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Abstract: Changes in climate, land use, and population can increase annual and interannual variability
of socioeconomic droughts in water-scarce regions. This study develops a probabilistic approach to
improve characterization of sub-annual socioeconomic drought intensity-duration-frequency (IDF)
relationships under shifts in water supply and demand conditions. A mixture Gamma-Generalized
Pareto (Gamma-GPD) model is proposed to enhance characterization of both the non-extreme and
extreme socioeconomic droughts. Subsequently, the mixture model is used to determine sub-annual
socioeconomic drought intensity-duration-frequency (IDF) relationships, return period, amplification
factor, and drought risk. The application of the framework is demonstrated for the City of Fort Collins
(Colorado, USA) water supply system. The water demand and supply time series for the 1985–2065
are estimated using the Integrated Urban water Model (IUWM) and the Soil and Water Assessment
Tool (SWAT), respectively, with climate forcing from statistically downscaled CMIP5 projections.
The results from the case study indicate that the mixture model leads to enhanced estimation of
sub-annual socioeconomic drought frequencies, particularly for extreme events. The probabilistic
approach presented in this study provides a procedure to update sub-annual socioeconomic drought
IDF curves while taking into account changes in water supply and demand conditions.

Keywords: socioeconomic drought; climate change; mixture model; IDF curves; water demand;
water supply

1. Introduction

Climate change and rapid population growth can significantly beget shifts in water supply and
demand at various spatial and temporal scales [1–5]. As the balance between water supply and demand
becomes more unequal, socioeconomic drought becomes a major concern [6,7]. Socioeconomic drought
refers to the condition when water demand exceeds water supply [6,8,9]. Enhanced probabilistic
characterization of socioeconomic drought properties in a changing environment plays an important
role in water resource planning and management [7,10,11]. This study develops a probabilistic
approach to characterize sub-annual socioeconomic drought intensity-duration-frequency (IDF)
relationships, return periods, amplification factors, and drought risk under shifts in water supply and
demand conditions.
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Previous studies have used a wide range of methods to assess socioeconomic drought
hazard [4,6–8,12–15]. However, studies that discuss methods for assessing changes in intensity,
duration, and frequency relationships of sub-annual socioeconomic droughts under nonstationary
conditions are limited. Drought IDF curves are commonly applied to the design of water resource
systems such as municipal storm-water drainage systems. Three important considerations must be
addressed to improve characterization of droughts IDF relationships in a changing environment:

First, changes in future socioeconomic drought IDF relationships should be assessed by assuming
the nonstationary conditions in both water supply and demand time series. Previous studies often
describe socioeconomic droughts in terms of deficiencies in water supply systems, in which water
demand is defined as a constant threshold of water supply [14,16]. However, climate changes and
anthropogenic drivers such as population growth can lead to a significant increase in water demand.
In such cases, socioeconomic drought IDFs are anticipated to increase due to increasing differences
between water supply and demand [17]. Thus, an improved socioeconomic drought definition and
characterization is essential to account for a changing environment to evaluate and update drought
IDF curves under shifts in both water supply and demand conditions.

Second, a complete characterization of socioeconomic droughts may not be sufficiently obtained
by comparing only annual water demand to annual water supply. Foti et al., [8] proposed a probabilistic
framework to assess vulnerability of water supply systems to shortage as the probability that annual
water demand exceeds annual water supply. However, interannual changes in weather and water
consumption can lead to an increase in the variability of water supply and demand within a year [18,19].
Even in regions where water is abundant overall, water scarcity during brief time periods within the
year may be on the rise due to climate change and socioeconomic drivers [20]. Characterizations of
socioeconomic drought at sub-annual scale influences planning and management of water supply
systems [21,22].

Third, nonstationary conditions in climate, land use, and population are expected to considerably
alter the distribution of socioeconomic drought over time with the increasing occurrence of extreme
drought events (i.e., drought with high intensity and long duration) [17,23,24]. Fitting one of the
classic families of distributions to sub-annual socioeconomic drought might lead to inappropriate
characterization of likelihood, as it either fits well to the bulk density or to the tail [25,26]. Thus,
the commonly used continuous probability distributions may fail to simultaneously capture both the
non-extreme and extreme socioeconomic droughts. Mixture probability models have been developed
to simultaneously characterize the bulk and tail of random phenomena [25,27–29]. However, their
application has not been investigated for characterizations of sub-annual socioeconomic droughts.

Thus, this study develops a coherent probabilistic approach to address the aforementioned
considerations by improving characterization of sub-annual socioeconomic drought IDF relationships
under considerable shifts in water supply and demand conditions. Specifically, the objectives
are to: (1) improve projection of future droughts by defining and characterizing sub-annual
socioeconomic drought under nonstationary conditions in both water supply and demand conditions;
(2) enhance characterization of both minor and major socioeconomic droughts using the mixture
Gamma-Generalized Pareto Distribution (Gamma-GPD); (3) investigate intensity-duration-frequency
relationships of socioeconomic droughts under nonstationary conditions; (4) evaluate the frequency
amplification of sub-annual socioeconomic droughts; and (5) assess drought risk to update the
accepted design drought event for water supply systems. The findings allow better characterization of
sub-annual socioeconomic drought hazard in basins undergoing climate and socioeconomic changes.
Improved assessment of sub-annual socioeconomic drought is critical for effective adaptation and
mitigation strategies to reduce the impact of droughts on communities.

2. Materials and Methods

A probabilistic approach was developed to assess changes in IDF relationships of defined
sub-annual socioeconomic drought under nonstationary shifts in both water supply and demand
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conditions. A mixture Gamma-GPD distribution was proposed to simultaneously model both extreme
and non-extreme socioeconomic drought events. The parameter estimation and goodness-of-fit (GOF)
of the mixture model were discussed compared to the classic families of probabilistic distributions.
Then, sub-annual socioeconomic drought IDF relationships, return period, frequency amplification
factor and drought risk were characterized under nonstationary conditions. A global sensitivity analysis
was performed to understand the influence and importance of the model parameters individually and
in combinations on drought return periods.

