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Abstract: Net primary production (NPP) is closely related to the proportion of carbon (C), nitrogen
(N) and phosphorus (P) in the leaf-stem and root of perennial herbs. However, the relationship of
NPP with the C:N:P stoichiometric ratio in above- and below-ground plant tissues remains unknown
under the periodic flooding stresses in the riparian zone ecosystem. In this study, the leaf-stem and
root C, N, P content and biomass of Cynodon dactylon (Linn.) Pers. (C. dactylon) were investigated at the
riparian zone altitudes of 145–155, 155–165, and 165–175 m above sea level (masl) of in a Three Gorges
Reservoir (TGR) tributary–Pengxi River. The results showed that the NPP and biomass of C. dactylon
had a similar decreasing trend with a riparian zone altitudes decrease. The root of C. dactylon showed
relatively lower N and P content, but much higher N and P use efficiency with higher C:N and C:P
ratio than that of a leaf-stem under N limitation conditions. NPP was positively correlated to C:N in
the stem-leaf to root ratio (C:Nstem-leaf/root) and C:P ratio in the root (C:Proot ratio). Hydrological and
C:N:P stoichiometric variables could predict 68% of the NPP variance, and thus could be regarded as
the main predictor of NPP in the riparian zone of the TGR.

Keywords: Three Gorges Dam; perennial herb; N limitation; nutrition use efficiency; hydrological
regime

1. Introduction

The Three Gorges Reservoir (TGR) operates an anti-seasonal water regulation regime for flood
control, agricultural irrigation and electricity generation. The water level rises to the highest altitude
of 175 masl in winter and declines to the lowest altitude of 145 masl during summer, producing
an extensive riparian zone of approximately 349 km2 [1]. Thus, it is believed to be the most fragile
ecological zone along the Yangtze River [2]. Periodic flooding also causes various adverse consequences
for the riparian habitat, such as a lower plant richness and diversity, due to scarce revegetation of
non-annual plants through seed banks [3,4]. Thus, the dominant riparian perennial herbs have to
rapidly recover from its unique root system during the limited growing season [5].

Net primary production (NPP) is closely related to plant nutrition allocation strategy in the above-
and below-ground biomass under environmental stress [6]. A plant can relocate C, N and P between
leaf-stem and root to regulate physiological rhythms and finish its life cycle during a limited growing
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duration [7]. The growth rate hypothesis proposes that NPP increases with higher P, lower C:P and
N:P ratios [8]. Recent observation showed that riparian plants take a quiescent strategy to adjust leaf
C:N:P stoichiometric ratio during growing seasons responding to flood intensity [9]. The highest
biomass of C. malaccensis was associated with high root N:P ratios in subtropical estuarine wetlands [10].
Moreover, plant growth is accompanied by high C:N:P stoichiometry variation in plant tissues at
different physiological periods responding to distinct environmental conditions [11]. Thus, plants may
take a corresponding survival strategy by mediating C, N and P stoichiometry to cope with variable
environmental stresses.

Cynodon dactylon (L.) Pers (C. dactylon) is a widespread perennial herb found in the riparian zone
of TGR, which can survive due to the vitality in dormancy state under periodic submergence [12–14].
Moreover, about 90% of C. dactylon can quickly recover and grow fast from a deep root system
in spring [15]. Many studies have focused on the physiological responses, seedlings, adaptability,
submergence tolerance, and growth restoration of C. dactylon in the riparian zone of the TGR [16,17].
However, the relationship of the NPP with the C:N:P stoichiometric allocation between above- and
below-ground of C. dactylon remains unclear under the effect of periodic changes of hydrological regime.

