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Abstract: As the successor of Tropical Rainfall Measuring Mission, Global Precipitation Measurement
(GPM) has released a range of satellite-based precipitation products (SPPs). This study conducts
a comparative analysis on the quality of the integrated multisatellite retrievals for GPM (IMERG)
and global satellite mapping of precipitation (GSMaP) SPPs in the Yellow River source region
(YRSR). This research includes the eight latest GPM-era SPPs, namely, IMERG “Early,” “Late,”
and “Final” run SPPs (IMERG-E, IMERG-L, and IMERG-F) and GSMaP gauge-adjusted product
(GSMaP-Gauge), microwave-infrared reanalyzed product (GSMaP-MVK), near-real-time product
(GSMaP-NRT), near-real-time product with gauge-based adjustment (GSMaP-Gauge-NRT), and
real-time product (GSMaP-NOW). In addition, the IMERG SPPs were compared with GSMaP SPPs
at multiple spatiotemporal scales. Results indicate that among the three IMERG SPPs, IMERG-F
exhibited the lowest systematic errors and the best quality, followed by IMERG-E and IMERG-L.
IMERG-E and IMERG-L underestimated the occurrences of light-rain events but overestimated the
moderate and heavy rain events. For GSMaP SPPs, GSMaP-Gauge presented the best performance in
terms of various statistical metrics, followed by GSMaP-Gauge-NRT. GSMaP-MVK and GSMaP-NRT
remarkably overestimated total precipitation, and GSMaP-NOW showed an evident underestimation.
By comparing the performances of IMERG and GSMaP SPPs, GSMaP-Gauge-NRT provided the
best precipitation estimates among all real-time and near-real-time SPPs. For post-real-time SPPs,
GSMaP-Gauge presented the highest capability at the daily scale, and IMERG-F slightly outperformed
the other SPPs at the monthly scale. This study is one of the earliest studies focusing on the quality of
the latest IMERG and GSMaP SPPs. The findings of this study provide SPP developers with valuable
information on the quality of the latest GPM-era SPPs in YRSR and help SPP researchers to refine the
precipitation retrieving algorithms to improve the applicability of SPPs.
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1. Introduction

Precipitation is one of the most important components of atmospheric, hydrological, and energy
cycles [1,2]. The accurate measurement or estimation of precipitation plays a critical role in extreme
weather event monitoring, natural hazard forecasting, and water resource management. However,
obtaining accurate precipitation is a challenging task in many remote regions with complex terrains
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and harsh natural conditions, where rain gauge networks are uneven and sparsely distributed [3].
In recent years, quasiglobal satellite-based precipitation products (SPPs) with high spatiotemporal
resolutions have been available to the public; these SPPs include Tropical Rainfall Measuring Mission
(TRMM) multisatellite precipitation analysis (TMPA) [4], precipitation estimation from remotely
sensed information using artificial neural networks (PERSIANN) [5], Climate Prediction Center
(CPC) morphing method (CMORPH) [6], global satellite mapping of precipitation (GSMaP) [7],
and integrated multisatellite retrievals for Global Precipitation Measurement (GPM) (IMERG) [4].
These SPPs have been widely evaluated and utilized for hydrometeorological applications in many
parts of the world [8–14].

GPM is an international satellite mission that was launched by the US National Aeronautics
and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) in February
2014. As the successor of TRMM, GPM includes a core observatory satellite and approximately
10 partner satellites and extends the scope of observations to higher latitudes. The GPM core
observatory carries a dual-frequency precipitation radar (DPR; the Ku-band at 13.6 GHz and Ka-band
at 35.5 GHz) and a multichannel GPM microwave imager (frequencies of 10–183 GHz) [15]. With these
advanced sensors, GPM extends the capabilities of the TRMM sensors to detect light and solid
precipitation [16]. Currently, two parallel SPPs are used for GPM, namely, IMERG and GSMaP.
IMERG is the level 3 precipitation estimation algorithm of GPM; it relies on the strength of multiple
available satellite microwave precipitation estimates, infrared (IR) satellite estimates, precipitation
gauge analyses, and monthly gauge precipitation data [17]. In terms of latencies, IMERG includes
three types of products, namely, the near-real-time “early” and “late” run products (IMERG-E and
IMERG-L, respectively) and the post-real-time “final” run product (IMERG-F) [18]. The GSMaP
algorithm developed by JAXA combines the information of available passive microwave (PMW)
and IR sensors [7]. GSMaP distributes global precipitation maps with several products, such as the
real-time product (GSMaP-NOW), near-real-time product (GSMaP-NRT), near-real-time product
with gauge-adjustment (GSMaP-Gauge-NRT), post-real-time microwave–IR-reanalyzed product
(GSMaP-MVK), and post-real-time gauge-adjusted product (GSMaP-Gauge). Considering that a
limited number of GPM-based SPPs are available, the performance of the latest GPM-era SPPs should
be comprehensively evaluated.

Previous studies have evaluated the performance of GPM-era SPPs in different regions, such
as the Tibetan Plateau [19,20], Mainland China [21–23], India [24], Brazil [25], and Africa [26,27].
Tang et al. [21] compared the performance of the Version 7 post-real-time 3B42 (3B42V7) product of
TMPA with IMERG-F Version 04 (V04) over Mainland China at 3 h and daily temporal resolutions and
discovered that IMERG-F showed appreciably better performance than 3B42V7, especially at the mid-
and high-latitudes and in relatively dry climate regions. Xu et al. [28] concluded that IMERG-F V04
outperformed TMPA 3B42V7 in detecting daily precipitation at various spatial scales over southern
Tibetan Plateau, and the performance of IMERG and 3B42V7 is strongly influenced by topography and
precipitation intensity. Dezfuli et al. [27] found that in West and East Africa IMERG-F V04 showed
significant improvement over its predecessor, the TMPA 3B42V7, particularly in capturing the mesoscale
convective systems, due to its improved temporal resolution. Beria et al. [24] evaluated over 86 basins
in India and concluded that IMERG outperformed TRMM for all rainfall intensity levels across a
majority of Indian basins, and the systematic dependence of error components on basin climatology and
topography was reduced in IMERG. Wang et al. [29] evaluated the performance of IMERG-E, IMERG-L,
IMERG-F, and 3B42V7 in streamflow simulations and demonstrated that IMERG SPPs presented better
hydrological performance than the 3B42V7 during the flood season. Duan et al. [30] highlighted
that 3B42 showed higher error in the winter months when precipitation was low and outperformed
GSMaP-MVK in terms of overall statistical metrics. In the Mundeni Aru River basin of Sri Lanka, GSMaP
demonstrated better hydrological performance in flood inundation modeling than IMERG [10]. Rozante
et al. [25] compared the performance of TRMM, IMERG-F, and GSMaP-Gauge in five Brazilian regions
with different precipitation regimes and demonstrated that IMERG-F and GSMaP-Gauge presented
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better performance in comparison with TMPA products. Tian et al. [31] explored the error characteristics
of GSMaP-MVK, TMAP 3B42, CMORPH, PERSIANN, and Naval Research Laboratory-blended
product over the contiguous United States and observed that the performance of GSMaP-MVK was
comparable to that of other SPPs and significantly overestimated the heavy precipitation events in
summer. Guo et al. [32] examined the spatial error structures of GSMaP-MVK and GSMaP-Gauge
over Central Asia and concluded that GSMaP-gauge showed consistently high correlation coefficient
and outperformed GSMaP-MVK at the monthly scale. Ning et al. [33] indicated that GSMaP-Gauge
V06 provides better daily and monthly precipitation estimates and features more stable quality than
IMERG-F V04 over Mainland China in terms of mean error, correlation coefficient, and probability
of detection. In the Huaihe River basin of China, the variable infiltration capacity model-based
daily streamflow simulations showed that IMERG-F showed acceptable hydrological utility during
the flood season, whereas both IMERG-E and IMERG-L demonstrated poor performances [34].
Tan et al. [35] concluded that GSMaP-Gauge displayed the best error stability among all GSMaP
SPPs (GSMaP-NRT, GSMaP-MVK, and GSMaP-Gauge) at the hourly scale over nine major basins
of China, and GSMaP-MVK can effectively capture most rainfall events. However, only a limited
number of studies have systematically evaluated IMERG and GSMaP SPPs, including all real-time,
near-real-time and, post-real-time versions. Yuan et al. [36] proposed an assessment framework to
statistically and hydrologically evaluate the GPM-era IMERG and GSMaP SPPs in the near-real-time,
real-time, and post-real-time versions at subdaily time scales and demonstrated that IMERG SPPs
(IMERG-E, IMERG-L, and IMERG-F) generally present higher quality than GSMaP SPPs (GSMaP-NRT,
GSMaP-MVK, and GSMaP-Gauge) in the Chindwin River basin of Myanmar. Furthermore, in 2017,
JAXA released the gauge-adjusted near-real-time product (GSMaP-Gauge-NRT) Version 7 and a
real-time product (GSMaP-NOW). To the best of our knowledge, both SPPs have not been reported.
GSMaP-NOW is among the several real-time SPPs released to the public and is expected to be an
alternative precipitation data source for flash flood monitoring and forecasting in data-sparse regions.
In addition, most relevant studies [31,33,37–41] mainly evaluated IMERG and GSMaP SPPs at daily
or monthly scales, whereas investigations at subdaily scales are rare [21,35,42]. Therefore, the two
parallel SPPs should be quantitatively evaluated and comprehensively compared in all real-time,
near-real-time, and post-real-time versions at multiple time scales.

