perform when driven by
the original NLDAS-2 dataset needs to be investigated. We performed a sensitivity experiment on
the calibration event. The streamflow was simulated with default parameters (un-calibrated) and
driven by the original NLDAS-2 (1/8 degree resolution) and updated rain gauge data (1 km resolution),
respectively. The comparison between simulated and observed hydrographs is shown in Figure 8.
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Figure 8. Measured (dash line) and simulated hydrographs (solid line for updated NLDAS-2,
dash-dotted line for original NLDAS-2) at MSGC01 for calibration event.

Without calibration, using the original NLDAS-2 forcing data, the simulated hydrograph (Figure 8,
dash-dotted line) fails to reproduce the rainfall event. Once the rainfall field is updated with rain
gauge data and used to drive the model, a significant improvement is achieved in terms of amplitude
of simulated hydrograph (Figure 8, solid line). However, timing error still exists, which will be
largely minimized through calibration, as shown in Figure 4. A similar improvement has also been
reported previously [37]. Thus, rainfall data with compatible resolution is recommended when
applying WRF-Hydro-Sed to a relatively small watershed under local storm events in order to generate
satisfactory results. This comparison could serve as a good example of how sensitive the model
response is to the forcing dataset and in this case, precipitation. Ideally, one would like to force the
model with an ensemble of the different forcing datasets to cover a range of forcing uncertainty in the
model simulations.

4.1.2. Parameter Uncertainty

Model parameters are another source of uncertainty in the model simulation. This uncertainty
is reduced to some degree through the calibration process. In this part, based on the single event
calibration, we assess the goodness of calibration and prediction uncertainty using P-factor adapted
from the Sequential Uncertainty Fitting method (SUFI-2) following previous studies [38–40]. P-factor is
defined as the percentage of the measured data bracketed by the 95% prediction uncertainty (95 PPU),
which represents the degree of uncertainties considered by the model parameters. The 95 PPU is
calculated based on the cumulative distribution of the model outputs from different experiments
corresponding to different model parameters. Here, the model output is the streamflow simulation
and the model experiments are different calibration iterations having different model parameters. It is
believed that the streamflow measurements reflect all the uncertainty in the model and inputs [41].
A P-factor of 100% indicates full coverage of observation in the 95 PPU, indicating that all uncertainty
is explained by the model parameter uncertainty [38].

Based on the single event calibration we conducted, the P-factor is 95%, indicating that most of
the measurements were bracketed by the model parameter uncertainty. Figure 9 shows the ensemble
of simulated hydrographs (from the calibration process), with the 95 PPU band (red) against the
observation and the best simulation during the calibration event. In this case, it can be concluded
that the simulations based on single event calibration has generated a large coverage that covers the
observation except for the overestimation over the beginning of the rising limb.
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Figure 9. The best-simulated streamflow with 95 PPU and observations during the calibration event in
17–18 October 1981.

4.2. Applicability of Calibrated Parameters

Fine scale, grid- and process-based sediment models are usually used to simulate the sediment
processes for a single rainfall event (e.g., [13,22,35,42]), instead of continuously simulating soil erosion
over a long time scale. Part of the reason for this is that soil erosion at the watershed scale is thought to
be controlled mainly by a few rainfall events [3]. In addition, continuous calculation of soil erosion
with process-based models requires a large quantity of computational time as well as huge amounts of
observation data, which are usually not available. In this case, such models are usually calibrated on
one event and the calibrated parameters are then applied to another event.

In this study, WRF-Hydro-Sed was calibrated for the rainfall event of 17 October 1981 and then
verified by the validation event with calibrated parameters. As mentioned in Section 3.3, in spite of the
difference in initial conditions, with a reasonable spin-up period, the calibrated hydro-parameters can
be transferred to the validation event and generate satisfactory hydrographs with high NSE values
(0.86). For sediment simulation, although simulated sediment concentration and sediment flux exhibit
larger bias (Table 6), which are well acknowledged by researchers in sediment modeling as a challenge,
the simulated sediment yield at the outlet is acceptable, which validated the model’s satisfactory
performance with calibration.