In this study, the variability of NPP and C:N:P stoichiometric ratios in leaf-stem and roots of
C. dactylon was analyzed by collecting vegetation samples in 18 plots, in the riparian zone of a
TGR tributary. The relationship of flooding time, C:N:P stoichiometric ratio in the leaf-stem, root,
and leaf-stem to root ratio was examined in regulating the variation of NPP. The current study
hypothesizes that (I) NPP declined with the decrease of riparian zone altitudes; (II) C:N ratio in the
leaf-stem to root ratio and C:P ratio in root can be regarded as the main predictors of NPP variation.
Specifically, it aims to answer the following two questions: (I) How NPP varies along with the riparian
zone altitudes under distinct flooding duration? (II) What is the relationship between NPP and C:N:P
stoichiometric ratio in plant tissues?

2. Materials and Methods

2.1. Study Areas

Pengxi River is located between 30◦49′–31◦42′ N, 107◦56′–108◦54′ E in the eastern edge of Sichuan
Basin (Figure 1), and is the largest tributary with a total length of 182 km on the north bank of the TGR
area, China [18]. The riparian zone area is about 48.02 km2 in the Pengxi River, accounting for 15.9% of
the total riparian zone area of TGR, and its slope gradient is <15◦ [19]. The annual average rainfall in
this region is about 1200 mm [20]. The mean humidity was 65.58–95.11%, while the mean temperature
was 22.16–30.52 ◦C on a daily basis in the sampling period in July 2017.

2.2. Sampling

The distribution of C. dactylon on the riparian zone at two hydrological sections of Qukou (QK)
and Shuangjiang (SJ) was investigated in Pengxi River, July 2017 (Figure 1). Three sampling plots
(1 m × 1 m) were randomly established at 10 m-intervals between 145 masl. and 175 masl. The leaf-stem
and root of C. dactylon were collected, bagged separately and brought to the laboratory then oven dried
at 65 ◦C for 48 h, and weighed.
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Figure 1. Sampling sites in the Pengxi River (QK: Qukou; SJ: Shuangjiang). 
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and Shuangjiang (SJ) was investigated in Pengxi River, July 2017 (Figure 1). Three sampling plots (1 
m × 1 m) were randomly established at 10 m-intervals between 145 masl. and 175 masl. The leaf-stem 
and root of C. dactylon were collected, bagged separately and brought to the laboratory then oven 
dried at 65 °C for 48 h, and weighed.  

2.3. Laboratory Analyses 

The C and N content were analyzed in plants on an Elemental Analyzer (Euro Vector EA3000, 
Italy) equipped with Callidus software (EuroVector SpA, Milan, Italy). The total phosphorus (TP) 
was determined in plant samples by the alkali fusion-Mo-Sb anti-spectrophotometric method (HJ 
632-2011) on an ultraviolet–visible (UV/VIS) spectrophotometer (T6 new century, Beijing Puxi 
General Company, Beijing, China).  

2.4. Data Processing 

Water level information was obtained from Changjiang Water Resources Commission 
(http://www.cjh.com.cn/swyb_sssq.html). The submerging time was extracted from hydrological 
data from 2013 to 2018 at Wanzhou Hydrological Station in the Yangtze River by GetData software 
(GetData Graph Digitizer version V2.20) (Figure 2a). Structure equation modeling (SEM) was used to 
assess potential causal relationships of flooding stress, C:N:P stoichiometric ratio and NPP. The 
overall goodness of fitting for the model was tested by chi-square (χ2). The model is satisfying when 
non-significant χ2 test (p > 0.05), χ2/df within 0–2 and low values of χ2, akaike information criterion 
(AIC), and root mean square error of approximation (RMSEA) [21], and indicate that there is an 
acceptable difference between the modeled and observed values. Net primary production was 
determined from plant biomass (W) change over a given time interval [22]. Plant biomass production 
per unit of nitrogen uptake can represent N use efficiency, which was indicated by the C:N ratio in 
plant tissues in this study [23]. All data were tested for normality using the Kolmogorov–Smirnov 
test, and log-transformed non-normal data (e.g., C:P ratio in root). Structure equation modeling (SEM) 
was performed by IBM SPSS Amos 24 (IBM Corp., 2016). 