This study statistically evaluated the two latest parallel GPM-era IMERG and GSMaP SPPs against
the ground precipitation data in the Yellow River source region (YRSR) of China. Considering that
the statistical evaluations of GPM-era IMERG and GSMaP SPPs in real-time, near-real-time, and
post-real-time versions at multiple time scales have not been reported, the main goals of this study are
as follows: to statistically evaluate the quality of three IMERG (IMERG-E, IMERG-L, and IMERG-F)
and five GSMaP (GSMaP-Gauge, GSMaP-MVK, GSMaP-NRT, GSMaP-Gauge-NRT, and GSMaP-NOW)
SPPs against ground precipitation observations; to compare the full sets of IMERG and GSMaP SPPs,
including the near-real, real-, and post-real-time versions, at multiple temporal and spatial scales.

The findings of this study are expected to provide SPP users with useful guidelines on the choices
of the latest GPM-era SPPs for hydrometeorological applications in YRSR and promote the SPP studies
to refine the IMERG and GSMaP algorithms in future versions.

2. Study Area and Data

2.1. Study Area

This study selected the YRSR as the research area. YRSR is located in the northeast of
the Qinghai–Tibet Plateau, China within the latitude belt of 32.1◦–36.8◦ N and longitude belt of
95.8◦–103.5◦ E (Figure 1). YRSR covers a drainage area of 121,972 km2, accounting for 15% of the
total area of the Yellow River basin and contributes approximately 35% of the total water yield of the
basin [43]. Consequently, YRSR plays an important role in water supply for the entire Yellow River
basin. The altitude of the region ranges from 2677 to 6253 m above sea level, with a distinctively
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decreasing trend from west to east (Figure 1). Grassland, lake, river, and glacier are the main land
cover types in YRSR, among which grassland accounts for 80%. This region is dominated by typical
Qinghai–Tibet Plateau climate system with wet and cool summer and dry and cold winter. The annual
mean precipitation is 530 mm, and precipitation is mainly concentrated from June to September,
accounting for 75–90% of the total precipitation [44]. Snowfall mainly occurs from November to March.
YRSR is the most important water source area and ecological conservation area in the Yellow River basin.
Thus, it is necessary to acquire accurate precipitation datasets for hydrological and ecological studies
and for sustainable water resource management in this area. However, due to the harsh environment,
the existing rain-gauge network managed by the Chinese Meteorological Administration (CMA) is very
sparse with a density of one station per 1◦ × 1◦ grid (Figure 1), which hinders the accurate hydrological
prediction and rational water resource management and operation [36]. Therefore, the quality of
SPPs in YRSR should be evaluated to provide an alternative data source for hydrometeorological and
ecological applications.
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Figure 1. Location of the study area.

2.2. Ground Precipitation Data

In this study, the hourly precipitation records at 13 weather stations from 1 January 2014 to
31 December 2018 were obtained from CMA, and a strict data check was carried out by CMA in terms
of internal and spatial consistency and extreme values [45]. Among the 13 weather stations, the Dari
and Maduo stations were included in the Global Precipitation Climatology Center (GPCC) gridded
gauge-analysis precipitation dataset [46].

2.3. Satellite Precipitation Products

This study evaluated eight GPM-era SPPs (Table 1), which are described briefly below.

Table 1. Brief information of the eight satellite-based precipitation products (SPPs) in this study.

Products Resolution Latency Time Period

IMERG-E 0.1◦, 0.5 h 4 h 1 June 2014 to 31
December, 2018

IMERG-L 0.1◦, 0.5 h 14 h 1 June 2014 to 31
December, 2018

IMERG-F 0.1◦, 0.5 h 3.5 months 1 January 2014 to 31
December, 2018



Water 2020, 12, 1006 5 of 23

Table 1. Cont.

Products Resolution Latency Time Period

GSMaP-NOW 0.1◦, 0.5 h Real time 29 March 2017 to 31
December, 2018

GSMaP-NRT 0.1◦, 1 h 4 h 17 January 2017 to 31
December, 2018

GSMaP-Gauge-NRT 0.1◦, 1 h 4 h 17 January 2017 to 31
December, 2018

GSMaP-MVK 0.1◦, 1 h 3 days 1 March 2014 to 31
December, 2018

GSMaP-Gauge 0.1◦, 1 h 3 days 1 March 2014 to 31
December, 2018

2.3.1. IMERG Products

IMERG was first released in March 2014, and the latest IMERG V06A products have been provided
by NASA in March 2019. The current IMERG SPPs are available in 0.1◦ × 0.1◦ spatial resolution
and half-hourly temporal resolution between the 60◦ N–S latitude band. Considering the level 3
precipitation estimation algorithm of GPM, IMERG is intended to intercalibrate, merge, and interpolate
multiple satellite microwave precipitation estimates over the entire globe. The IMERG system provides
three products with different latencies. The IMERG system is ran twice in near-real-time to provide
IMERG-E and IMERG-L calibrated with climatological coefficients varying by month and location with
4 and 14 h latencies, respectively. IMERG combines the GPCC monthly gauge-analysis precipitation
dataset, providing IMERG-F with a latency of 3.5 months [47]. Considering that the ground precipitation
data are in hourly time intervals, these IMERG products were aggregated to hourly intervals in this
study. The IMERG-E and IMERG-L data from 1 June 2014 to 31 December 2018 and IMERG-F data
from 1 January 2014 to 31 December 2018 were downloaded from the Precipitation Measurement
Missions website (http://pmm.nasa.gov/data-access/downloads/gpm).