2.1. Definition and Characterization of Sub-annual Socioeconomic Drought

Drought has been generally categorized into four types: meteorological, agricultural,
hydrological, and socioeconomic drought. Meteorological drought implies a precipitation deficit.
Agricultural drought refers a deficit in soil moisture. Hydrologic drought can be caused by a reduction
in surface water [30,31]. Socioeconomic drought is defined in terms of deficiencies in water supply
systems [6,7,13]. However, the characterization of water supply, water demand and water deficit in
this study differs from most socioeconomic drought indicators. The water deficit (dt) at a time interval
t is defined as:

dt = Demandt − Supplyt dt > 0 (1)

where Supplyt denotes the potential quantity of water allocated to a given or multiple sectors at a time
interval t and Demandt denotes the potential quantity of water requested by users at a time interval t
for a given or multiple sectors [4,8,15].

Subsequently, drought events can be obtained from the time series of water deficits using the
theory of runs [32]. Yevjevich, [32] defined a drought event as a succession of consecutive periods in
which water demand exceeds water supply. A drought event can be characterized by its duration (D),
magnitude (M), intensity (I) and frequency (F) [10,32] (Figure 1).
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Figure 1. Schematic of drought properties.

Duration is defined as the number of consecutive months where the amount of water demanded
exceeds the amount of water supplied to a given sector. Magnitude or severity is the cumulative deficit
over the duration of the drought event defined as:

M =
t+D−1∑

j=t

(
d j

)
(2)

Intensity of drought is the magnitude of a drought event divided by its duration given by:

I =
M
D

(3)

and frequency can be defined as the number of times that a specific drought event occurs in a given period.
Frequency can be predicted based on the theoretical probability distribution. The designs of water
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supply systems are based on historical drought IDF relationships. However, these relationships may
need to be modified under the impact of climate change by developing the sub-annual socioeconomic
drought IDF curves [17,33].

2.2. Gamma-GPD Mixture Model

Drought events have been modeled by many probabilistic distributions such as Gamma [10,34,35],
Exponential [34,35], Normal [8], Log-Normal and Weibull [35]. Gamma distribution is among the
most commonly used probability distributions for characterizing drought properties [10,11,34,36,37].
The Gamma distribution has a density function [36] as follows:

G(x; r, a) =
1

aΓ(r)

(x
a

)r−1
exp

(
−

x
a

)
(4)

where x denotes drought properties, and r and a are the shape and scale parameters, respectively.
Several characteristics motivate the use of the Gamma distribution for describing drought events.

First, the distribution is bounded on the left at zero. Thus, it excludes negative values, which is
important for drought applications because negative deficit, duration and intensity are impossible.
Second, the Gamma distribution is positively skewed with an extended tail to the right. This property
is well suited for characterization of droughts with frequent minor and infrequent extreme events.
Third, the versatility of the Gamma distribution in taking exponential decay to nearly normal forms
lends itself to modeling a range of drought intensity and duration combinations with reasonable
accuracy [38].

However, extreme drought events especially under nonstationary conditions may not be
adequately characterized by the upper tail of the Gamma distribution. The distribution of drought
events will become less positively skewed over time with the increasing occurrence of extreme drought
events [23,39]. As the Gamma distribution becomes less positively skewed, the upper tail of the
distribution will be insufficient to capture the increasing extreme drought events [38]. Thus, the Gamma
distribution may fail to adequately characterize the upper tail of drought events with higher intensities
and durations under nonstationary shifts in water supply and demand conditions.

Extreme value analysis (EVA) is increasingly used for robust estimation of extreme events [40].
The Generalized Extreme Value (GEV) approach of Block Maxima (BM) and Generalized Pareto
Distribution (GPD) approach of Peak Over Threshold (POT) are two commonly used EVA methods for
fitting the extremes of hydrological variables such as those used to characterize drought events [41].
However, the applicability of the GEV distribution by the method of BM is limited for assessment
of drought events at sub-annual steps since only one extreme value per year is modeled. Thus,
we use the GPD to fit the extreme of sub-annual drought events by applying the POT method [41,42].
The cumulative distribution function (CDF) of the GPD is given by:

gu,ξ,β(x) = Pr(X ≤ x|X >u) =

 1−
(
1 + ξ x−u

β

)− 1
ξ f or ξ , 0

1− exp
(
−

x−u
β

)
f or ξ = 0

(5)

where u, ξ and β are the location (threshold), shape and scale parameters, respectively [40].
The distribution is heavy-tailed when ξ > 0, medium-tailed when ξ = 0, and short-tailed with
finite upper end point u− β

ξ when ξ < 0 [36]. The threshold should be selected as the GPD location
parameter to model statistical properties of events that exceed the threshold.

Here, the Gamma distribution was reconciled with the GPD in a mixture model to simultaneously
model the bulk and upper tail of drought events. In this model, values below the GPD threshold
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(i.e., location parameter) were fitted by the Gamma distribution while values above the threshold were
fitted by the GPD (Figure S1). The mixture Gamma-GPD cumulative function (F) is given by:

F(x|r, a, ξ, β, u, φu) =

 (1−φu)
G(x|r,a)
G(u|r,a) x < u

(1−φu) + φu g(x
∣∣∣ ξ, β, u) x ≥ u

(6)

where g(x
∣∣∣ ξ, β, u) is the unconditional GPD function, G(x|r, a) is the Gamma distribution function, u is

the GPD location parameter (threshold), and φu is the probability of x being above the threshold [25,43].
Hence, the mixture model F(x

∣∣∣r, a, ξ, β, u, φu) can be used to model the distribution of both
non-extreme and extreme droughts intensity and duration by inserting Equations (4) and (5) into
Equation (6).

It should be noted that some previous studies have applied mixture distribution models to
combine different distributions to simultaneously model both central and tail. However, the fit of
mixture models has not been investigated in terms of sub-annual socioeconomic drought properties.
It can be suggested that mixture models lead to better estimation of return periods of both minor and
extreme drought events.