Figure 1. Sampling sites in the Pengxi River (QK: Qukou; SJ: Shuangjiang).

2.3. Laboratory Analyses

The C and N content were analyzed in plants on an Elemental Analyzer (Euro Vector EA3000,
Italy) equipped with Callidus software (EuroVector SpA, Milan, Italy). The total phosphorus (TP) was
determined in plant samples by the alkali fusion-Mo-Sb anti-spectrophotometric method (HJ 632-2011)
on an ultraviolet–visible (UV/VIS) spectrophotometer (T6 new century, Beijing Puxi General Company,
Beijing, China).

2.4. Data Processing

Water level information was obtained from Changjiang Water Resources Commission (http:
//www.cjh.com.cn/swyb_sssq.html). The submerging time was extracted from hydrological data from
2013 to 2018 at Wanzhou Hydrological Station in the Yangtze River by GetData software (GetData Graph
Digitizer version V2.20) (Figure 2a). Structure equation modeling (SEM) was used to assess potential
causal relationships of flooding stress, C:N:P stoichiometric ratio and NPP. The overall goodness of
fitting for the model was tested by chi-square (χ2). The model is satisfying when non-significant χ2

test (p > 0.05), χ2/df within 0–2 and low values of χ2, akaike information criterion (AIC), and root
mean square error of approximation (RMSEA) [21], and indicate that there is an acceptable difference
between the modeled and observed values. Net primary production was determined from plant
biomass (W) change over a given time interval [22]. Plant biomass production per unit of nitrogen
uptake can represent N use efficiency, which was indicated by the C:N ratio in plant tissues in this
study [23]. All data were tested for normality using the Kolmogorov–Smirnov test, and log-transformed
non-normal data (e.g., C:P ratio in root). Structure equation modeling (SEM) was performed by IBM
SPSS Amos 24 (IBM Corp., 2016).

http://www.cjh.com.cn/swyb_sssq.html
http://www.cjh.com.cn/swyb_sssq.html
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2.5. Statistical Analysis 

One-way analysis of variance (ANOVA) was used to check the differences in C:N:P 
stoichiometric ratio among riparian zone altitudes or plant tissues. Linear regression was used to test 
the relationship between the NPP and C:N:P stoichiometric ratio in leaf-stem, root, and leaf-stem to 
root ratio. All statistical plots and analyses were performed using SigmaPlot 12.5 (Systat Software, 
San Jose, CA, USA) and SPSS 20.0 for Windows (New York: IBM Corp.,), respectively.  

3. Results 

3.1. Flooding Time and Net Primary Production (NPP) 

The water level in the TGR showed that an annual periodic fluctuation rose from the lowest 
water level of 145 masl in June–July to the highest water level of 175 masl in December–January, and 
then slowly descended to the lowest water level in June–July from 2013 to 2018 (Figure 2a). Flow 
regulation made the riparian zones at different altitudes undergoing a distinct drying-rewetting 
process in the TGR. The submerging time was negatively correlated to the riparian zone altitudes, 
which was average 338, 227, and 116 days per year at the altitudes of 145–155, 155–165, and 165–175 
masl, respectively (Figure 2b). 

3.2. C, N, and P in Leaf-Stem and Root 

The biomass and NPP of C. dactylon simultaneously decreased with the decline of the riparian 
zone altitudes (Figure 3). The N and P in the leaf-stem were much higher than that in the root. By 
contrast, the C:N and C:P ratio in the leaf-stem were significantly lower than in the root. No 
significant differences were found in C content or N:P ratio between leaf-stem and root. Meanwhile, 
no significant differences of C, N, C:N, C:P, and P were found in the leaf-stem or root among the three 
altitudes except C:P in leaf-stem (Table 1). Besides, no significant differences in C:N and C:P in the 
leaf-stem to root ratio were found between 145–155 masl and 155–165 masl (Figure 4). 