2.3.2. GSMaP Products

GSMaP is a blended microware-IR precipitation product of the GPM mission, and the latest GSMaP
version 7 (V7) products were released in January 2017. In this study, four GSMaP V7 products were
evaluated: GSMaP-Gauge, GSMaP-MVK, GSMaP-NRT, and GSMaP-Gauge-NRT. The GSMaP-NOW
SPP was also evaluated in this study, and it was produced using the GSMaP V06 algorithm. Similar
to IMERG products, these GSMaP SPPs are available in near-real-time versions (GSMaP-NRT and
GSMaP-Gauge-NRT) and post-real-time versions (GSMaP-Gauge and GSMaP-MVK). GSMaP-NRT
uses the JAXA Global Rainfall Watch system, which combines available microwave imagers and
sounders to retrieve rain rate with a 4 h latency. GSMaP-MVK is a reanalysis version of global rainfall
map in GSMaP-NRT, which refines precipitation propagation forward and backward and employs
PMW and sounders with a latency of 3 days. On the basis of PMW and IR, GSMaP-Gauge reduces
the total retrieval errors by using the CPC unified gauge-based analysis of global daily precipitation
dataset and features a latency of 3 days. GSMaP-gauge-NRT requires no direct gauge measurement
but uses the error parameters derived from GSMaP-Gauge to adjust the GSMaP-NRT precipitation
estimates with a 4 h latency. Moreover, GSMaP-NOW is the real-time version of GSMaP project.
This version uses PMW observations and applies a 0.5 h forward extrapolation via cloud motion vector
from the geostationary satellite. All these GSMaP SPPs are in 1 h interval, except for GSMaP-NOW
with a temporal resolution of 30 min. To unify the temporal scale for SPP evaluation, we converted
GSMaP-NOW into 1 h intervals. In this study, GSMaP-Gauge and GSMaP-MVK were evaluated
from 1 March 2014 to 31 December 2018. Meanwhile, GSMaP-NRT and GSMaP-Gauge-NRT were
assessed from 17 January 2017 to 31 December 2018. The evaluation period of GSMaP-NOW was from
29 March 2017 to 31 December 2018. All these data were obtained from JAXA Global Watch website
(https://sharaku.eorc.jaxa.jp/GSMaP/).

http://pmm.nasa.gov/data-access/downloads/gpm
https://sharaku.eorc.jaxa.jp/GSMaP/
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3. Methodology

In this study, the IMERG and GSMaP precipitation estimates at the grid boxes, where the
rain gauges are located, were statistically compared with the corresponding ground precipitation
observations. Considering that the local ground rain gauges could only measure precipitation above
0.1 mm/h, this study defined 0.1 mm/h as the threshold to distinguish the precipitation and no-rain
events. Thus, satellite-derived precipitation below 0.1 mm/h was set to zero to eliminate the effect of
drizzles. We describe the statistical method used in this study below.

3.1. Statistical Metrics

Nine statistical metrics were selected to evaluate the quality of the eight SPPs versus gauge-based
precipitation at different temporal scales (hourly, daily, monthly, and seasonal scales) (Table 2).
These metrics could be generally divided into four categories. The first statistical metric category,
that is, the Pearson correlation coefficient (CC), describes the correlation between SPP estimates and
observed ground precipitation data. The second category, including mean error (ME), mean absolute
error (MAE), root-mean-squared error (RMSE), and relative bias (BIAS), describes the deviation of
SPPs from ground precipitation data. ME estimates the average precipitation error, but the positive
and negative errors could partially offset. Accordingly, MAE was selected as a supplementary
index. RMSE measures the average absolute deviation between SPP estimates and observed values.
BIAS represents the systematic BIAS of the SPP estimates. The third category measures the precipitation
detection capability of SPPs; it includes probability of detection (POD), false alarm ratio (FAR), and
critical success index (CSI). POD describes the fraction of precipitation events that are correctly
detected by satellites among all the real precipitation events. FAR denotes the proportion of the unreal
precipitation events among all the precipitation events identified by the satellites. CSI combines the
attributes of POD and FAR and measures the overall proportion of all precipitation events that are
correctly detected by the satellites.

To analyze the error distribution characteristics of SPPs, we used the coefficient of skewness (SK)
to measure the asymmetry of precipitation error distribution. If the SPP-based precipitation errors are
symmetrically distributed, then SK is equal to zero. When the value of SK is positive (or negative), the
SPP-based precipitation errors are positively (or negatively) skewed. The larger the value of SK, the
greater the degree of deviation.

Table 2. List of the statistical metrics used in this study.

Categories Statistic Metrics Equations Perfect Value

1 Pearson correlation coefficient (CC) CC =
∑n

i=1(Gi−G)(Si−S)√∑n
i=1(Gi−G)

2
√∑n

i=1(Si−S)
2 1

2

Mean error (ME) ME = 1
n

n∑
i=1

(Si −Gi) 0

Mean absolute error (MAE) MAE = 1
n

n∑
i=1
|Si −Gi| 0

Root-mean-squared error (RMSE) RMSE =

√∑n
i=1(Si−Gi)

2

n
0

Relative BIAS (BIAS) BIAS =
∑n

i=1(Si−Gi)∑n
i=1 Gi

× 100% 0

3
Probability of detection (POD) POD = H

H+M 1
False alarm ratio (FAR) FAR = F

H+F 0
Critical success index (CSI) CSI = H

H+M+F 1

4 Coefficient of skewness (SK) SK =
3(E−Mo)
σ

0

Notation: n, sample size; Gi, gauge-based precipitation; G, mean value of the gauge-based precipitation; Si represents
satellite precipitation; S, mean value of satellite precipitation; H, the number of precipitation events that are correctly
detected by the satellites; M, the number of precipitation events that satellites failed to detect; F, the number of false
detection; E, mean error of satellite precipitation estimates; Mo, median error of satellite precipitation estimates; and
σ, standard deviation of errors from SPPs.
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3.2. Confusion Matrix for Daily Precipitation Evaluation

A confusion matrix was adopted as a supplementary evaluation method to further investigate the
error characteristics and detection capability of SPPs. Confusion matrix, also known as matching matrix,
has been widely applied in machine learning, particularly in statistical classifications [48]. Confusion
matrix is a specific table used to describe the performance of test data to match true values [49]. In this
study, the confusion matrix was built to evaluate how the satellites capture precipitation occurrence
for each daily precipitation amount class. The confusion matrix summarizes the capability of SPPs
to reproduce a given observed precipitation [50]. The values in each column in the confusion matrix
present the frequency distribution of SPP-based precipitation amount within each gauge-based daily
precipitation amount class. Subsequently, the values of each column add up to 1. Ideally, the matrix
should be antidiagonal with a value of 1 for the matrix elements along the antidiagonal line and the
value of 0 for the remaining elements.

4. Results

4.1. Statistical Evaluation of IMERG SPPs

Considering that the available IMERG-E, IMERG-L, and IMERG-F SPPs have different time
periods, this study selected overlapping time periods (1 June 2014 to 31 December 2018) as the
evaluation period for IMERG SPPs, and the evaluation was conducted in terms of statistical indices at
multiple temporal scales, precipitation error distribution, and precipitation frequency distribution.

4.1.1. Statistical Indices at Multiple Temporal Scales

The IMERG-E, IMERG-L, and IMERG-F precipitation estimates at the grid cells, where the 13 rain
gauges are located, were statistically evaluated against the ground precipitation observations from
1 June 2014 to 31 December 2018. Table 3 summarizes the statistical metrics at hourly, daily, monthly,
and seasonal scales. As for correlation between ground precipitation measurements and SPPs, CCs are
statistically significant for all SPPs at all temporal scales (p-value < 0.0001) (Table 3). At all temporal
scales, the near-real-time products (IMERG-E and IMERG-L) obtained similar CC values, which were
slightly lower than those of IMERG-F. In addition, as the temporal scale decreases from seasonal
intervals to hourly time steps, the CC values drop sharply, indicating that IMERG SPPs are poor at
capturing precipitation dynamics at a fine temporal scale in YRSR. This finding is consistent with
the results of Yuan et al. [46]. The main reason is that, owing to the SPP algorithm itself, the SPP
estimates at short time intervals usually contain considerable errors, and the aggregation of SPP-based
precipitation estimates from finer to coarser temporal resolutions might partially offset the precipitation
errors in shorter time intervals, leading to the increased CCs in longer time steps. For ME, IMERG-E
and IMERG-L evidently underestimated precipitation, and IMERG-F showed a slight overestimation.
Notably, IMERG-F featured a higher MAE (0.111 and 1.606 mm) than IMERG-E (0.094 and 1.487 mm)
and IMERG-L (0.093 and 1.499 mm) at both hourly and daily scales. These phenomena indicate
that the positive errors could partially offset the negative errors. At monthly and seasonal scales,
the MAEs of IMERG-E and IMERG-L were almost twice as much as those of IMERG-F, suggesting
that the aforementioned phenomena also occur at monthly and seasonal scales. Moreover, although
IMERG-F generally outperformed IMERG-E and IMERG-L, a considerable margin of error was still
observed. Mathematically, MAE is equivalent to the L1 norm, RMSE is equivalent to the L2 norm, and
RMSE is more sensitive to outliers than MAE. Table 3 demonstrates that IMERG-F achieved slightly
higher RMSE values than IMERG-E and IMERG-L at both hourly and daily time scales and presented
considerably lower RMSE values than IMERG-E and IMERG-L at both monthly and seasonal scales,
similar to the situation of MAE. This finding indicates that IMERG SPPs contain several outliers.
Regarding BIAS, IMERG-E and IMERG-L substantially underestimated precipitation by 33.17% and
34.45%, respectively, whereas IMERG-F achieved a substantially lower systematic BIAS (2.04%) owing
to the gauge-based adjustment by using the GPCC monthly gridded gauge-analysis precipitation
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dataset. In terms of the capability of SPPs in detecting precipitation events, the three IMERG SPPs
performed similarly, with PODs and CSIs higher than 0.69 and 0.53, respectively, and FARs lower than
0.32. Overall, the post-real-time IMERG-F outperformed the near-real-time IMERG-E and IMERG-F at
all time scales.

