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Abstract: Water management in lowland areas usually aims to keep water tables within a narrow
range to avoid flooding and drought conditions. A common water management target parameter is
the depth of the canal water table below the surrounding soil surface. We demonstrated a method
that rapidly determines canal water table depth (CWD) from airborne LiDAR data. The water table
elevation was measured as the minimum value determined in a grid of 100 m × 100 m applied to
a 1 m × 1 m digital terrain model (DTM), and the soil surface was calculated as the median value
of values in each grid cell. Results for areas in eastern Sumatra and West Kalimantan, Indonesia,
were validated against 145 field measurements at the time of LiDAR data collection. LiDAR-derived
CWD was found to be accurate within 0.25 m and 0.5 m for 86% and 99% of field measurements,
respectively, with an R2 value of 0.74. We demonstrated the method for CWD conditions in a drained
peatland area in Central Kalimantan, where we found CWD in the dry season of 2011 to be generally
below −1.5 and often below −2.5 m indicating severely overdrained conditions. We concluded that
airborne LiDAR can provide an efficient and rapid mapping tool of CWD at the time of LiDAR data
collection, which can be cost-effective especially where LiDAR data or derived DTMs are already
available. The method can be applied to any LiDAR-based DTM that represents a flat landscape that
has open water bodies.

Keywords: canal water table depth; water table measurement; LiDAR; digital terrain model; peatland;
lowland; Indonesia

1. Introduction

Coastal lowland areas tend to be flat, with water tables that are near the soil surface. In their
natural state, they are usually wetlands. Many such areas are drained to allow agriculture and human
settlement, and the primary aim of water management in such conditions is often to prevent flooding.
However, in wetland conservation areas and peatlands, the primary aim is often to prevent water
tables from falling too low below the surface [1,2].
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The coastal lowlands of Sumatra and Kalimantan in Indonesia alone measure some 19.4 Mha [3],
with at least 11.2 Mha being peatland [4]. The impacts of peatland drainage in terms of carbon
emissions, fire risk, soil subsidence, biodiversity loss and flood risk are well documented [2,5–14].
In response, initiatives are being developed to mitigate these problems through improved water
management with a focus on raising water levels in peatlands [15]. To define appropriate interventions,
accurate and up-to-date water level data are required. Given the very large scale of the area involved,
monitoring water levels on the ground in all flood-prone lowlands and drainage-affected peatlands
would require enormous resources and capacity. While ground measurements will probably always be
needed, it will be necessary to have alternative data sources to understand actual water depth patterns
over large areas.

In this study, we explored a new approach that utilizes the capability of LiDAR data to detect
both surface water level in canals and ground surface level near canals, allowing the determination of
canal water table depth (CWD) below the land surface. Although water typically absorbs the LiDAR
near-infrared wavelength of 1064 nm [16,17], reflections of the pulse occur on the water surfaces caused
by, amongst others, water turbidity [18], but also because of floating debris and/or plants.

The detection of water surfaces is an essential step in many classification workflows for LiDAR,
often to remove them from the dataset to create a digital terrain model (DTM) that should present the
land surface only. In a few cases, point cloud LiDAR data have also been used for surface water level
measurement in ditches, rivers and reservoirs [16,17,19,20]. The objective of this study was to apply
these principles and determine not only the canal water surface elevation (CWE) above mean sea level
(MSL), but also, for the first time, the CWD below the surrounding soil surface, that is, the ‘freeboard’
that is a common target parameter in lowland water management practice.

2. Study Areas and Methods

2.1. Study Areas and LiDAR DTM Data

CWD validation was conducted in several areas in eastern Sumatra and West Kalimantan (Figure 1),
applying local DTMs created from airborne LiDAR data collected in late 2017 (described in [21])
and August 2018. In these areas, it was possible to organize field measurements on the same day
(plus/minus one day) as the LiDAR plane overpass.
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Figure 1. Map of eastern Sumatra and Kalimantan provinces showing canal water table depth (CWD)
validation locations and application area.