2013/7  2014/7  2015/7  2016/7  2017/7  2018/7  

W
at

er
 le

ve
l (

m
as

l)

145

150

155

160

165

170

175
Natural floodingArtificial flooding

Riparian zone altitude (masl)

145 150 155 160 165 170 175Su
bm

er
gi

ng
 ti

m
e 

(d
ay

/y
ea

r)

0

60

120

180

240

300

360

2017-2018 
2016-2017 
2015-2016 
2014-2015 
2013-2014 

Hydrologic year

y=1805.7-9.94x  
R2=0.94  p<0.01

(a) (b)

Hydrological year

Figure 2. Water level fluctuation (a) and submerging time (b) from 2013 to 2018. The sampling was
conducted in July 2017.

2.5. Statistical Analysis

One-way analysis of variance (ANOVA) was used to check the differences in C:N:P stoichiometric
ratio among riparian zone altitudes or plant tissues. Linear regression was used to test the relationship
between the NPP and C:N:P stoichiometric ratio in leaf-stem, root, and leaf-stem to root ratio.
All statistical plots and analyses were performed using SigmaPlot 12.5 (Systat Software, San Jose, CA,
USA) and SPSS 20.0 for Windows (IBM Corp., New York, NY, USA), respectively.

3. Results

3.1. Flooding Time and Net Primary Production (NPP)

The water level in the TGR showed that an annual periodic fluctuation rose from the lowest water
level of 145 masl in June–July to the highest water level of 175 masl in December–January, and then
slowly descended to the lowest water level in June–July from 2013 to 2018 (Figure 2a). Flow regulation
made the riparian zones at different altitudes undergoing a distinct drying-rewetting process in the
TGR. The submerging time was negatively correlated to the riparian zone altitudes, which was average
338, 227, and 116 days per year at the altitudes of 145–155, 155–165, and 165–175 masl, respectively
(Figure 2b).

3.2. C, N, and P in Leaf-Stem and Root

The biomass and NPP of C. dactylon simultaneously decreased with the decline of the riparian zone
altitudes (Figure 3). The N and P in the leaf-stem were much higher than that in the root. By contrast,
the C:N and C:P ratio in the leaf-stem were significantly lower than in the root. No significant
differences were found in C content or N:P ratio between leaf-stem and root. Meanwhile, no significant
differences of C, N, C:N, C:P, and P were found in the leaf-stem or root among the three altitudes except
C:P in leaf-stem (Table 1). Besides, no significant differences in C:N and C:P in the leaf-stem to root
ratio were found between 145–155 masl and 155–165 masl (Figure 4).
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Figure 3. Net primary production (NPP) (a) and biomass (b) of C. dactylon among the riparian
zone altitudes.

Table 1. Leaf-stem and root C:N:P stoichiometric ratio among riparian zone altitudes and results from
linear mixed model.

Riparian Zone
Altitude (masl) Tissue Replicate C (%) N (%) P (%) C:N C:P N:P

145–155
leaf-stem 6 39.46 1.77 0.28 22.37 143.93 6.41

root 6 39.71 0.97 0.18 40.67 220.55 5.41

155–165
leaf-stem 6 41.20 1.38 0.23 30.06 187.69 6.30

root 6 43.45 0.82 0.16 53.18 278.87 5.35

165–175
leaf-stem 6 41.35 2.16 0.27 35.16 220.61 7.49

root 6 40.43 0.86 0.17 52.62 311.79 5.33
Results from linear mixed models ANOVA P-values

Main effect
Altitude 0.076 0.424 0.259 0.064 0.008 0.819
Tissue 0.579 0.002 0.000 0.000 0.000 0.100

Interaction effect Altitude × Tissue 0.392 0.495 0.720 0.851 0.945 0.792
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Figure 4. C:N:P stoichiometry in the leaf-stem to root ratio among the riparian zone altitudes. Different
lowercase letters of a, b, c indicate significant differences among riparian zone altitudes at p < 0.05.