2.3. Joint Probability Distribution of Drought Intensity and Duration

The mixture Gamma-GPD model is used in this study to determine sub-annual socioeconomic
drought IDF relationships. Drought intensity, duration, and frequency properties are correlated
random variables. The joint probability distribution of drought events for intensity I > I0 and duration
D > D0 can be constructed by the product of the conditional distribution of drought intensity for a
given duration and the marginal distribution of drought duration as follows:

P (I > I0 ∩D > D0) = P (I > I0 | D >D0) .P (D > D0) (7)

where D0 and I0 denote any given values of duration and intensity, respectively. The term
P (I > I0| D > D0) is the conditional probability of I > I0 given D > D0, and P (D > D0) is the
marginal probability of drought with D > D0. The marginal probability of D > D0 from the mixture
Gamma-GPD is given by:

P (D > D0) = F(D > D0) =

 (1−φu)
G(D>D0 |r,a)

G(u| r,a) x < u
(1−φu) + φu g(D > D0

∣∣∣ ξ, β, u) x ≥ u
(8)

The conditional probability of P (I > I0| D > D0) can be determined in the same way considering
that the mixture model should be fitted to just drought events with D > D0 as follows:

P (I > I0| D >D0) = F(I > I0|D >D0) (9)

Finally, the joint probability distribution of drought intensity and duration can be computed by
inserting Equations (8) and (9) into Equation (7) and assuming drought events follow the mixture
Gamma-GPD model. Thus, Equation (7) can be used to improve estimation of drought intensity,
duration and frequency relationships by assuming that both marginal and conditional probabilities are
Gamma-GPD distributed.

2.4. Parameter Estimation and Goodness-of-Fit Tests

The proposed mixture Gamma-GPD distribution was linked with population and climate
change models in this study as an effective way to address shifts in drought properties under a
changing environment. Then, the applicability of the proposed mixture Gamma-GPD distribution was
investigated compared to classic families of probabilistic distributions, especially under considerable
shifts in water supply and demand conditions. Nonstationary conditions arising from sub-annual
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changes in supply and demand are represented by time-varying parameters. Mixture Gamma-GPD
model parameters were re-estimated as a function of time using 30-year overlapping moving windows
on the nonstationary time series of drought events.

In this study, the nonstationary climate data were obtained from the CMIP5 projections,
and subsequently downscaled for meteorological stations in the region using a quantile-based
empirical-statistical error correction method and a subsequent temporal (i.e., monthly to daily)
downscaling procedure [44]. Then, the nonstationary water demand and supply time series for the
1985–2065 were estimated using the Integrated Urban Water Model (IUWM) and the Soil and Water
Assessment Tool (SWAT), respectively. The proposed mixture model holds the versatility to account
for these changes in drought properties over time.

The location parameter of the GPD should be estimated to define the threshold between the bulk
and tail distributions. The appropriate threshold is the location at which the mean residual life plot
is approximately linear [25,26]. It should be high enough to follow a GPD. In addition, the sample
size should be large enough for inference. The other parameters of Gamma-GPD mixture model
were estimated using the maximum likelihood estimator (MLE) in MATLAB (MathWorks, Natick,
MA, USA).

Several goodness-of-fit tests were applied to assess how well the proposed mixture Gamma-GPD
model fits a set of drought intensities and durations. Here, the performance of the mixture model
was evaluated using the chi-square goodness-of-fit test, root-mean-square error (RMSE), and the
coefficient of determination. The performance of the model was compared with the performance of
other standard distributions. Goodness-of-fit tests are frequently used as a measure of the differences
between values predicted by a model or an estimator and the observed values [45,46]. The smallest
RMSE and Chi-square and largest R-squared indicate the model with the best performance.

2.5. Return Period

Return periods of drought events are often used to design the capacity of water supply systems [10].
The return period of droughts with intensity greater than or equal to a target (I > I0) was derived as
a function of the expected drought interarrival time and cumulative drought intensity distribution
function, expressed as:

TI>I0 | D>D0 =
E(D > D0)

P (I > I0| D >D0)
×

1
P(D > D0)

=
E(D > D0)

P (I > I0 ∩ D > D0)
(10)

where E(D > D0) is the expected drought interarrival time with D > D0, which can be estimated from
observed droughts, and P (I > I0 ∩ D > D0) can be obtained from Equation (7). The expected value of
the interarrival time between two successive drought events with a certain duration or greater is given
by [35,47]:

E(D > D0) = E

 N∑
i=1

DIi

 (11)

where DIi is drought interarrival time between two successive drought events with a certain duration
or greater, and N is the number of drought events equal to or greater than a certain duration.

2.6. Drought Risk and Amplification Factor

The risk of failure over an n-year design or assessment period may be written as [17,48]:

Risk (I > I0| D >D0) = 1−
(
1−

1
TI>I0 | D>D0

)n

(12)

where TI>I0 | D>D0 is the return period of droughts with intensity and duration greater than or equal to a
certain threshold (I > I0, D > D0) and n is the project life in years. Nonstationarity in drought risk
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projection can be accounted for by estimating changes in the exceedance probability of the mixture
model using time-varying parameters.

In addition, the change in drought frequencies under nonstationary conditions can be quantified
by dividing the exceedance probability of a given drought event in the future to the current condition as:

Ampli f ication Factor (AF) =
Pt(I > I0)

PC(I > I0)
(13)

where AF is the frequency amplification factor of drought with I > I0, and PC(I > I0) and
Pt(I > I0) are the exceedance probability of drought events with I > I0 for current and future
conditions, respectively. The drought events with higher frequency amplification factor are more
sensitive to nonstationary conditions.