However, variability in land use character and soil condition, as well temporal and spatial
distribution of rainfall between different rainfall events, which haven not/cannot fully have been/be
considered in our model, can restrict the application of the calibrated parameters based on a single
event calibration to other events. In order to evaluate how well the model can perform over different
rainfall events with calibrated parameters based on one single event, we applied calibrated hydro- and
sediment parameters to the year of 1982 to conduct a one-year simulation. The year 1982 was selected
mainly because it covers various rainfall events with different intensities and rainfall totals (Figure 10).
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Figure 10. (a) Daily rainfall (black) of 1982. (b) Measured (dark orange) and simulated (blue, based 
on calibrated hydro-parameters) hydrographs at MSGC01 for all the rainfall events of 1982. (c) Same 
as (b) but based on recalibrated hydro-parameters. Several rainfall events are annotated with red, 
indicating underestimation and black represents overestimation. 

Figure 10. (a) Daily rainfall (black) of 1982. (b) Measured (dark orange) and simulated (blue, based on
calibrated hydro-parameters) hydrographs at MSGC01 for all the rainfall events of 1982. (c) Same as (b)
but based on recalibrated hydro-parameters. Several rainfall events are annotated with red, indicating
underestimation and black represents overestimation.
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4.2.1. Hydro-Parameters

Figure 10b shows the simulated and observed streamflow during 30 rainfall events of 1982, with
the calibrated hydro-parameters from Section 3.3. Overall, with the calibrated hydro-parameters
based on one single event (calibrated hydro-parameters hereafter), the model can reproduce all the
streamflow events in the year with an NSE value of 0.43. However, simulation underestimates the
streamflow mainly during the heaviest rainfall events of the year, i.e., rainfall events of 19 April,
6 October, 3 and 25 December, while overestimation can be found during less intense rainfall events
such as that of 1 July. This indicates that the calibrated hydro-parameters based on one single event
might favor the calibration event itself, while they are less suitable to fully reproduce hydrographs over
events that have much different rainfall characteristics. In this case, we recalibrated the streamflow on
the 30 rainfall events of 1982 (recalibrated hydro-parameters hereafter) with the observed streamflow
to investigate how much the model performance can be improved through the multiple events
recalibration. In addition, the calibrated hydro-parameters can be better evaluated by comparing them
to the recalibrated hydro-parameters in terms of model performance improvement.

The multiple events recalibration was conducted automatically with a 150-iterations run using the
NCAR developed calibration tool. The recalibrated hydrograph against the observation is shown in
Figure 10c. The NSE value is 0.51, which is 1.19 times better than that using calibrated hydro-parameters.
However, the multiple events recalibration consumed more than 21 times the computational hours than
the single event calibration (6840 versus 320 computational hours) to achieve such an improvement.
In addition, streamflow due to three rainfall events (19 April, 3 and 25 December) is underestimated
(Figure 10b) and is still subject to underestimation after recalibration (Figure 10c). Streamflow during
the rainfall event of July 1 is overestimated both in Figure 10b and after recalibration in Figure 10c.
Meanwhile, simulated streamflow during 27 August and 6 October changed from being underestimated
with single event calibration to being overestimated under recalibration. This implies that for the
event-based simulation, it might not be practical to find a set of parameters that can be suitable for all
events. Multiple events calibration can be used to improve the model’s performance to a certain degree,
yet it requires a substantially higher computational cost than the single event calibration. With this
regard, intensive calibration over a long time scale might not be an optimal strategy if computational
cost is a major concern and model performance based on a single event calibration is acceptable.

4.2.2. Sediment Parameters

To evaluate the applicability of calibrated sediment parameters based on one single event to other
events, we applied them to simulate the sediment processes for the year of 1982. With 20 processors, 168 h
were used to finish the simulation. Based on the available observation data of the sediment, the simulated
sediment yield is compared against the observation for 17 sediment events. The characteristics of
rainfall events, the simulated and the observed sediment yield during those events are shown in
Table 7. It is noted that the sediment event of 3–4 June, 3–4 December, and 24~28 December includes
3, 2, and 3 rainfall events, respectively, as the sedimentary processes are correlated during such
rainfall events.