After validation, the method was applied to a DTM, covering 744,000 ha of a lowland and peatland
area in Central Kalimantan (Indonesia), that was created from full coverage LiDAR data collected
in 2011 [21]. The area is part of what is commonly known as the Ex-Mega Rice Project area, which
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was deforested and drained in 1996. These peatlands remain largely unproductive, and have been
burning frequently since 1997 [22,23], while the lowest lying mineral soil areas in some areas have
been very flood prone to allow the production of rice or other crops. Apart from data availability, we
selected this area as it allows the demonstration of conditions that require water table depth data for
management improvements.

2.2. Determining Canal Locations

Canals were identified visually from Landsat images, supported by Google Earth and 10 cm
resolution orthophotos where available, and the canal centerlines were mapped manually in GIS.
From field checks and orthophoto analysis, we determined that such large canals, that were clearly
visible in Landsat images (Figure 2), in this region were always over 3 m in width, excluding drains
and ditches, and mostly between 5 and 10 m. Where canals were not or less visible because they were
largely overgrown with vegetation over part of their length, as was often the case (Figure 2), the canal
location was determined though interpolation.

Water 2020, 12, x FOR PEER REVIEW 3 of 11 

 

 
Figure 1. Map of eastern Sumatra and Kalimantan provinces showing canal water table depth (CWD) 
validation locations and application area. 

2.2. Determining Canal Locations 

Canals were identified visually from Landsat images, supported by Google Earth and 10 cm 
resolution orthophotos where available, and the canal centerlines were mapped manually in GIS. 
From field checks and orthophoto analysis, we determined that such large canals, that were clearly 
visible in Landsat images (Figure 2), in this region were always over 3 m in width, excluding drains 
and ditches, and mostly between 5 and 10 m. Where canals were not or less visible because they were 
largely overgrown with vegetation over part of their length, as was often the case (Figure 2), the canal 
location was determined though interpolation. 

 
Figure 2. Illustration of canal digitization from Landsat images. (a–c) Area in Central Kalimantan 
where canals are less visible on Landsat, but visible from orthophotos (coordinates in UTM50S) and 
(d–f) plantation area in South Sumatra with canals clearly visible from Landsat images (coordinates 
in UTM48N). 

2.3. Determining CWE 

A grid of 100 m × 100 m cells was created to identify cells overlapping with canals. In each such 
cell, minimum values were determined from a DTM of 1 m × 1 m, representing the likely height of 
the canal water surface, that is, canal water surface elevation (CWE) above MSL. We note that this 
method is only applicable in flat lands. 

 

Figure 2. Illustration of canal digitization from Landsat images. (a–c) Area in Central Kalimantan
where canals are less visible on Landsat, but visible from orthophotos (coordinates in UTM50S) and
(d–f) plantation area in South Sumatra with canals clearly visible from Landsat images (coordinates in
UTM48N).

2.3. Determining CWE

A grid of 100 m × 100 m cells was created to identify cells overlapping with canals. In each such
cell, minimum values were determined from a DTM of 1 m × 1 m, representing the likely height of the
canal water surface, that is, canal water surface elevation (CWE) above MSL. We note that this method
is only applicable in flat lands.

2.4. Determining CWD

We derived canal water table depth (CWD), sometimes referred to as freeboard by water
management practitioners, by subtracting the CWE from the DTM. For each cell in the same grid as
applied for CWE mapping, the median DTM value was determined. This elevation was considered to
represent ground surface. The difference between CWE and median DTM values was determined as a
measure of the depth of the canal water table below the adjoining ground surface, that is, CWD, as
illustrated in Figure 3.
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Figure 3. Schematic of how canal water table depth (CWD) was determined from a LiDAR-based
digital terrain model (DTM) as the elevation difference between soil surface (median value of DTM
values in grid cell) and canal surface water level (minimum value of DTM values in grid cell).