2.7. Global Sensitivity Analysis

A global sensitivity analysis was performed to simultaneously assess both relative contributions
and interactions between each of the individual mixture model parameters. Several techniques
have been commonly used to execute global sensitivity analysis. In this study, the method of
Sobol [49] was applied using the SIMLAB software package [50]. Sobol decomposes the variance of
the output into fractions, which can be allocated to individual inputs. Both relative contributions and
interactions of individual inputs were calculated using the first-order and total-order sensitivity indices.
Sensitivity indices are defined to measure the importance of variables. The distribution of the mixture
model parameters was assumed to be uniform. The selected ranges of mixture model parameters are
shown in Table S1 based on the observed data and their intervals.

First-order sensitivity indices were used to assess the contribution of an individual parameter
to the output variance. Parameters with the greater first-order sensitivity indices are more critical
for the model. Figure 2 (left-panel) and Table S2 illustrate the first order sensitivity indices of model
parameters to return period of drought with duration equal or greater than one month. Below the
threshold (non-extreme drought events), the mixture model is governed by Gamma parameters.
The drought return period is more sensitive to the Gamma shape parameter than the Gamma
scale parameter. Above the threshold (extreme drought events), the mixture model is governed by
GPD parameters. The drought return period is respectively sensitive to the location, scale, and shape
parameters of the GPD.
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for drought return period.

Total-order sensitivity indices were used to assess the interaction between each of the
input variables. Changes in the total order sensitivity indices are presented in Table S3 and
Figure 2 (right-panel). GPD scale and GPD shape parameters are more critical when the total-order
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sensitivity indices were considered. This indicates that shape and scale parameters of GPD have
significant interactions with other parameters.

Figure 3 illustrates the interaction between the GPD shape and Gamma shape parameters with
GPD location (threshold) parameter. Below the threshold (Figure 3 left-panel), as Gamma shape
parameter increases, sensitivity of drought return period to change in GPD location parameter increases.
Conversely, as GPD location parameter increases, the sensitivity of drought return period to change in
the Gamma shape parameter increases. Above the threshold (Figure 3 right-panel), the sensitivity of
drought return period to change in the GPD location parameter decreases. Conversely, as the GPD
location parameter increases, the sensitivity of drought return period to the change in Gamma shape
parameter decreases.
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3. Application and Discussion

The proposed probabilistic approach was demonstrated for the City of Fort Collins (Colorado,
USA) water supply system (Figure S2) as a test case to investigate the applicability of the framework
under considerable shifts in water supply and water demand conditions. Climate, water supply,
and water demand for Fort Collins were projected out to 2065 under the hot-dry scenario to assess the
capacity to improve characterization of sub-annual socioeconomic drought IDF relationships under
significant shifts in water supply and demand conditions. The 1986–2015 period was used to represent
“current” conditions and the 2035–2065 period represented the “mid-century” conditions. It should be
emphasized that assessing various aspects of future drought impacts on the City of Fort Collins is not
the purpose of this study. In fact, this study used the City of Fort Collins as a test case to demonstrate
the application of the proposed approach under nonstationary conditions.

Fort Collins is in the semi-arid American West, which is prone to extended droughts. It lies within
the Cache la Poudre (CLP) watershed in Northcentral Colorado. Currently, a drought event is defined
as one or more years of below average annual runoff in the CLP River [51]. An exceptionally severe
drought was reported in Fort Collins from September 2001 to August 2002. Over the last decades,
CLP River discharge has been below average in most years, and the city has been experiencing water
shortage conditions since 2000. In addition, high levels of population growth are projected within the
CLP watershed, compounding the water shortage problems [51].
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3.1. Future Climate Scenarios

Changes in precipitation and temperature for the CLP watershed were estimated under
the representative concentration pathway (RCP) 8.5 and a hot-dry scenario described below.
This combination was chosen to represent a worst-case condition for the region. Observed daily
temperature and precipitation data were collected from the Global Historical Climatology Network
(GHCN), the Colorado Agricultural Meteorological Network (CoAgMet), and Northern Colorado
Water Conservancy District (NCWCD). Missing data were filled using auxiliary information obtained
from nearby stations based on the probability of rainy days, R-Squared and Jaccard index between the
two nearest stations.

Future monthly climate data were obtained from CMIP5 projections [52]. Subsequently,
data were statistically downscaled for meteorological stations in the region using a quantile-based
empirical-statistical error correction method [44]. A downscaling procedure was performed to obtain
daily climate information from downscaled monthly data. Two hundred and thirty downscaled climate
models were classified into hot-dry, hot-wet, warm-dry, warm-wet, and median categories based on
the difference in current and future temperature and precipitation (Figure S3).

Changes in precipitation and minimum temperature in Fort Collins under the median of 230 climate
models are shown in Figure 4a,b, respectively. The average changes in minimum temperature for
RCP 2.6, 4.5, 6.0 and 8.5 are also shown in Figure 4c. Climate anomalies represent differences between
the mid-century and current conditions. The kriging method in ArcGIS was applied to the spatial
interpolation of precipitation and temperature anomaly records in the CLP watershed.
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For the median of 230 climate models (Figure 4), temperature consistently is expected to increase
across the watershed. In addition, the rate of warming tends to increase with elevation, indicating
that high-mountain environments of the Colorado Rocky Mountains will experience rapid changes
in temperature. However, a relatively small increase in precipitation was projected, particularly in
higher elevation areas.

In this study, the statistically downscaled ‘ipsl-cm5a-mr’ scenario was selected from the
hot-dry category with RCP 8.5 to represent the worst-case scenario for the mid-century conditions.
This scenario was selected in order to assess significance and applicability of the proposed framework
under considerable shifts in water supply and demand conditions. Figures S4 and S5 show
changes in precipitation and temperature for the hot-dry scenario from current conditions to
mid-century conditions.