Table 3. Summary of statistical metrics of precipitation estimates from integrated multisatellite retrievals
for Global Precipitation Measurement (IMERG) SPPs at hourly, daily, monthly, and seasonal scales
from 1 June 2014 to 31 December 2018.

Time Scale SPPs CC ME
(mm)

MAE
(mm)

RMSE
(mm)

BIAS
(%) POD FAR CSI

Hourly
IMERG-E 0.24 −0.024 0.093 0.55 −33.17 0.69 0.27 0.55
IMERG-L 0.22 −0.025 0.094 0.56 −34.45 0.69 0.27 0.55
IMERG-F 0.24 0.001 0.111 0.60 2.04 0.71 0.32 0.53

Daily
IMERG-E 0.53 −0.558 1.499 3.93 −33.17 0.77 0.25 0.61
IMERG-L 0.52 −0.581 1.487 4.09 −34.45 0.74 0.22 0.61
IMERG-F 0.60 0.044 1.606 4.12 2.04 0.80 0.26 0.63

Monthly
IMERG-E 0.82 −16.744 23.306 33.76 −33.17 - - -
IMERG-L 0.82 −17.414 23.512 34.39 −34.45 - - -
IMERG-F 0.95 1.449 10.289 15.83 2.04 - - -

Seasonal
IMERG-E 0.88 −50.716 55.521 75.41 −33.17 - - -
IMERG-L 0.88 −52.745 57.422 77.03 −34.45 - - -
IMERG-F 0.97 4.529 21.069 30.12 2.04 - - -

Note: The sample sizes of each SPP dataset at hourly, daily, monthly, and seasonal scales are 522,600, 21,775, 702,
and 234, respectively, and all the CCs in the table are statistically significant with p-values less than 0.0001.

4.1.2. Precipitation Error Distribution

The histograms of satellite precipitation errors were plotted to further investigate the characteristics
of IMERG error distribution at different temporal scales (Figure 2). An error interval of 5 mm was
defined to plot the hourly and daily precipitation error histograms, and an interval of 10 mm was set for
monthly and seasonal histograms. Figure 2a demonstrates that the errors of IMERG SPPs are mainly
concentrated between −5 and 5 mm at the hourly scale. The analysis of statistical metrics (Table 3)
indicates that the positive errors of IMERG-F could partially offset its negative errors. Figure 2a
illustrates that the errors of IMERG-F are symmetrically distributed with SK of 0.02 (Table 4). However,
the errors of IMERG-E and IMERG-L showed a negative deviation with negative SK values (−0.26 and
−0.27, respectively; Table 4). The daily histograms of IMERG-E and IMERG-L errors mainly showed
an evident negative skew (Figure 2b), indicating a significant precipitation underestimation. Notably,
IMERG-E and IMERG-L featured larger outliers that are above 50 mm or below −50 mm (Figure 2a,b)
than those of IMERG-F. This finding implies that the near-real-time versions of IMERG SPPs still
presented substantial uncertainties. For monthly error distribution, IMERG-E and IMERG-L exhibited
visibly higher magnitudes of precipitation underestimation than IMERG-F (Figure 2c). The IMERG-F
errors were mainly concentrated in the error range of −50 to 70 mm with a relatively low SK value
(0.28). By contrast, IMERG-E and IMERG-L had SK values of −1.62 and −1.78, respectively (Table 4).
In addition, the monthly IMERG-E and IMERG-L errors were mostly concentrated between −90 and
−20 mm, demonstrating a considerable systematic underestimation. A similar finding was obtained
in the seasonal error histogram (Figure 2d). In general, IMERG-E and IMERG-L underestimated
precipitation at all evaluated scales, whereas the errors of IMERG-F were symmetrically distributed.
At monthly and seasonal scales, IMERG-F outperformed IMERG-E and IMERG-L in terms of the
magnitude and distribution of errors.
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Figure 2. Distribution of precipitation errors from IMERG SPPs at (a) hourly, (b) daily, (c) monthly, and
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Table 4. SK of precipitation errors from IMERG SPPs at hourly, daily, monthly, and seasonal scales
from 1 June 2014 to 31 December 2018.

Time Scales SPPs SK

Hourly
IMERG-E −0.26
IMERG-L −0.27
IMERG-F 0.02

Daily
IMERG-E −0.68
IMERG-L −0.70
IMERG-F −0.10

Monthly
IMERG-E −1.62
IMERG-L −1.78
IMERG-F 0.28

Seasonal
IMERG-E −1.56
IMERG-L −1.50
IMERG-F 0.46

4.1.3. Precipitation Frequency Distribution

This study compared the hourly and daily IMERG-SPP precipitation frequency distribution
with the ground precipitation observations. Figure 3a shows that over 92% of hourly gauge-based
precipitation records were under 0.1 mm. IMERG-E and IMERG-L resulted in slight overestimations of
0.9% and 0.8%, respectively, and IMERG-F resulted in a mild underestimation of 0.7%. For hourly
precipitation ranging from 0.1 to 0.2 mm, all IMERG SPPs resulted in an evident underestimation.
In addition, all IMERG SPPs overestimated the occurrence frequency of hourly precipitation between
0.2 and 0.5 mm, and IMERG-F presented the highest overestimation. In general, the three IMERG SPPs
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captured the frequency distribution pattern of the gauge-based precipitation for hourly precipitation
higher than 0.5 mm despite certain deviations at different precipitation intensity levels. IMERG-E
and IMERG-L presented a remarkable underestimation for hourly precipitation over 0.5 mm, and
IMERG-F approximated the frequency distribution of the gauge observations. This finding indicates
that IMERG-F possesses a better capability over IMERG-E and IMERG-F in detecting moderate and
heavy precipitation events.

For the frequency of daily precipitation under 0.1 mm, IMERG-E and IMERG-F presented
underestimations of 1.0% and 3.7%, respectively, whereas IMERG-L overestimated this frequency
by 2.2% (Figure 3b). All IMERG SPPs overestimated the frequency of daily precipitation between
0.1 and 1 mm, and IMERG-E presented the highest overestimation. For the total frequency of daily
precipitation under 1 mm, IMERG-F approximated that of the gauge value, whereas IMERG-E and
IMERG-L resulted in overestimations of 6.1% and 7.2%, respectively. This finding indicates that
IMERG-F featured the best detection capability for the total frequency for precipitation under 1 mm,
but a certain deviation remained in the specific distribution. Further improvements are needed
to distinguish between no-rain and light-rain events for IMERG SPPs. For the frequency of daily
precipitation over 1 mm, IMERG-F performs more closely to the gauge observations, whereas IMERG-E
and IMERG-L showed a slight overestimation for daily precipitation between 1 and 2 mm and an
underestimation for daily precipitation over 2 mm.
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4.2. Statistical Evaluation of GSMaP SPPs

Considering the different time periods of the released GSMaP-Gauge, GSMaP-MVK, GSMaP-NRT,
GSMaP-Gauge-NRT, and GSMaP-NOW SPP datasets, an overlapped time period (29 March 2017 to
31 December 2018) was selected as the evaluation period for GSMaP SPPs.