3.3. Leaf-Stem and Root C:N:P Stoichiometry with NPP

The C:P ratio in both leaf-stem and root was positively linearly related to the NPP with r = 0.58
(Figure 5(e1)) and r = 0.62 (Figure 5(e2)) at p < 0.05, respectively, while C, N, P, C:N ratio and N:P ratio
in the leaf-stem and root were not correlated to the NPP (Figure 5). Moreover, the NPP was negatively
correlated with Nleaf-stem/root (Figure 5(b3)), while positively correlated to C:Nleaf-stem/root (Figure 5(d3))
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at p < 0.05. No significant correlation of the NPP was found with Cleaf-stem/root, Pleaf/root, C:Pleaf/root and
N:Pleaf/root (p > 0.05) (Figure 5).
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Figure 5. C:N:P stoichiometry with NPP. Leaf-stem: (a1–f1), Root: (a2–f2), leaf-stem/root: (a3–f3).

3.4. Exploring the Indicators of NPP

SEM analysis showed that the C:P ratio in the root (C:Proot) and the proportion of C:N ratio in
leaf-stem and root (C:Nleaf-stem/root) had a direct effect, while submerging stress and the proportion
of N in leaf-stem and root (Nleaf-stem/root) exerted an indirect effect on the NPP. All of these variables
predicted 68% of the variance in the NPP (Figure 6a). Specifically, flooding stress had a direct negative
effect on the C:Proot ratio and C:Nleaf-stem/root ratio. The C:Proot ratio had a direct positive effect on the
NPP or indirectly negatively affected C:Nleaf-stem/root ratio, which further had a direct positive effect on
NPP by mediating Nleaf-stem/root ratio. Taking the total effect of direct and indirect effects into account,
the C:Nleaf-stem/root and C:Proot ratios could be regarded as the most critical predictors shaping the NPP
variation along the riparian zone altitudes (Figure 6b).
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Figure 6. Structure equation modeling (SEM) with variables (boxes) and potential causal relationships
(arrows) for NPP (a) and standardized total effects (direct effect plus indirect effect) on NPP derived
from SEM (b). The black-headed arrows indicate that the hypothesized direction of causation is a
positive relationship; on the contrary, the red-headed arrows represent a negative relationship. Arrow
width is proportional to the strength of path coefficients. Standardized path coefficients (numbers) can
reflect the importance of the variables within the model [24]. The model for NPP had χ2 = 2.660, df = 3,
p = 0.447, RMSEA = 0.000, AIC = 50.66.
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4. Discussion

4.1. Flooding Stress and NPP

C.dactylon is a perennial grass widely distributed in the riparian zone with a developed creeping
stem and root system [25]. Due to high morphological and physiological plasticity, C.dactylon can
endure oxygen deficiency and low temperatures under winter flooding and drought conditions in
summer [3]. It thus can adapt to the unique riparian zone of TGR. Flooding stress anti-seasonally
operated by the Three Gorges Dam decreased the NPP of C. dactylon at the lower altitude (145–155 masl
and 155–165 masl) of the riparian zone compared to the altitude of 165–175 masl (Figure 3). The lower
NPP of C. dactylon was mainly driven by the longer flooding duration, which was indirectly negatively
related to the NPP (Figure 6).

This supported our first hypothesis that the NPP should decrease when flooding duration increases.
Moreover, a recent observation indicated that total leaf N and P content were relatively higher,

while leaf C:N and C:P ratios were much lower under the stronger flooding stress [9]. Leaf nutrient
stoichiometry in wetland plants was mainly influenced by flooding duration gradient in a lakeshore
meadow of Poyang Lake floodplain [26]. The current study deduced that the NPP variation under the
different flooding stresses could be indicated by the nutrition stoichiometric ratio among plant tissues.