3.2. Water Supply Assessment

The City of Fort Collins receives native water from the Cache la Poudre (CLP) River and imported
water from Horsetooth Reservoir as part of the Colorado Big Thomson (CBT) project. According to
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the Fort Collins Water Supply and Demand Management Policy Revision Report [51], the amount
of usable water from the Poudre River depends on factors such as water demand, dry-year yields
and exchange potential. In addition, water deliveries from the Colorado Big Thompson system to the
city of Fort Collins depend on an annual quota set by Northern Water each year ranging from 50% to
100% of annual yields [51]. In this study, the potential amount of water supplied to the City of Fort
Collins in the future was calculated assuming that the historical coefficients of water deliveries from
the CLP River will be preserved and the City owns the potential amount of water from the Horsetooth
Reservoir as the most flexible source to fill gaps from other sources.

Changes in water yield in the CLP River at the Mouth of Canyon Station (National Water
Information System (NWIS), 2019) was evaluated using the Soil and Water Assessment Tool (SWAT) [53].
SWAT is a comprehensive, distributed-parameter, process-based hydrologic model that has been
used extensively to assess the hydrologic response to changes in climate and land use at a variety of
scales [54–57]. The model was calibrated to historic naturalized flow data at multiple locations within
the watershed [58]. The calibrated model was driven by projected alternative future climates for the
region to obtain monthly discharge at the City of Fort Collins water intake facilities on the CLP River.

3.3. Water Demand Assessment

Municipal water demand under climate, population, and water demand management scenarios
was estimated using the Integrated Urban Water Demand Model (IUWM). IUWM is a mass balance
model that simulates water demand and wastewater production associated with urban water demand
management strategies. The model simulates municipal water demand through use of population,
household, land cover and climate data. The model was calibrated and tested for the City of Fort
Collins with options for assessing demand management scenarios based on the projected population,
temperature and precipitation [59]. The model was driven with future climate scenarios to obtain
monthly total water use for the City of Fort Collins under nonstationary conditions. Population
and household information were obtained from the U.S. Census Bureau [60]. Population growth
projections were based on those reported in AMEC Environment and Infrastructure [51] with a
projected population of 165,000 by the middle of century.

Figure 5 provides 12-month average of projected water supply and water demand for the City
of Fort Collins under the hot-dry scenario. The balance between water supply and water demand
becomes more unequal by the middle of the century under rapid climate changes and population
growth. This situation can lead to considerable shifts in socioeconomic drought distributions. Thus,
applicability of classic families of probabilistic distributions can be assessed compared to the mixture
Gamma-GPD distribution in rapidly changing environment.
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3.4. Water Deficit Record Extension

Extreme drought events are usually infrequent and insufficient for fitting to a GPD model [10,61].
To create a statistically large monthly water deficit sample, the autoregressive (AR) time series model
was used. The AR model of order p, AR (p), is a time series defined by [10]:

yt = c +
p∑

i=1

φi (yt−i) + εt (14)

with lagged values of yt as predictors where εt is an uncorrelated normal random variable with mean
zero and variance σ2

ε, and φi, and c are the parameters of the model. The fourth-order autoregressive
model was found to be effective for simulating a synthetic 67200-month deficits sample for the city
of Fort Collins. This extended sample was used to determine intensity, duration, and frequency of
drought events for the study system. The relative frequency distribution of positive drought deficits
(d > 0 ) from the historical record and the generated sample are shown in Figure 6. Furthermore,
the synthetic sample was tested by comparing statistical properties of original data versus generated
data using AR model for all deficits (Table 1).Water 2020, 12, x FOR PEER REVIEW 11 of 22 
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Table 1. Statistical properties of original data versus generated data for city of Fort Collins.

Statistics Original Data Generated Data

Single Deficit
Min (million cubic meter) −3.851 −3.772
Max (million cubic meter) 4.214 4.170
Mean (million cubic meter) 0.173 0.173

Standard deviation 1.114 1.054
Coefficient of variation 6.422 6.070

Severity
Mean (million cubic meter) 8.823 7.644

Standard deviation 22.380 22.323
Coefficient of variation 2.536 2.920

Intensity
Mean (million cubic meter

per month) 0.545 0.582

Standard deviation 0.379 0.335
Coefficient of variation 0.695 0.576

Duration
Mean (month) 9.974 8.373

Standard deviation 18.576 17.456
Coefficient of variation 1.862 2.084

3.5. Importance of Nonstationarity Assumptions in Both Water Supply and Demand Conditions

While all types of droughts originate from a deficiency in water supplies, drought properties
would not depend on only water supply conditions. Climate changes and population growth can lead
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to nonstationary conditions in both water supply and water demand conditions. Thus, definition and
characterization of drought events that consider shifts in both water supply and demand are essential
to account for a changing environment. However, most previous studies have defined socioeconomic
drought only in terms of deficiencies in water supply systems [14,16].

Table 2 shows the impact of nonstationary assumptions in both water supply and demand
conditions on drought properties compared to shifts in only water supply or water demand conditions.
The average drought magnitude, duration, intensity, and maximum monthly water deficit are
determined under shifts in (1) only demand conditions; (2) only supply conditions; and (3) both supply
and demand conditions. While the average magnitude and duration of drought events considerably
increase by assuming shifts in both water supply and demand conditions, the average drought intensity
increases slightly. Based on the drought intensity definition (magnitude/duration), minor changes
in drought intensity can be justified considering that intensity is a normalized value (water deficit
per month). However, maximum monthly deficit will increase to 1.04 (mcm/month).

Table 2. Impacts of shifts in both water supply and water demand on drought properties.

Drought
Properties Shifts in Demand Shifts in Supply Shifts in Supply

and Demand

Magnitude (mcm) 1.03 1.74 8.20
Duration (month) 4 3.30 9.38
Intensity (mcm/m) 0.22 0.40 0.53
Maximum water

deficit (mcm) 0.32 0.68 1.04

Table 2 provides a general understanding of how shifts in water supply and water demand
contribute to affect drought properties in the selected case-study. Under constant water demand
assumption, the average magnitude, intensity, and maximum monthly water deficit are higher than the
constant water supply assumption. Table 2 highlights that change in water supply may have higher
impacts on drought magnitude and intensity compared to changes in water demand. It should be
noted that these results are case-study specific and depend on the selected scenario.