4.2.1. Statistical Indices at Different Temporal Scales

Table 5 shows that CCs are statistically significant for all SPPs at all temporal scales
(p-value < 0.0001). GSMaP-Gauge achieved the highest CC at all temporal scales (0.31−0.96), whereas
GSMaP-NRT demonstrated the lowest correlation with the gauge-based precipitation at hourly and
daily scales (CC = 0.16, 0.46, respectively). GSMaP-NOW presented a higher correlation with the
ground observations (CC = 0.26, 0.53, respectively) than GSMaP-NRT at hourly and daily scales.
The lowest CCs at monthly and seasonal scales reached 0.75 and 0.78, respectively. Similar to IMERG
SPPs, all GSMaP SPPs demonstrated higher CC values as temporal scale increases. For ME, all GSMaP
SPPs exhibited a precipitation overestimation with various magnitudes, except for GSMaP-NOW with
an evident underestimation. GSMaP-Gauge presented the lowest ME, followed by GSMaP-Gauge-NRT,
whereas GSMaP-MVK obtained the highest value. Notably, the positive errors still partially offset the
negative ones. For instance, at the daily scale, GSMaP-MVK featured a larger ME (1.178 mm) than
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GSMaP-NRT (0.968 mm), whereas GSMaP-NRT exhibited a larger MAE (2.702 mm) than GSMaP-MVK
(2.642 mm). In terms of RMSE, GSMaP-gauge showed the lowest precipitation errors at all time scales,
and GSMaP-NRT featured the highest. For BIAS, GSMaP-gauge manifested the lowest systematic
errors (BIAS = 2.88%) due to the precipitation adjustment by using the CPC precipitation dataset.
GSMaP-Gauge-NRT mildly overestimated precipitation by 11.24%. GSMaP-MVK and GSMaP-NRT
resulted in significant overestimations of 58.77% and 48.29%, respectively. By contrast, GSMaP-NOW
considerably underestimated precipitation by 23.14%. In terms of the contingency of SPPs, GSMaP
SPPs demonstrated poor performance at the hourly scale but showed significant improvement at the
daily scale. GSMaP-Gauge obtained the highest POD but with the highest FAR at the hourly scale,
indicating that GSMaP-Gauge over-detected the occurrence of precipitation events. Furthermore,
GSMaP-Gauge obtained the highest CSI at the daily scale (0.68) among all GSMaP SPPs, whereas
GSMaP-NOW provided the lowest value for the daytime precipitation estimates (0.50). In general, for
the post-real-time SPPs, GSMaP-Gauge performed better than other GSMaP SPPs in terms of various
statistical metrics, except for FAR at the hourly scale. The near-real time SPP, GSMaP-Gauge-NRT,
demonstrated better performance than GSMaP-NRT.

Table 5. Summary of statistical metrics of precipitation estimates from global satellite mapping of
precipitation (GSMaP) SPPs at hourly, daily, monthly, and seasonal scales from 29 March 2017 to 31
December 2018.

Time
Scales SPPs CC ME

(mm)
MAE
(mm)

RMSE
(mm)

BIAS
(%) POD FAR CSI

Hourly

GSMaP-NOW 0.26 −0.019 0.115 0.58 −23.14 0.25 0.62 0.17
GSMaP-NRT 0.16 0.040 0.171 1.25 48.29 0.23 0.64 0.16

GSMaP-Gauge-NRT 0.21 0.009 0.143 0.81 11.24 0.24 0.67 0.16
GSMaP-MVK 0.19 0.049 0.175 0.98 58.77 0.29 0.67 0.18

GSMaP-Gauge 0.31 0.002 0.125 0.54 2.88 0.53 0.71 0.23

Daily

GSMaP-NOW 0.53 −0.464 1.895 4.37 −23.14 0.59 0.24 0.50
GSMaP-NRT 0.46 0.968 2.702 8.63 48.29 0.67 0.25 0.55

GSMaP-Gauge-NRT 0.54 0.225 2.151 5.67 11.24 0.67 0.24 0.55
GSMaP-MVK 0.54 1.178 2.642 6.84 58.77 0.78 0.28 0.60

GSMaP-Gauge 0.73 0.058 1.321 3.19 2.88 0.82 0.19 0.68

Monthly

GSMaP-NOW 0.75 −14.480 27.866 42.33 −23.14 - - -
GSMaP-NRT 0.78 29.425 41.294 67.99 48.29 - - -

GSMaP-Gauge-NRT 0.84 6.857 26.003 41.58 11.24 - - -
GSMaP-MVK 0.79 35.635 43.343 64.03 58.77 - - -

GSMaP-Gauge 0.92 1.861 12.816 22.17 2.88 - - -

Seasonal

GSMaP-NOW 0.78 −43.440 27.866 94.68 −23.14 - - -
GSMaP-NRT 0.85 88.276 41.294 142.32 48.29 - - -

GSMaP-Gauge-NRT 0.89 20.571 26.003 78.20 11.24 - - -
GSMaP-MVK 0.87 106.906 43.343 141.50 58.77 - - -

GSMaP-Gauge 0.96 5.584 25.414 38.75 2.88 - - -

Note: The sample sizes of each SPP dataset at hourly, daily, monthly, and seasonal scales are 200,616, 8359, 273, and
91, respectively, and all the CCs in the table are statistically significant with p-values less than 0.0001.

4.2.2. Precipitation Error Distribution

Figure 4 demonstrates the histograms of GSMaP precipitation errors at different temporal scales.
The precipitation error intervals were defined as 5 mm for the hourly scale, 10 mm for the daily
scale, and 20 mm for the monthly and seasonal scales. Figure 4a shows that the precipitation errors
of GSMaP-Gauge and GSMaP-NOW contained several outliers that are mainly concentrated in the
error range of −5 to 5 mm at the hourly scale. The other GSMaP SPPs demonstrated many positive
errors with limited error outliers. In general, GSMaP-Gauge-NRT demonstrated better performance
in almost each error class and possessed fewer error outliers than GSMaP-NRT (Figure 4a,b), mainly
resulting from the precipitation adjustment procedure by using the error adjustment parameters
of GSMaP-Gauge. As for monthly and seasonal precipitation error distributions, GSMaP-Gauge
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and GSMaP-Gauge-NRT exhibited relatively smaller error magnitudes than the other GSMaP SPPs
(Figure 4c,d). Notably, GSMaP-NOW showed several error outliers at monthly and seasonal scales but
almost no outliers at hourly and daily scales. This finding indicates that GSMaP-NOW possesses poor
applicability at monthly and seasonal scales. GSMaP-MVK and GSMaP-NRT showed a significant
precipitation overestimation with positively skewed histograms and larger SK values at monthly and
seasonal scales (Table 6). By contrast, GSMaP-Gauge and GSMaP-Gauge-NRT presented a symmetric
error distribution with smaller SK values (Figure 4c,d, respectively; Table 6).
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Figure 4. Distribution of precipitation errors from GSMaP SPPs at (a) hourly, (b) daily, (c) monthly, and
(d) seasonal scales from 29 March 2017 to 31 December 2018.

Table 6. SK of precipitation errors from GSMaP SPPs at hourly, daily, monthly, and seasonal scales
from 29 March 2017 to 31 December 2018.

Time Scale SPPs SK

Hourly

GSMaP-NOW −0.17
GSMaP-NRT 0.27

GSMaP-Gauge-NRT 0.07
GSMaP-MVK 0.32

GSMaP-Gauge 0.02

Daily

GSMaP-NOW −0.31
GSMaP-NRT 0.49

GSMaP-Gauge-NRT 0.15
GSMaP-MVK 0.68

GSMaP-Gauge 0.05

Monthly

GSMaP-NOW −1.02
GSMaP-NRT 1.64

GSMaP-Gauge-NRT 0.58
GSMaP-MVK 1.93

GSMaP-Gauge 0.23
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Table 6. Cont.