2.5. Grid Cell Size Considerations

The 100 m × 100 m grid size was chosen based on the observation that larger canals tend to be at
least 100 m apart in drainage and irrigation schemes in Indonesian lowlands. Cell sizes from 50 to
200 m were tested. It was found that applying a larger grid cell risked including several open water
bodies with different water levels in one cell. A smaller cell increased the risk of not encountering
suitable open water conditions that would allow water surface detection by LiDAR, and also of having
a median value that did not represent the true general soil surface elevation, but rather the canal water
level elevation. Given the difficulty in determining the precise location of largely overgrown canals,
and the usual occurrence of surface disturbance around canals, a cell size of less than 50 meters was
found to yield inaccurate results.

2.6. CWD Validation

LiDAR-derived CWD data collected in late 2017 and August 2018 were validated against field
measurements for selected Acacia plantation locations in South Sumatra, Jambi, Riau and West
Kalimantan provinces. A large number of different locations was required to obtain a sufficiently large
number of field validation measurements by different teams because only a few measurements were
possible at each individual location at the day of airborne LiDAR plane overpass (plus/minus one day).
Each measurement took several hours, including access. In all, 29 separate field teams of 4 staff each
contributed to ground measurements.

As canal water levels in these lowlands can fluctuate rapidly in time, the validation field
measurements should ideally be on the same day of airborne data collection. However, as only a few
ground measurements were done by one team in one day and the timing of plane movements can be
somewhat unpredictable due to local weather and permit conditions, we also conducted measurements
on the days before and after plane overpass.

At each validation site, canal surface water level was measured as well as ground surface level
at ten locations, using an optical levelling instrument. To account for local topographic variations
and to avoid canal embankments, ground surface level measurements were conducted in two clusters
of five measurements with center points at 25 m from the canal on either side (Figure 4). Within
clusters, measurements were 2.5–5.0 m apart. Care was taken to avoid the disturbed zone directly
along the canal, where surface elevation will be affected most by dredging materials and excavator
tracks. The median of ground surface measurements was calculated, and the CWD was determined by
subtracting the canal water elevation measurement. For validation purposes, only single canals without
other large canals nearby were selected (i.e., double roadside canals and junctions were excluded).
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Figure 4. Schematic and photo of CWD validation measurements across a canal in the field.

3. Results and Discussion

3.1. Validation of CWD

It was found that CWD, as determined from LiDAR data, correlated well with 145 field site
measurements in the eastern Sumatra and West Kalimantan validation areas, with an R2 of 0.74
(Figure 5) and a trendline that was close to unity (CWDLiDAR = 0.95 × CWDfield). The average of
absolute differences between LiDAR and field measurements was 0.13 m, and differences were within
0.25 m and 0.5 m for 86% and 99% of measurements, respectively.
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Figure 5. Validation of CWD as derived from LiDAR with field measurements in 2017 and 2018,
conducted on the same day (plus/minus one day), for validation areas in eastern Sumatra and West
Kalimantan. The trendline resulting in an R2 value of 0.74 was forced through zero.
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The distribution of differences between CWDLiDAR and CWDfield greater than 0.25 m over one
particular area (Figure 6) does not necessarily indicate an error in either the LiDAR or field measurement
result. Another explanation of such differences is that the ground surface in peatlands often varies
substantially over short distances, so the LiDAR ground surface reference is unlikely to be exactly
the same as the field measurement reference. Within the 290 clusters of 5 elevation measurements
collected in plantations for this study, the average difference between the lowest and highest values
over a distance of 5–10 m was 0.27 m and the difference exceeded 0.45 m in 10% of cases.
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Figure 6. LiDAR-derived CWD (a) compared with field measurements on the same day (plus/minus
one day) (b) for a validation plantation area in South Sumatra. (c) Differences were mostly within
0.25 m. These data were collected in a dry period (August 2018), so water levels were mostly more than
0.5 m below the surface, but still less than 1 m in this area.

The surface elevation variations in this range or greater are common in tropical peatlands, with [24]
reporting ranges of 0.49–1.11 m along transects of 50 m in relatively undisturbed peat swamp forests.
Moreover, canal water levels can fluctuate by decimeters day by day, especially around rainfall
events, while the two measurements were often on subsequent days. Furthermore, in some cases, the
100 m × 100 m grid cell, over which CWD was calculated, may overlap only with a short canal section,
resulting in a less representative CWDLiDAR value. A further factor reducing the accuracy of the
method is the uncertainty of precise canal location, in areas where they are overgrown with vegetation.
In regions where canals are better defined and maintained, the accuracy of this method would be
expected to be higher. In such regions, automated identification of canals may also be possible [25].