3.6. Importance of Socioeconomic Drought Assessment at a Sub-Annual Scale

Drought is traditionally defined as a climate phenomenon that takes many years. Most studies
have characterized drought at annual scale. However, population growth and climate change can
lead to higher interannual variability of water supply and water demand. Thus, characterization of
socioeconomic drought properties at a sub-annual scale is needed in a changing environment. Figure 7
shows changes in drought intensity for D < 12 months from current conditions to future conditions.
Intensity of within-year drought increases due to increases in interannual variability of water supply
and demand conditions.

Water 2020, 12, x FOR PEER REVIEW 12 of 22 

 

Table 2. Impacts of shifts in both water supply and water demand on drought properties. 

Drought Properties Shifts in  
Demand 

Shifts in  
Supply 

Shifts in  
Supply and Demand 

Magnitude (mcm) 1.03 1.74 8.20 
Duration (month) 4 3.30 9.38 
Intensity (mcm/m) 0.22 0.40 0.53 

Maximum water deficit (mcm) 0.32 0.68 1.04 

Table 2 provides a general understanding of how shifts in water supply and water demand 
contribute to affect drought properties in the selected case-study. Under constant water demand 
assumption, the average magnitude, intensity, and maximum monthly water deficit are higher than 
the constant water supply assumption. Table 2 highlights that change in water supply may have 
higher impacts on drought magnitude and intensity compared to changes in water demand. It should 
be noted that these results are case-study specific and depend on the selected scenario.  

3.6. Importance of Socioeconomic Drought Assessment at a Sub-annual Scale 

Drought is traditionally defined as a climate phenomenon that takes many years. Most studies 
have characterized drought at annual scale. However, population growth and climate change can 
lead to higher interannual variability of water supply and water demand. Thus, characterization of 
socioeconomic drought properties at a sub-annual scale is needed in a changing environment. Figure 
7 shows changes in drought intensity for D < 12 months from current conditions to future conditions. 
Intensity of within-year drought increases due to increases in interannual variability of water supply 
and demand conditions.  

 

 
Figure 7. Change in intensities of droughts with duration less than 12 months (D < 12). 

In addition, characterization of socioeconomic drought at a sub-annual scale makes a significant 
difference in the definition of drought duration. For example, droughts with duration equal to 24 
months (D = 24 months) are not equivalent to droughts with durations equal to 2 years (D = 2 years). 
In fact, droughts with D = 24 months mean that there are 24 consecutive months in which monthly 
water demand is greater than monthly water supply. However, droughts with D = 2 years mean that 
there are two consecutive years in which total annual water demand is greater than total annual water 
supply. Thus, even during a two-year drought, there may be months with water surplus. As a result, 
characterization of drought events at a sub-annual scale can help to identify months with water 
surplus that can lead to enhanced decision-making in water resource planning and management. 

3.7. Importance of Applying Mixture Gamma-GPD Distribution under Nonstationary Conditions 

The Mixture Gamma-GPD distribution was used to estimate the frequency of socioeconomic 
drought intensity and duration at a sub-annual scale for the City of Fort Collins. In this study, the 
threshold related to the 95th sample percentile [41–43] was chosen, which was supported by using 
the mean excess plots (Figures S6 and S7) as a graphical diagnostics method.  

The model evaluation criteria including Chi-square, RMSE, and R-squared are summarized in 
Tables 3 to 6 for Exponential, Normal, Log-Normal, Weibull, Gamma and Gamma-GPD distributions 

Figure 7. Change in intensities of droughts with duration less than 12 months (D < 12).



Water 2020, 12, 1522 13 of 22

In addition, characterization of socioeconomic drought at a sub-annual scale makes a significant
difference in the definition of drought duration. For example, droughts with duration equal to
24 months (D = 24 months) are not equivalent to droughts with durations equal to 2 years (D = 2 years).
In fact, droughts with D = 24 months mean that there are 24 consecutive months in which monthly
water demand is greater than monthly water supply. However, droughts with D = 2 years mean
that there are two consecutive years in which total annual water demand is greater than total annual
water supply. Thus, even during a two-year drought, there may be months with water surplus. As a
result, characterization of drought events at a sub-annual scale can help to identify months with water
surplus that can lead to enhanced decision-making in water resource planning and management.

3.7. Importance of Applying Mixture Gamma-GPD Distribution under Nonstationary Conditions

The Mixture Gamma-GPD distribution was used to estimate the frequency of socioeconomic
drought intensity and duration at a sub-annual scale for the City of Fort Collins. In this study,
the threshold related to the 95th sample percentile [41–43] was chosen, which was supported by using
the mean excess plots (Figures S6 and S7) as a graphical diagnostics method.

The model evaluation criteria including Chi-square, RMSE, and R-squared are summarized in
Tables 3–6 for Exponential, Normal, Log-Normal, Weibull, Gamma and Gamma-GPD distributions
under current and future conditions. Most classic families of distributions have better fit under
current conditions compared to mid-century conditions. This finding indicates that the most
standard probabilistic distributions will be insufficient to capture both bulk and tail of droughts
distribution under shifts in drought properties by the mid-century. In addition, goodness of fit tests
quantitively demonstrate that the standard Gamma distribution better fits to sub-annual socioeconomic
drought durations and intensities compared to other probabilistic distributions for both current and
mid-century conditions. However, the mixture Gamma-GPD distribution leads to improved estimation
of drought frequency compared to Gamma and other probabilistic distributions for both drought
duration and intensity under current and future conditions. The approach improves the capacity to
simultaneously characterize within-year and multi-year socioeconomics droughts.

Table 3. The goodness of fit of various models under current conditions (drought intensity).

Distribution R-squared RMSE Chi-Square

Exponential 0.7104 0.14 86.1532
Normal −16.8745 0.5912 333.0102

Log-Normal 0.6728 0.1414 42.3706
Weibull 0.6147 0.1749 186.4215
Gamma 0.9447 0.0652 10.9257

Gamma-GPD 0.9746 0.046 10.8214

Table 4. The goodness of fit of various models under mid-century conditions (drought intensity).