Time Scale SPPs SK

Seasonal

GSMaP-NOW −1.15
GSMaP-NRT 1.60

GSMaP-Gauge-NRT 0.72
GSMaP-MVK 1.82

GSMaP-Gauge 0.30

4.2.3. Precipitation Frequency Distribution

Figure 5a illustrates that at the hourly scale, GSMaP-Gauge underestimated the frequency of
hourly precipitation under 0.1 mm by 7.2%, whereas other GSMaP SPPs overestimated this frequency by
1.1–3.1%. Furthermore, GSMaP-Gauge significantly overestimated hourly precipitation ranging from
0.1 to 1 mm, and the other GSMaP SPPs resulted in underestimation. Notably, the total frequency of all
GSMaP SPPs for the precipitation under 0.5 mm was relatively close. This finding indicates that GSMaP
SPPs, especially GSMaP-Gauge, still need considerable improvement in distinguishing between
no-rain and light-rain events. GSMaP-MVK showed a distinct underestimation for precipitation
under 1 mm and significantly overestimated the occurrence frequency of precipitation over 1 mm.
In comparison with GSMaP-NRT, GSMaP-Gauge-NRT is notably closer to the observed frequency
distribution. GSMaP-NOW underestimated the occurrence frequency of each precipitation class, except
for daily precipitation between 2 and 5 mm.

For the frequency distribution of daily precipitation, all GSMaP SPPs generally captured the pattern
of the observed frequency distribution (Figure 5b). GSMaP-MVK and GSMaP-Gauge resulted in slight
underestimations of 0.5% and 3.5%, respectively. GSMaP-NOW, GSMaP-NRT, and GSMaP-Gauge-NRT
resulted in overestimations of 9.4%, 4.6%, and 5.0%, respectively. GSMaP-NOW presented excessive
overestimation of precipitation under 0.1 mm and consequently underestimated the frequency on
each precipitation class at daily scale, indicating that its detection capability needs to be further
improved. GSMaP-Gauge underestimated the frequency of precipitation under 2 mm and presented
overestimation for precipitation between 2 and 20 mm. GSMaP-MVK performed close to the frequency
distribution of gauge for precipitation between 0.1 and 10 mm but grossly overestimated the occurrence
frequency of heavy rain (≥ 10 mm). GSMaP-Gauge-NRT performed better than GSMaP-NRT at the
daily scale but not as evidently at the hourly scale.

Water 2020, 12, x FOR PEER REVIEW 13 of 23 

 

GSMaP-MVK 1.82 

GSMaP-Gauge 0.30 

4.2.3. Precipitation Frequency Distribution 

Figure 5a illustrates that at the hourly scale, GSMaP-Gauge underestimated the frequency of 

hourly precipitation under 0.1 mm by 7.2%, whereas other GSMaP SPPs overestimated this frequency 

by 1.1%–3.1%. Furthermore, GSMaP-Gauge significantly overestimated hourly precipitation ranging 

from 0.1 to 1 mm, and the other GSMaP SPPs resulted in underestimation. Notably, the total 

frequency of all GSMaP SPPs for the precipitation under 0.5 mm was relatively close. This finding 

indicates that GSMaP SPPs, especially GSMaP-Gauge, still need considerable improvement in 

distinguishing between no-rain and light-rain events. GSMaP-MVK showed a distinct 

underestimation for precipitation under 1 mm and significantly overestimated the occurrence 

frequency of precipitation over 1 mm. In comparison with GSMaP-NRT, GSMaP-Gauge-NRT is 

notably closer to the observed frequency distribution. GSMaP-NOW underestimated the occurrence 

frequency of each precipitation class, except for daily precipitation between 2 and 5 mm.  

For the frequency distribution of daily precipitation, all GSMaP SPPs generally captured the 

pattern of the observed frequency distribution (Figure 5b). GSMaP-MVK and GSMaP-Gauge resulted 

in slight underestimations of 0.5% and 3.5%, respectively. GSMaP-NOW, GSMaP-NRT, and GSMaP-

Gauge-NRT resulted in overestimations of 9.4%, 4.6%, and 5.0%, respectively. GSMaP-NOW 

presented excessive overestimation of precipitation under 0.1 mm and consequently underestimated 

the frequency on each precipitation class at daily scale, indicating that its detection capability needs 

to be further improved. GSMaP-Gauge underestimated the frequency of precipitation under 2 mm 

and presented overestimation for precipitation between 2 and 20 mm. GSMaP-MVK performed close 

to the frequency distribution of gauge for precipitation between 0.1 and 10 mm but grossly 

overestimated the occurrence frequency of heavy rain (≥ 10 mm). GSMaP-Gauge-NRT performed 

better than GSMaP-NRT at the daily scale but not as evidently at the hourly scale. 

 

Figure 5. Comparison of the frequency distribution of the GSMaP precipitation estimates with those 

of the ground observations from 29 March 2017 to 31 December 2018: (a) hourly and (b) daily time 

scales. 

4.3. IMERG SPPs Versus GSMaP SPPs 

To evaluate and compare the quality of IMERG and GSMaP SPPs, we further analyzed the 

temporal variation of the SPP-based precipitation estimates and the spatial pattern of the statistical 

metrics. In addition, the confusion matrix method was used to investigate how well the IMERG and 

GSMaP SPPs captured precipitation events at different levels. The common time slot of all SPPs (29 

March 2017 to 31 December 2018) was selected as the evaluation time period. To facilitate rational 

assessment, we divided eight GSMaP and IMERG SPPs into two groups, namely, the real-time and 

near-real-time group, which included IMERG-E, IMERG-L, GSMaP-NOW, GSMaP-NRT, and 

GSMaP-Gauge-NRT, and the post-real-time group, which consisted of IMERG-F, GSMaP-Gauge, and 

GSMaP-MVK.  

Figure 5. Comparison of the frequency distribution of the GSMaP precipitation estimates with those of
the ground observations from 29 March 2017 to 31 December 2018: (a) hourly and (b) daily time scales.

4.3. IMERG SPPs Versus GSMaP SPPs

To evaluate and compare the quality of IMERG and GSMaP SPPs, we further analyzed the temporal
variation of the SPP-based precipitation estimates and the spatial pattern of the statistical metrics.
In addition, the confusion matrix method was used to investigate how well the IMERG and GSMaP
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SPPs captured precipitation events at different levels. The common time slot of all SPPs (29 March 2017
to 31 December 2018) was selected as the evaluation time period. To facilitate rational assessment,
we divided eight GSMaP and IMERG SPPs into two groups, namely, the real-time and near-real-time
group, which included IMERG-E, IMERG-L, GSMaP-NOW, GSMaP-NRT, and GSMaP-Gauge-NRT,
and the post-real-time group, which consisted of IMERG-F, GSMaP-Gauge, and GSMaP-MVK.

4.3.1. Temporal Variation of SPP-based Precipitation Estimates

The diurnal cycles of the SPP-based precipitation estimates averaged at the locations of 13 rain
gauges were analyzed in this study. Figure 6a shows that all real-time and near-real-time SPPs
generally captured the diurnal cycle of precipitation similar to that in ground rain gauges, with
low precipitation intensities in late morning and early afternoon and high precipitation rates for
the rest of the day. Both IMERG-E and IMERG-L demonstrated similar patterns, with a remarkable
precipitation underestimation in the entire diurnal cycle (Figure 6a). GSMaP-NOW presented a slight
overestimation from 23:00 to 03:00 and resulted in a considerable underestimation for the remaining
time of the day. The diurnal cycles of GSMaP-Gauge-NRT- and GSMaP-NRT-based precipitation
exhibited a similar pattern with a significant precipitation overestimation from 14:00 to 02:00, and
GSMaP-NRT provided higher precipitation estimates than GSMaP-Gauge-NRT. For post-real-time
SPPs, GSMaP-MVK overestimated precipitation in most of the diurnal cycle with the magnitude
of over 60% from 11:00 to 23:00 (Figure 6b). By contrast, GSMaP-Gauge and IMERG-F reproduced
the diurnal cycle of precipitation, although both products slightly overestimated precipitation from
noon to midnight and resulted in a mild underestimation for the rest of the day. In general, the
precipitation diurnal cycle derived from GSMaP-Gauge was closer to the observations compared with
that of IMERG-F.
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Figure 6. Comparison of diurnal cycles of the SPP-based precipitation estimates averaged at the
locations of 13 rain gauges with the ground precipitation observations: (a) real-time and near-real-time
SPPs and (b) post-real-time SPPs.