For all of the 17 sediment events simulated, the minimum and maximum ratios between the
observed sediment yield and the simulated sediment yield are 0.13 and 5.47, respectively (Table 7).
This proves that with the calibrated sediment parameters based on one single event, simulated sediment
yield for other different events can be expected to be at least within the same magnitude of the measured
one. Furthermore, for 8 out of 17 sediment events, the simulated sediment yield is within 50–150%
of the measurements, which corresponds to at most 50% under- or over-estimation. For 12 out of
17 events, the simulated sediment yield is within 33–300% of the measured sediment yield, in response
to 200% under- or over-estimation at most, which is generally acceptable in sediment simulations.
The coefficient of determination R2 between the simulated and the measured sediment yield is
0.57, which also indicates the acceptable performance of the model [43]. In addition, the simulated
total sediment yield (228,698 t) of all the events is only 11% higher than that of the observation
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(203,387 t), which implies that it is also promising to use the model to estimate annual soil erosion on a
watershed scale.

In spite of the overall acceptable performance of the model in simulating sediment yield, substantial
over- and under-estimation can be found during events of 17 April, 25 May, 3–4 June, 11 August and
10–11 December. Considering the exponential relationship between overland runoff and sediment
transport capacity, the bias of the simulated sediment yield can partly be attributed to the under- or
over-estimation of the streamflow. In addition, model bias can also be attributed to the absence of
a channel and bank erosion algorithm in the current model. As the sediment yield may be sourced
from not only upland erosion, but also from channel and bank erosion, model bias may occur as a
consequence of the model’s failing to account for the sediment contribution from the channel bed and
bank. With this regard, future development of the model should include the bank and channel erosion
to further improve the model performance.

Table 7. Rainfall intensity, duration, and return period, simulated and observed sediment yield for
17 sediment events during 1982. Sediment events of 3–4 June, 3–4 December, and 24–28 December
include 3, 2 and 3 rainfall events, respectively. Return period < 1 represents normal rainfall event.

Date
Rainfall Intensity

(mm/h)
Duration

(h)
Return Period

(years)
Sediment Yield (t)

Measured Simulated Measured/Simulated

2–3 January 4.1 5

<1

1566 1738 0.90
8 February 5.3 6.5 7903 3711 2.13

8 April 3.6 4 133 374 0.36
17 April 3.8 4.5 969 177 5.47
19 April 4.2 9 6777 11,650 0.58
25 May 10.6 2.5 2684 19,893 0.13

3–4 June
8.4 8 1

5334 33,685 0.161.9 1.5
<16.0 2

11 August 5.6 6
<1

4403 805 5.47
14 August 5.5 5 2054 4641 0.44
15 August 2.9 6.5 180 168 1.07

6–7 October 9.0 11.5 7 34,996 57,769 0.61

8 October 6.2 3
<1

3019 4071 0.74
27 November 3.7 14 8923 8612 1.04

3–4 December
4.1 21 ~1 48,380 25,932 1.873.1 5 <1

10–11 December 1.5 29
<1

5984 1596 3.75
15 December 3.9 8.5 9842 9569 1.03

24–28 December
5.8 1.5 <1

60,240 44,307 1.364.3 34 6
4.9 7.5 <1

Sum 203,387 228,698 0.89

4.3. Landscape Pattern Index and Sediment Yield

A landscape pattern index is used to describe the type and spatial arrangement of the landscape
by considering different features such as size, shape, and connectivity [44]. A series of work has been
conducted to investigate the relationship between soil erosion and landscape patterns (e.g., [45–47]).
In this study, we introduce a landscape pattern index following Zhou [47]. The index (SI, Equation (13))
considers the soil erodibility factor (K), the cropping-management factor (C) and the topography factor
slope (α, ◦).

SI = C×K × sinα (13)

In this study, C and K values are calibrated over GCEW manually. Topographic slope is calculated
using ArcGIS on the digital elevation grid of the study area with a resolution of 50 × 50 m. Then the
SI is calculated over GCEW following Equation (13). Furthermore, we analyzed the relationship
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between SI and the magnitude of the soil erosion simulated by our model during the calibration event.
Figure 11a–d shows the spatial distribution of C, K, slope and SI over GCEW. Figure 11d exhibits the
net erosion and deposition over the study area during the calibration event.