Distribution R-squared RMSE Chi-Square

Exponential 0.2735 0.273 274.5355
Normal −5.5551 0.6131 303.6521

Log-Normal 0.5086 0.2233 71.4617
Weibull 0.511 0.2145 321.0255
Gamma 0.8736 0.1207 24.9927

Gamma-GPD 0.945 0.0808 22.6967
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Table 5. The goodness of fit of various models under current conditions (drought duration).

Distribution R-squared RMSE Chi-Square

Exponential 0.701 7.2617 97.2247
Normal −1.0406 19.7033 2393.4

Log-Normal 0.6563 10.6014 213.2408
Weibull 0.6739 7.5839 107.309
Gamma 0.6476 4.2436 35.82

Gamma-GPD 0.9488 1.6173 7.46

Table 6. The goodness of fit of various models under mid-century conditions (drought duration).

Distribution R-squared RMSE Chi-Square

Exponential 0.5314 14.9834 440.1007
Normal −1.0788 37.6708 9787.0

Log-Normal 0.3578 25.6947 1271.9
Weibull 0.7345 10.6867 201.576
Gamma 0.7705 5.01 47.09

Gamma-GPD 0.957 2.147 13.20

Figure 8 shows the quantile-quantile (QQ) plots of both Gamma-GPD and Gamma distributions
for the current (1986–2015) and future (2035–2065) conditions. The Gamma-GPD model
substantially improves characterization of socioeconomic drought intensity-duration relationships,
particularly under nonstationary conditions. The proposed mixture model consistently provides a
better fit to data compared to the standard Gamma distribution as QQ plots indicate.
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While the Gamma distribution (red plus sign) seems to be adequate for drought events with
smaller duration and intensities (non-extreme droughts), it tends to be inadequate for droughts with
larger duration and higher intensity (extreme droughts) by deviating from the reference line. However,
the Gamma–GPD distribution (blue circle sign) enhances the characterization of extreme drought
events by converging to the reference line.

Changes in the probability distribution functions of drought durations with intensity greater than
zero (all drought events) are shown in Figure 9 left-panel. The GPD of drought durations is short-tailed
(ξ < 0) under the current condition but becomes heavy-tailed (ξ > 0) during the mid-century period,
meaning that the duration of drought events will increase by the middle of century. The scale parameter
of the Gamma distribution for drought duration is increasing, which means that the variability of
drought durations will increase in the middle of century.
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Drought intensities with duration greater than one month (all drought events) are depicted in the
right panel of Figure 9. The GPD location parameter was increased over time from 1.0 to 1.22 mcm
(million cubic meter) per month, meaning that drought events that are currently characterized as
extreme events become non-extreme events in the middle of century. The scale parameter of the
Gamma distribution for drought intensity also increases, indicating that the variability of drought
intensity will increase. Changes in climate and population alter the distribution of both drought
durations and intensities over time. There may be a discontinuity in the density at the threshold;
however, the mixture probability distribution will be continuous.

3.8. Application of Sub-Annual Socioeconomic Drought IDF Relationships in a Changing Environment

How socioeconomic drought properties will change in the future is one of the key research
questions in water resource management and planning. This section discusses the practicality of the
proposed approach to update drought IDF curves and designed drought event for water supply systems.
These critical factors can affect water supply and demand management policies and practices. First,
we assess changes in sub-annual socioeconomic drought IDF curves for the City of Fort Collins under
significant shifts in water supply and demand. Improving the estimation of socioeconomic drought IDF
curves under nonstationary conditions can play an important role in the design of water supply systems.
Second, we assess changes in the designed drought event for the City of Fort Collins water supply
systems under nonstationary conditions.

3.8.1. Sub-Annual Socioeconomic IDF Curves in a Changing Environment

IDF curves are commonly applied for the design of water resource systems such as municipal
storm-water drainage systems. However, studies that discuss methods for assessing changes in IDF
relationships of drought events are limited [17,33]. IDF curves were obtained through frequency
analysis of drought events. Drought Intensity and duration time series were computed for overlapping
30-year moving windows to calculate changes in drought properties due to nonstationary water supply
and demand. Changes in the parameters of the mixture model were estimated using overlapping
30-year moving windows and assuming the parameters are time-varying. Figure 10 illustrates changes
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in the projected drought durations (left panel) and drought intensities (right panel) for the Fort
Collins water supply system under the hot-dry scenario. Drought events with higher intensity have
longer duration. Similarly, drought events with longer duration have higher intensities. The results
also indicate that drought events with longer durations and higher intensities will be more frequent
under the projected scenario.
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The expected value of interarrival time between two successive drought events is shown in
Figure 11. The occurrence probability of drought events is expected to change significantly over time
under the hot-dry scenario. Drought events with longer duration have higher changes in the expected
interarrival time.Water 2020, 12, x FOR PEER REVIEW 16 of 22 

 

 
Figure 11. Expected interarrival time (month). 

The amplification factor was also calculated for different drought durations and intensities. 
Multi-year and higher intensity droughts (extreme droughts) tend to be more sensitive to 
nonstationary conditions than droughts with duration less than a year (Figure 12). The results point 
to a substantial increase in the occurrence of extreme events from 2005 to 2060 (i.e., drought events 
with higher intensities and longer durations). Socioeconomic droughts with longer duration will 
have higher likelihood of occurrence in the mid-century compared to current conditions. 

 
Figure 12. Amplification factor curves for frequency of drought events (intensity is in mcm/month). 

Then, the marginal and conditional probabilities of drought events as well as the joint 
probability distribution of drought events for intensity and duration greater than or equal to a target 
(I > I଴, D > D଴) were computed. Drought frequency analysis was performed for each set of drought 
duration to determine the exceedance probability of drought intensity. 

 

Figure 13. Intensity-duration-frequency curves for current (left-panel) and future conditions (right-
panel). 