4.2. Nutrient Allocation and NPP

Nutrients such as N and P were redistributed between leaf-stem and root to mediate the NPP
responding to different flooding stress among riparian zone altitudes. The SEM indicated that the
C:Proot ratio and C:Nleaf-stem/root ratio were the most critical indicators of the NPP (Figure 6a), which
supported our second hypothesis. The nutrient allocation among plant tissues is essential for regulating
plant growth [27,28]. A plant may take different survival strategies by allocating C, N, and P in the
above- and below-ground tissues to maintain C:N:P stoichiometric balance [29].

Lin et al. [22] reported that the NPP was positively related to N and P use efficiency in the riparian
zone of the TGR, but did not consider the proportion of C:N:P stoichiometric ratio among different
tissues. It is indicated that P is one of the limiting factors for plant growth [30] and more susceptible
in leaves to environmental gradients than N [31]. The growth-rate hypothesis points out that the
fast-growing tissues have relatively high P content because they need more P-rich ribosomal RNA
(rRNA) to fuel enhanced protein-synthesis [32]. P content in the leaf-stem of C. dactylon at the altitude
of 145–155 masl was higher than that at 155–165 masl (Table 1), while no correlation was found between
NPP and P content. However, the C:P ratio in the leaf-stem and root was positive linearly correlated
to the NPP (Figure 5e1,e2) and the C:P ratio in the root was positively directly related to the NPP
(Figure 6a). Thus, it is deduced that the P use efficiency (C:P ratio) was synchronous with NPP, and the
current study suggested that the C:P ratio in the root can be regarded as a predictor of the NPP of
C. dactylon in the riparian zone.

The values of leaf N:P ratios of C. dactylon were always less than 14, indicating that the growth
and development of C. dactylon are primarily limited by N [30]. More interestingly, the root N:P ratio
(<6) of C. dactylon was less than that of the leaf-stem, implying that the root growth was limited by N
more than leaf-stem. Thus, the root may be a more sensitive tissue with relatively higher N utilization
efficiency (higher C:N ratio, Table 1). N use efficiency is the plant biomass produced per unit of nitrogen
uptake, represented by the C:N ratio [23]. Recent research showed that N content could control the
NPP of an alpine Kobresia meadow in the northern Qinghai-Tibet Plateau [33]. Furthermore, NPP was
negatively correlated with C:N under N limitation in vascular plants [34].

However, the current study found that NPP was negatively correlated with Nstem-leaf/root

(proportion of N in stem-leaf and root) (Figure 5b3), but by contrast positively correlated with
C:Nleaf-stem/root ratio (proportion of C:N ratio in stem-leaf and root) in the riparian zone (p < 0.05)
(Figure 5d3). Thus, C. dactylon might preferentially allocate energy and resources in the aboveground
to raise N use efficiency in the leaf-stem (higher C:Nleaf-stem/root ratio) to enhance the NPP under
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periodic flooding stress [35]. Furthermore, the NPP was tightly coupled with the C:Nleaf-stem/root ratio
among riparian zone altitudes (Figure 4). Thus, N is a critical limit factor for NPP of C. dactylon, while
the C:Nleaf-stem/root ratio and root C:P ratio can be regarded as the main predictors of the NPP in the
riparian zone.

5. Conclusions

This study focused on the variability of NPP and C:N:P stoichiometric ratios in the leaf-stem and
roots of C. dactylon in the riparian zone of a TGR tributary. The results reveal that the NPP of C. dactylon
was mainly influenced by N limitation in the riparian zone. The C:Nleaf-stem/root ratio and root C:P
ratio can be regarded as the main predictors of the NPP in the riparian zone under periodic water
level fluctuation. Therefore, this can provide an essential scientific basis for establishing vegetation
restoration technology based on C:N:P stoichiometry in the riparian zone ecosystem. Further research
needs to pay attention to the coupling relationship between C:N:P stoichiometry and the above- and
underground distribution mechanism of NPP in the riparian zone ecosystem.
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