Figure 7 provides comparison of the SPP-based mean monthly precipitation with the ground
observations. The monthly precipitation patterns from all SPPs were similar to the observations, with
abundant precipitation in May to September and low precipitation in October to April. In terms of
the real-time and near-real-time SPPs, IMERG-E and IMERG-L demonstrated similar precipitation
features throughout the year and presented a remarkable precipitation underestimation, particularly
in the rainy season (Figure 7a). GSMaP-NOW performed well in the dry season but demonstrated
a considerable underestimation in rainy season (Figure 7a). GSMaP-NRT overestimated monthly
precipitation throughout the year, and GSMaP-Gauge-NRT demonstrated good performance, although
a slight precipitation overestimation was observed in July to September (Figure 7a). For post-real-time



Water 2020, 12, 1006 15 of 23

SPPs, GSMaP-MVK largely overestimated precipitation throughout the year (Figure 7b). GSMaP-Gauge
fitted well with the gauge-based precipitation but exhibited slight deviation in rainy season, showing a
certain uncertainty. By contrast, IMERG-F presented excellent capability in reproducing the annual
cycle compared with other SPPs.
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4.3.2. Spatial Pattern of Statistical Metrics

To investigate the accuracy of all the SPPs in regions with different topography, we computed the
BIAS and CC at the locations of the 13 weather stations at the hourly scale. As shown in Figures 8 and 9,
both statistical metrics demonstrated a distinct spatial pattern. BIAS in the southeastern part of the
basin (the lowlands) was higher than that in northwestern part (the highlands). A similar conclusion
can be drawn from the CC values, in which higher values were observed in the southeastern of the
basin than in the northwestern part.

IMERG-E and IMERG-L presented the same distribution pattern, which showed high
underestimation at all stations (Figure 8a). GSMaP-NOW, as a real-time SPP, demonstrated better
performance than IMERG-E and IMERG-L but still underestimated precipitation at most stations,
except for Ruoergai and Hongyuan stations. GSMaP-NRT notably overestimated the southwestern
part of the basin; the overestimations at Maqu and Ruoergai stations were over 80%, whereas
GSMaP-Gauge-NRT performed well among real- and near-real-time SPPs and maintained the BIAS
within 40%. For post-real-time SPPs, GSMaP-MVK prominently overestimated precipitation in most
stations, whereas IMERG-F and GSMaP-Gauge maintained the margin of BIAS between −20% and
20%, showing low uncertainty. Notably, IMERG-F overestimated precipitation at half of the stations
and underestimated the other half, thus explaining the partial offset in positive and negative errors.

IMERG-E showed better correspondence with gauge-based precipitation in the northwestern
part than IMERG-L (Figure 9a). As a real-time product, GSMaP-NOW presented good performance
in the southeastern part with CC values ranging from 0.27 to 0.37. By contrast, GSMaP-Gauge-NRT
exhibited better correlation of gauge-based precipitation than GSMaP-NRT, which is consistent with
the above statistical results. In addition, among all post-real-time SPPs, GSMaP-MVK showed the
poorest correspondence with gauge measurements (Figure 9b). Although IMERG-F and GSMaP-Gauge
behaved similarly in terms of BIAS, GSMaP-Gauge demonstrated good agreement with the gauge-based
precipitation with higher CC on the east side of the basin.

As mentioned in Section 2.2, among the 13 weather stations, only the Maduo and Dari stations
are included in GPCC. Figure 8 shows that at these two stations, IMERG-F demonstrated a relatively
lower systematic deviation from the gauge observations (BIAS = 8.0% and −2.4%, respectively) than
IMERG-E (BIAS = −31.0% and −41.0%, respectively) and IMERG-L (BIAS = −46.0% and −32.0%,
respectively). However, IMERG-F at these two stations presented similar magnitudes of CC (0.13 and



Water 2020, 12, 1006 16 of 23

0.14, respectively) to IMERG-E (0.13 and 0.18, respectively) and IMERG-L (0.10 and 0.17, respectively),
and the CC values of IMERG-F at these GPCC stations are even much lower than those at a few
non-GPCC stations in the central and eastern regions. The reason is that IMERG-F are bias-corrected
using the GPCC precipitation dataset on a monthly basis. This bias-correction procedure is able to
effectively alleviate the systematic errors of IMERG-E and IMERG-F precipitation estimates at the grid
cells where GPCC stations are located but may not improve CC on time steps shorter than 1 month.
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4.3.3. Confusion Matrix

In this study, confusion matrix was selected to measure the capability of SPPs in reproducing
daily gauge-based precipitation at certain levels (Figure 10). The first column of confusion matrix
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can represent the distribution of false precipitation, the bottom row demonstrates the distribution of
missed precipitation, and the rest of the matrix represents hit precipitation. Therefore, a confusion
matrix can be used for SPP error component analysis [31]. In comparison with IMERG-L, IMERG-E
presented a poorer detection capacity for the first class (< 0.1 mm), with better performances for
the other rainfall classes. By contrast, real-time and near-real-time GSMaP SPPs (GSMaP-NOW,
GSMaP-NRT, and GSMaP-Gauge-NRT) showed a relatively higher detection capacity for precipitation
under 0.1 mm and over 10 mm. GSMaP-NOW missed several precipitation events for precipitation
between 0.1 and 5 mm (38%−60%). GSMaP-NRT and GSMaP-Gauge-NRT demonstrated relatively
better detection capability for precipitation between 0.1 and 5 mm than GSMaP-NOW. For post-real-time
SPPs, IMERG-F, GSMaP-MVK, and GSMaP-Gauge presented improved detection capability with low
values in the bottom rows (Figure 10b). IMERG-F featured an inferior performance in detecting daily
precipitation under 0.1 mm with false precipitation mainly between 0.1 and 1 mm at the first column.
By contrast, GSMaP-MVK featured a slightly lower detection rate than GSMaP-Gauge precipitation
under 0.1 mm and overestimated precipitation between 10 and 20 mm. Meanwhile, GSMaP-Gauge
obtained the lowest values at the bottom row, indicating that GSMaP-Gauge achieved a satisfactory
detection capability of precipitation events exactly as the statistical indices (Table 5). Considering the
antidiagonal values of the matrixes, GSMaP-Gauge presented good performance in identifying daily
precipitation events over 2 mm. In general, in terms of the bottom-row values of the matrixes, all eight
SPPs significantly missed the daily precipitation between 0.1 and 5 mm (20%−60%).
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5. Discussion

This study evaluated the performance of the two parallel latest GPM-era SPPs (IMERG and
GSMaP) in comparison with the ground precipitation observations at different temporal scales over
YRSR. In terms of statistical metrics for SPPs (Table 2), the post-real-time IMERG-F and GSMaP-Gauge
generally provided the best performance at different temporal scales among all the evaluated IMERG
and GSMaP SPPs, respectively (Tables 3 and 5). Post-real-time SPPs showed better performance than
their near-time-time versions in several regions [36,50–55]. However, the offset effect of positive and
negative precipitation errors might lead to distorted statistical metrics. Tian et al. [37] decomposed
the total errors into hit bias, missed precipitation, and false precipitation and found many cases in
which the offset effect might result in a small total bias. In this study, the error distribution of all
SPPs (Figures 2 and 4) demonstrated that the gauge-adjusted SPPs (IMERG-F and GSMaP-Gauge)
contained small errors that were concentrated in a relatively unbiased range, which could offset total
bias. Although GPM improved the capability of DPR in detecting light rain (less than 0.5 mm/h), this
study demonstrated that considerable errors in identifying light-rail events remained in all GPM-era
SPPs (Figures 3 and 5). Hence, further work is needed to improve the accuracy of GPM-era SPPs for
light-precipitation-event identification. Notably, the frequency distribution of GSMaP-Gauge (Figure 5)
was notably lower than that of gauge-based precipitation in the first bin (0−0.1 mm), whereas the
frequency distribution was significantly high for the precipitation between 0.1 and 0.5 mm, which is
consistent with the result of Xinjiang [56]. Additionally, Ning et al. [33] observed that IMERG performed
better than GSMaP in light-precipitation detection. These results indicate that the calibration procedure
in GSMaP-Gauge mainly decreased the no-precipitation events and increased light-precipitation events
to a certain degree, thus requiring the attention from algorithm developers.

