Supplementary Materials - Settling Models

Settling of Road-Deposited Sediment: Influence of Particle Density, Shape, Low Temperatures, and De-Icing Salt

Steffen H. Rommel1, Laura Gelhardt2, Antje Welker2 and Brigitte Helmreich1,*

1 Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; sww@tum.de

2 Fachgebiet Siedlungswasserwirtschaft und Hydromechanik , Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt am Main, Germany; antje.welker@fb1.fra-uas.de

* Correspondence: b.helmreich@tum.de


This code is written in Python 3 using the packages Pandas, Matplotlib, Numpy, SciPy, and Seaborn.

In [25]:
%matplotlib inline

Import necessary packages

In [26]:
import pandas as pd
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.ticker
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,
                               AutoMinorLocator)
import numpy as np
from scipy import stats
from scipy import optimize
from scipy import interpolate

Plot settings

In [27]:
plt.style.use('default')
sns.set_palette("muted")
sns.set_context("paper")
linewidth_annotation = 2
plt.rcParams['legend.frameon'] = False
plt.rcParams['text.usetex'] = False
plt.rcParams.update({'mathtext.default': 'regular'})
sns.set_palette('deep')
sns.set_style({'grid.linestyle': 'dotted'})

Plot sizes

In [28]:
single_col = 8.3 / 2.54
double_col = 17.1 / 2.54
plt.rcParams["figure.figsize"] = single_col, single_col

Particle Size Distribution (PSD)

In [29]:
d_cdf = [250, 200, 160, 125, 100, 63, 40]
c_weight = [1, .96, .90, .78, .70, .49, .34]
PSD_df = pd.DataFrame()
PSD_df['d (µm)'] = d_cdf
PSD_df['m_fraction (-)'] = c_weight
In [30]:
def weibull(d, lamb, kappa):
    return (1 - np.exp(-(d/lamb) ** kappa))
In [31]:
PSD_weibull_df = pd.DataFrame()
PSD_weibull_df['d (µm)'] = np.arange(0,251,1)

Weibull fit parameters used to describe the PSD, the parameters were determined using the non-linear least square algorithm

In [32]:
kappa = 1.247
lamb = 85.09
In [33]:
PSD_weibull_df['m_fraction (-)'] = \
PSD_weibull_df.apply(lambda x: weibull(x['d (µm)'], lamb, kappa), axis=1)
In [34]:
fig, (ax1) = plt.subplots(figsize=(single_col, 2), nrows=1, ncols=1)

sns.scatterplot(x=d_cdf, y=c_weight, marker='x', label='Data', ax=ax1)

plt.xlabel('d ($\mu$m)')
plt.ylabel('Cumulative mass fraction (-)')

PSD_weibull_df['m_fraction (-)'].plot(x='d (µm)', 
                                      label='Weibull fit, $R^2 = 0.99$', 
                                      ax=ax1)

ax1.set_ylim(0,1.05)
ax1.set_xlim(0,250*1.05)
plt.legend()
Out[34]:
<matplotlib.legend.Legend at 0x24387283748>

Density of the fluid, ρf

according to Laliberté and Cooper (2004), https://doi.org/10.1021/je0498659

In [35]:
def rho_w(t):
    # rho_w = Densities of water ρw (kg m−3)
    # t = temperature in °C
    return (((((- 2.8054253 * 10**(-10) * t + 1.0556302 * 10**(-7))*t - 4.6170461 * 10**(-5))*t - 0.0079870401)*t \
             + 16.945176)*t + 999.83952)/(1+0.01687985*t)

def v_app_nacl(t,w_nacl):
    # eq is valid for w_nacl > 0.00006
    # v_app_nacl =  NaCl specific volume (m3 kg−1)
    # w_nacl = mass fraction of the NaCl in solution (-)
    return (w_nacl + 1.01660 + 0.014624 * t)/((-0.00433 * w_nacl + 0.06471) * np.exp(0.000001 * (t + 3315.6)**2))
    
def rho_f(t,w_nacl):
    # rho_f = Densities of densities of solutions (kg m−3)
    # t = temperature in °C
    # w_nacl = mass fraction of NaCl in solution
    # w_h2o = mass fraction of H2O in solution
    w_h2o = 1 - w_nacl
    if w_nacl <= 0.00006:
        return rho_w(t)
    else:
        return 1 / (w_h2o / rho_w(t) + w_nacl * v_app_nacl(t,w_nacl))

Viscosity of the fluid, ηf

according to Laliberté (2007), https://doi.org/10.1021/je0604075

In [36]:
def eta_w(t):
    # eta_w = dynamic viscosity of water ηw (kg m−1 s−1)
    return ((t + 246) * 10**(-3))/((0.05594 * t + 5.2842) * t + 137.37)

def eta_f(t,w_nacl):
    # eta_f = dynamic viscosity of NaCl solution (kg m−1 s−1)
    # eta_w = dynamic viscosity of water (kg m−1 s−1)
    # t = temperature (°C), valid for >=5 °C
    w_h2o = 1- w_nacl
    if t >=5:
        return eta_w(t)**w_h2o * (10**(-3) * np.exp((16.222 * (1 - w_h2o)**1.3229 + 1.4849)/\
                                     ((0.0074691 * t + 1) * (30.78 * (1 - w_h2o)**2.0583 + 1))))**w_nacl
    else:
        return np.nan