Figure 13 depicts the drought IDF curves with durations greater than 1, 6, 12, 24 and 36 months 
under nonstationary conditions for both current and future conditions. The results indicate that 
current IDF curves substantially underestimate extreme drought events. For example, the return 

Figure 11. Expected interarrival time (month).

The amplification factor was also calculated for different drought durations and intensities.
Multi-year and higher intensity droughts (extreme droughts) tend to be more sensitive to nonstationary
conditions than droughts with duration less than a year (Figure 12). The results point to a substantial
increase in the occurrence of extreme events from 2005 to 2060 (i.e., drought events with higher
intensities and longer durations). Socioeconomic droughts with longer duration will have higher
likelihood of occurrence in the mid-century compared to current conditions.
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Then, the marginal and conditional probabilities of drought events as well as the joint probability
distribution of drought events for intensity and duration greater than or equal to a target (I > I0, D > D0)
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were computed. Drought frequency analysis was performed for each set of drought duration to
determine the exceedance probability of drought intensity.

Figure 13 depicts the drought IDF curves with durations greater than 1, 6, 12, 24 and 36 months
under nonstationary conditions for both current and future conditions. The results indicate that current
IDF curves substantially underestimate extreme drought events. For example, the return periods of
drought events with durations greater than 24 and 36 months decrease to less than 1000 years in the
future. In addition, the IDF curves for both current and future conditions indicate that the drought
events with shorter durations tend to have higher intensities. Thus, current drought IDF curves seem
inadequate for the design and management of water supply infrastructure under considerable shifts in
water supply and demand conditions. The proposed probabilistic approach should be applied for
improved characterization of future IDF relationships, particularly for extreme socioeconomic droughts.
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3.8.2. Changes in the Designed Drought Event for Water Supply Systems

Based on the Fort Collins Water Supply and Demand Management Policy Revision Report [51],
the City’s water utility tries to maintain water supplies sufficient to meet demands during at least
a 1-in-50 year drought. A 1-in-50 year drought is a drought event that occurs once every 50 years,
on average [51]. Figure 14 shows the risk of 1-in-50 year drought events with different durations for
current and mid-century conditions. 1-in-50 year drought risk decreases as drought intensity increases.
The model used here shows that drought events with longer durations are more likely in the middle of
the century compared to current conditions. Therefore, the design drought event for the City’s water
supply system should be updated according to the accepted risk for the middle of the century.
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The proposed mixture model thus leads to enhanced assessment of sub-annual socioeconomic
drought IDF relationships by simultaneously capturing non-extreme and extreme droughts under
annual and interannual shifts in water supply and demand trends. Design of water supply systems
by using the proposed probabilistic approach can improve the capacity of city water managers to
adequately implement drought adaptation strategies such as water supply development, water demand
management, and conservation [4,15,18,42]. Updating drought IDF curves and designed drought
events help decision makers and system designers to understand uncertainties under climate change
and population growth and develop climate adaptation strategies to increase resilience and flexibility
of water supply systems [62].

4. Conclusions

In rapidly urbanizing areas, population growth along with changes in climate can lead to
nonstationary drought conditions where water demand exceeds water supply. Three important
considerations were addressed in this study under growing unequal balance between water supply
and water demand. First, an improved socioeconomic drought assessment can be characterized
by assuming shifts in both water supply and demand conditions. Second, assessing the drought
properties at a sub-annual scale is essential toward improved water resource management. Third,
a mixture distribution is needed to account for considerable shifts in both water supply and water
demand conditions. These considerations are addressed in this study to update drought IDF
relationships using defined sub-annual socioeconomic drought terminology.

We outlined a statistically coherent probabilistic approach for assessing sub-annual socioeconomic
drought IDF properties in a changing environment, while considering shifts in both water supply
and water demand regimes to cope with climate changes and population growth. A mixture
Gamma-GPD probability model was proposed to simultaneously represent the bulk and tail of drought
events. The standard probabilistic distributions were found to be insufficient for modeling extreme
socioeconomic droughts with longer duration and higher intensity especially in a rapidly changing
environment. The proposed mixture model improved characterization of socioeconomic drought
intensity, duration and frequency relationships at sub-annual time scales, particularly under significant
shifts in water supply and demand trends. Under nonstationary water supply and demand conditions,
current extreme and infrequent drought events may become more frequent. Thus, more attention
should be given to the enhanced characterization of extreme socioeconomic droughts. The model can
enhance the capacity to address challenges with interannual variability of water supply and demands
under nonstationary conditions.

Application of the framework was demonstrated for the City of Fort Collins, Colorado, water
supply system. Climate changes were derived from GCM projections, and supply and growing
demand were calculated using SWAT and IUWM models respectively by considering population
growth and future climate scenarios. The hot-dry scenario was selected to represent the worst-case
conditions for nonstationary water supply and demand. Assessments of sub-annual drought frequency
for City of Fort Collins indicate that climate change and population growth will significantly affect the
vulnerability of municipal water supply systems to shortage. The proposed mixture model improved
the projection of sub-annual socioeconomic drought intensities and durations, particularly for extreme
drought events. In the case of the City of Fort Collins, the 1-in-50 year drought risk increases from
current conditions by the mid-century, indicating that the City will experience socioeconomic droughts
with higher intensity and longer duration. Moreover, drought events with longer duration have higher
risk in the middle of century compared to current conditions. Drought events with longer duration are
more sensitive to non-stationary conditions.

This study provides a framework to statistically assess impacts of large shifts in water supply
and demand on sub-annual socioeconomic droughts. However, global assessment of sub-annual
socioeconomic drought propagation under various anthropogenic water demand scenarios, climate
change projections, and water supply infrastructure designed is needed.
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The findings of this study can be applied to update socioeconomic drought IDF properties that
are used to assess water storage, to plan water supply systems under nonstationary conditions, and to
optimize water institutions and management including water rights in the American West. Finally,
the methodology developed in this study can be applied for other sectors such as agriculture to evaluate
the impacts of climate change, land-use change, and socioeconomic drivers on water shortage.
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model parameters.
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