Precipitation patterns and topography strongly affect the precipitation estimates [57–59].
In this study, GSMaP-Gauge-NRT demonstrated a relatively better performance than other real-
and near-real-time SPPs in reproducing the diurnal and monthly cycles of precipitation. Considering
that only a limited number of studies have focused on GSMaP-Gauge-NRT, more efforts should
be exerted to study GSMaP-Gauge-NRT in different parts of the world. For post-real-time SPPs,
GSMaP-MVK significantly overestimated precipitation in the monthly cycle, supporting the results
reported by [20] and [60]. Interestingly, this study revealed that GSMaP-Gauge outperformed IMERG-F
at the daily scale (Figure 6), whereas IMERG-F performed relatively better than GSMaP-Gauge at
the monthly scale (Figure 7). The main cause may be the correction of IMERG-F by GPCC via gauge
calibration algorithm at the monthly scale, whereas GSMaP-Gauge was calibrated using the CPC global
daily gauge data via the GSMaP-Gauge algorithm. In this context, the temporal scale at which the gauge
adjustment is employed considerably affected the performance of SPPs. Ma et al. [45] noted that local
strong convectional weather and complex terrain seriously affect the satellite precipitation retrieval
and lead to unexpected errors over the Brahmaputra basin. Similarly, this study demonstrated that the
quality of all eight SPPs featured distinctive spatial variabilities. Among all the SPPs, GSMaP-Gauge
showed the highest correlation with the gauge measurements and the lowest BIAS (Figures 8 and 9).
Notably, this study carried out the SPP evaluation by comparing the pixel precipitation values of SPPs
with the point values of rain gauges. Considering the limited number of rain gauges in YRSR, this study
did not analyze in detail the effect of topography on the accuracy of SPPs. Therefore, future work will
focus on collecting precipitation data at more rain gauges and investigating the topographical effect.
Notably, this study adopted confusion matrix as a supplementary evaluation method. The information
found in the confusion matrix could present the distribution of hit, missed, and false precipitation
events. Remarkably, the confusion matrix in this study demonstrated that GSMaP-Gauge performed
relatively better than other SPPs at the daily scale (Figure 10).

In 2017, the GSMaP research group released the real-time GSMaP-Now SPP. To the best of
our knowledge, this study is the earliest attempt to systematically evaluate the performance of
GSMaP-Now. The results show that in YRSR GSMaP-Now demonstrated comparable precipitation
monitoring capabilities to the evaluated near-real-time SPPs and even presented higher accuracy in
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detecting moderate and heavy rain events than IMERG-E and IMERG-L (Figure 10a). This finding
indicates that GSMaP-Now has the potential to be employed for flash flood monitoring and real-time
flood forecasting in YRSR. Future work will entail assessing the feasibility of GSMaP-Now in real-time
flood forecasting. Given that GSMaP-Now provides quasiglobal precipitation estimates with no latency,
we encourage the GSMaP developers and SPP users to carry out the GSMaP-Now evaluation in more
regions and river basins.

Furthermore, SPP merging should be considered to utilize the advantages from available SPPs
as mentioned in [36,39,42,61]. Zhu et al. [62] used two satellite-based precipitation products (3B42V7
and PERSIANN-CDR) and National Centers for Environment Prediction-Climate Forecast System
Reanalysis to merge multisource precipitation estimates and streamflow simulations by using Bayesian
model averaging. They observed that although merging multi–source precipitation products slightly
improved the effect of runoff simulation, merging multisource streamflow simulations generally
improved the performance of streamflow simulation. Chao et al. [63] proposed a satellite and
gauge precipitation merging framework by using geographically weighted regression methods to
merge CMORPH precipitation with station observation information (elevation, slope, aspect, surface
roughness, distance to the coastline, and wind speed) in the Ziwuhe Basin of China. In comparison
with the original CMORPH product, these geographically weighted regression methods significantly
improved the quality of merged data with higher CC and lower RMSE. These merging techniques
could be adopted in YRSR in the future.

6. Conclusions

This study provides a comprehensive evaluation of the latest eight GPM-era GSMaP and IMERG
SPPs in real-time, near-real-time, and post-real-time versions at multiple temporal scales over the YRSR.
First, GSMaP and IMERG SPPs were evaluated using specific statistical metrics. Subsequently,
the real-time and near-real-time SPPs (IMERG-E, IMERG-L, GSMaP-NRT, GSMaP-Gauge-NRT,
and GSMaP-NOW) and post-real-time SPPs (IMERG-F, GSMaP-Gauge, and GSMaP-MVK) were
cross-evaluated. The main conclusions are summarized as follows:

(1) Owing to the gauge-based calibration with the GPCC dataset, IMERG-F generally performed better
than IMERG-E and IMERG-L, presenting considerably lower systematic biases. IMERG-E and
IMERG-L underestimated the occurrences of the no-rain and light-rain events but overestimated
moderate and heavy rain.

(2) Regarding the performance of the three GSMaP SPPs, GSMaP-Gauge outperformed the other
four GSMaP SPPs in all statistical metrics, although numerous false precipitation detections
were incurred at the hourly scale. However, GSMaP-Gauge excessively underestimated the
precipitation under 0.1 mm and overestimated the precipitation ranging from 0.1 to 1 mm.
GSMaP-Gauge-NRT was ranked as the second after GSMaP-Gauge with evident improvement
over GSMaP-NRT. GSMaP-MVK and GSMaP-NRT showed significant overestimations, and
GSMaP-NOW notably underestimated total precipitation.

(3) By comparing the performance of IMERG and GSMaP SPPs, GSMaP-Gauge-NRT presented
better characteristics of the diurnal and monthly cycles most of the time among all real- and
near-real-time SPPs. For post-real-time SPPs, GSMaP-Gauge presented the highest capability for
the quantification of daily precipitation events, whereas IMERG-F resulted in the best precipitation
estimates at the monthly scale. Considering the estimation accuracy of SPPs in complex elevation
and topography, the evaluation metrics (BIAS and CC) at the hourly scale presented distinct spatial
pattern. The BIAS and CC were higher in the southeastern part (the lowlands) of the basin than
in the northwestern part (the highlands). In the application of confusion matrix, GSMaP-Gauge
performed the best and showed the most stable quality results among all post-real-time SPPs,
followed by IMERG-F.
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Considering that IMERG-E and IMERG-L demonstrated similar performances in this study, we
recommend IMERG-E for flood forecasting owing to its short latency. In addition, GSMaP-Gauge
is recommended for daily streamflow simulation and IMERG-F for monthly streamflow simulation.
Considering that GSMaP-Gauge-NRT generally presents the best performance among all near-real-time
SPPs and features a short latency, it can be used for short-term flood forecasting. GSMaP-NOW, which
is among the limited real-time SPPs released to the public, presented better performance than the
other near-real-time and post-real-time SPPs in specific cases. Therefore, GSMaP-NOW shows a great
potential for applications in real-time flood forecasting. Moreover, merging techniques could be used
to improve the performance of GSMaP-NOW combined with the information of station observations
and other SPPs.

Overall, this study potentially provides SPP users with valuable guidelines for the choices
of multiple satellite precipitation products in the YRSR and offers users and researchers a better
understanding of two parallel GPM-era SPPs. In addition, this study proposed an assessment framework
that comprehensively investigates the SPP-based precipitation characteristics in many aspects, such as
distribution of precipitation errors, precipitation frequency distribution, and spatiotemporal features
of SPP estimates. This framework also includes the confusion matrix method that aims to evaluate
how the satellites capture precipitation occurrence for rainfall events at different levels. We anticipate
that this assessment framework will be employed in other basins.
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