3.2. Patterns in CWE in the Central Kalimantan Study Area

In the Central Kalimantan area, the CWE derived from LiDAR data from August to October
2011 revealed water levels that were gradually sloping or horizontal along canals over long distances,
consistent with reality in the dry season when water discharges and canal water level gradients are
low (Figures 7 and 8). A few sudden variations in CWE over short distances usually coincided with
blockages in canals (Figure 8).
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Figure 9. Demonstration of CWD pattern in area B in Figure 7. The white dashed area is deep peatland
(> 3 m [4]). In this area, CWD values on top of peat domes were mostly below −1.5 m and often below
−2.5 m in the dry season of 2011, whereas values in the low-lying rice scheme canals to the east of the
area varied between −1 and 0 m.

3.3. Patterns in CWD in the Central Kalimantan Study Area

The variation in CWD values was greater than that in CWE values, reflecting the variation of
ground surface elevation along canals. In the study area, results reported in [21] showed that gradients
are usually below 1 m km-1 (10 cm per 100 m) and very rarely exceed 2 m km−1 (20 cm per 100 m).
Along canals across peat domes, CWD tends to increase going further from a river, as ground surface
level goes up, while the water surface (i.e., CWE) is relatively flat.

The CWD map (Figure 7) and cross section (Figure 8) indicated that canal water tables were more
than 1.5 m below the surrounding peat surface near canals in most peatlands in this area, and more
than 2.5 m over large distances, with values as high as 5 m occurring in some locations. Given that
the dry season of 2011, when these LiDAR data were collected, had average rainfall, such low water
tables confirmed that canals were severely overdraining the peat with negative consequences for forest
recovery, fire risk and carbon loss.

In rice scheme irrigation canals in the low-lying mineral soil areas near rivers, large variations in
CWD values were visible for over 1 m over short distances, with some areas being flooded even in the
dry season, while CWD in others exceeded 2 m (Figures 7 and 9). Such information may be used to
optimize water management to achieve more uniform water depth conditions that are optimized for
rice growth.

4. Conclusions and Recommendations

Based on the results from this study, we conclude that CWD maps produced with our method
provides information that is useful for water management evaluation and improvement, being within
0.25 m from CWD as measured in the field in 86% of validation cases. To our knowledge, no other
currently existing method can provide CWD maps with such relative accuracy. When collected on a
repeated basis over water systems of particular interest, this method could yield a reliable monitoring
tool for canal water table depths. To reduce cost, airborne LiDAR data may be collected over flight
lines that are several kilometers apart [21] or along selected key canals that can represent the condition
over larger water management systems.

The 2011 dry season CWD values in Central Kalimantan drained peatlands, of generally over
1.5 m and often over 2.5 m, far exceed recommended values that would benefit fire reduction and
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forest regeneration. Indonesian Government regulations specify a groundwater depth of 0.4 m (BRG,
2016), that is clearly not compatible with a CWD of several meters. The CWD map therefore provides a
basis for designing canal blocking systems that are more effective in raising water levels.

A DTM-based CWD map, even though representing only conditions at one moment in time,
may be useful for interpreting and improving routine CWD measurements in the field. If the routine
measurement is found to be wrong because of erroneous referencing to one point in the canal side
only, as is often the case, it can be improved. For this application, it is necessary to know the
exact date of LiDAR data collection at each location in the DTM, which can be determined from the
LiDAR timestamps.

The CWD dataset for the application area in Central Kalimantan (Figure 7) is available in the
public domain from https://doi.org/10.17632/7nnf495jbw.1.

While our study applies the method to peatland water levels in Indonesia, it is applicable in any
flat landscape that has canals. The global coverage of DTMs created from LiDAR data will increase
with new drone and satellite technology, and such data are already available online for public access
for large areas, especially parts of the USA and Europe [25–28].
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