To investigate the relationship between SI (Figure 11d) and net erosion/deposition (Figure 11e),
we conducted a correlation analysis using the Spatial Analyst Tools of ArcGIS. With a correlation
coefficient of−0.017, landscape pattern and soil erosion show no significant linear relation. This indicates
that during a storm event with a duration of hours over GCEW, the landscape pattern might not be the
dominating factor controlling the spatial distribution of soil erosion.
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4.4. Climate Change Scenarios

Under climate change, the frequency, intensity as well as the incidence of extreme rainfall events
are subject to change [48]. Meanwhile, temperature, surface runoff, and land use will also be influenced
by the changing climate. The shift in extreme rainfall characteristics can influence the soil erosion
directly by changing the erosive capacity [49]. The variance of soil moisture, temperature, and land
use can affect soil erosion via affecting soil properties such as erodibility. In addition, these factors will
interact in a nonlinear way to regulate soil erosion and related sediment transport processes. One of
the best ways to project the rainfall-runoff and soil erosion dynamics under climate change is via
numerical models that can address the complicated hydro-sedimentary dynamics. Such studies have
been conducted by several scientists [35,44,45].

Over GCEW, the decrease in the cultivated land is proved to reduce the fine sediment source.
In addition, such land use change can also decrease the peak flow and runoff volume, resulting in the
reduction of sediment supply and transport in channels [50]. In this study, the current sediment model
is built on WRF-Hydro in the expectation that it will be used to nowcast/hindcast the streamflow and
soil erosion during rainfall events over GCEW. In addition, unlike the WRF-Hydro, WRF-Hydro-SED,
for now, only supports simulation in serial mode. Thus, long-term simulation considering climate
change scenarios is not feasible to by carried out using the current model. Future model development
by parallelizing the model code, introducing a morphological evolution algorithm, and considering
the rainfall and land use evolution, as well as the complex interrelation between those factors under
climate change scenarios, are expected to alleviate such limitations.

5. Conclusions

In this study, by adapting the sediment algorithm from CASC2D-Sed, we introduced a sediment
module into the WRF-Hydro platform, allowing for the development of a fully distributed, process-based
soil erosion and sediment transport model (WRF-Hydro-Sed). The model’s performance was evaluated
via a comparison with the observed streamflow and sediment concentration data at the Goodwin Creek
Experimental Watershed during rainfall events.

WRF-Hydro-Sed is able to generate satisfactory results of streamflow and sediment yield during
rainfall events. The streamflow can be calibrated successfully based on a single rainfall event with the
adjustment of a few hydro-parameters including refkdt (the parameter that controls runoff–infiltration
partition) and channel geometries. With the single event calibrated hydro-parameters, the model
can also perform satisfactorily in simulating the hydrograph during a validation event. Based on
calibrated hydro-parameters, sediment concentration, sediment flux, as well as sediment yield can
also be calibrated successfully at watershed scale by adjusting sediment parameters related to land
use and soil category. Satisfactory results are also generated for a validation event using calibrated
sediment parameters. The model’s performance in simulating sediment yield is better than sediment
concentration and flux.

The model’s performance in streamflow simulation is sensitive to forcing data. The original
NLDAS-2, given its 1/8 degree coarse resolution, may not be an optimal choice to provide rainfall forcing
for simulation over a relatively small watershed like the Goodwin Creek under local storm events.
High resolution meteorological forcing data is recommended for application of the WRF-Hydro-Sed
on a small watershed.

Calibrated hydro-parameters based on a single event can be applied to different rainfall events
to reproduce the hydrograph. While it might not be practical to have a set of parameters that can
be suitable for any rainfall event, an intensive calibration based on multiple events can improve
the model’s performance to a certain degree, but with extensive computational efforts. In this case,
intensive calibration over a long time scale might not be an optimal strategy if computational cost
is a major concern and if the model performance based on a single event calibration is acceptable.
With the calibrated sediment parameters based on a single event, the sediment yield over different
events can be simulated within the same magnitude observed. Moreover, the model shows promising
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potential in simulating annual soil erosion on a watershed scale. While simulated sediment yield
is considered acceptable for 71% of the events (12 out of 17), substantial bias can be found during
certain events mainly due to the bias transferred from the streamflow simulation. Future development
of the model by including the bank and channel erosion algorithm is expected to further improve
model performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/6/1840/s1,
the equations used to calculate correlation coefficient, RMSE, NSE and KGE.
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