Settling velocity of spherical particles, w

according to Cheng (2009), https://doi.org/10.1016/j.powtec.2008.07.006

In [37]:
def d_dimless(d, eta_f, rho_f, rho_s):
            # d_dimless = dimionsenless grain diamter
            # ny = kinematic viscosity of fluid
            g = 9.81
            ny_f = eta_f / rho_f
            delta_rho = (rho_s - rho_f) / rho_f
            return (delta_rho * g / ny_f**2)**(1/3) * d

def C_D(d_dimless):
    # C_D = drag coefficient
    return 432 / (d_dimless**3) * (1 + 0.022 * d_dimless**3)**0.54 + 0.47 * (1 - np.exp(-0.15*d_dimless**0.45))

def w_dimless(d_dimless, C_D):
    return np.sqrt(4 * d_dimless / (3 * C_D))

def w(w_dimless, rho_f, rho_s, eta_f):
    return w_dimless * ((rho_s - rho_f) / rho_f * 9.81 * eta_f / rho_f)**(1/3)
In [38]:
def w_complete(t, w_nacl, d, rho_s):
    # INPUT:
    # t in °C
    # w_nacl without unit
    # d in µm
    # rho_s in kg m-3   
        d_local = d * 10**-6    
        # calc rho_f
        rho_f_local = rho_f(t, w_nacl)
        # calc eta_f
        eta_f_local = eta_f(t, w_nacl)
        # calc ny_f
        ny_f_local = eta_f_local / rho_f_local
        # calc d_dimless
        d_dimless_local = d_dimless(d_local, eta_f_local, rho_f_local, rho_s)
        # calc C_D
        C_D_local = C_D(d_dimless_local)
        # calc w_dimless
        w_dimless_local = w_dimless(d_dimless_local, C_D_local)
        # calc w
        w_local = w(w_dimless_local, rho_f_local, rho_s, eta_f_local)
        return w_local
In [39]:
fig, (ax1) = plt.subplots(figsize=(double_col, single_col), nrows=1, ncols=1)
ax1.plot(PSD_weibull_df['d (µm)'], w_complete(20, 0.0, PSD_weibull_df['d (µm)'], 2650), 
         label=r't=20°C, w$_{NaCl}$=0.00, $\rho_s$=2650 kg $m^{-3}$')
ax1.plot(PSD_weibull_df['d (µm)'], w_complete(5, 0.02, PSD_weibull_df['d (µm)'], 2650), 
         '-.', label=r't=5°C, w$_{NaCl}$=0.02, $\rho_s$=2650 kg $m^{-3}$')
         
ax1.set_xlim(0,250)
ax1.set_ylim(0,0.04)

ax1.set_xlabel(r'$d\/(\mu m)$')
ax1.set_ylabel(r'$w\/(m\/s^{-1})$')

plt.legend()
Out[39]:
<matplotlib.legend.Legend at 0x243873d37c8>

Settling velocity of non-spherical particles, w

according to Haider and Levenspiel (1989), https://doi.org/10.1016/0032-5910(89)80008-7

In [40]:
def w_nonspherical(d, t, w_nacl, rho_s, phi):
    # phi = sphericity (-)
    d_local = d * 10**-6
    # calc rho_f
    rho_f_local = rho_f(t, w_nacl)
    # calc eta_f
    eta_f_local = eta_f(t, w_nacl)  
    
    d_dimless_local = d_local * ((9.81 * rho_f_local*(rho_s - rho_f_local))/eta_f_local**2)**(1/3)    
    A = ((rho_f_local**2)/(9.81*eta_f_local * (rho_s-rho_f_local)))**(1/3)
    if 0.5 <= phi <= 1:
        return (18/(d_dimless_local**2) + (2.3348-1.7439*phi)/(d_dimless_local**0.5))**(-1) / A
    else:
        return np.nan
In [41]:
fig, (ax1) = plt.subplots(figsize=(single_col, 2.5), nrows=1, ncols=1)

d = np.arange(1,250,.1)

for phi in [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
    ax1.plot(d, w_nonspherical(d, 20, 0, 2600, phi), label=phi)
    
plt.legend(title="$\phi$", loc='upper left')
plt.xlabel('d ($\mu$m)')
plt.ylabel('w (m s$^{-1}$)')
Out[41]:
Text(0, 0.5, 'w (m s$^{-1}$)')

Settling experiments

Import experimental results: Insert file path to the excel file, containg the experimental results or modeling input, here. If the column names are modified the consecutive code must be adapted.

In [42]:
results_path = #INSERT PATH HERE e.g. C:/Users/USERNAME/Desktop/Supplementary Material B - Modeling Input Data.csv'
df_sim_results = pd.read_csv(results_path, na_values='-')
df_sim_results
Out[42]:
experiment t (°C) w_nacl (-) sample volume (mL) material rho_s (kg m-3) LOI (%) circularity (-) settled exp (-) Operator
0 MiW4, 21 °C, 0 g/L 21.1 0.00 12.22 Millisil W4 2650 0.1 0.733 0.592292 FraUAS
1 MiW4, 21 °C, 0 g/L 21.1 0.00 12.95 Millisil W4 2650 0.1 0.733 0.603622 FraUAS
2 MiW4, 21 °C, 0 g/L 21.1 0.00 13.13 Millisil W4 2650 0.1 0.733 0.575453 FraUAS
3 MiW4, 10 °C, 0 g/L 10.5 0.00 11.98 Millisil W4 2650 0.1 0.733 0.537223 FraUAS
4 MiW4, 10 °C, 0 g/L 10.5 0.00 11.30 Millisil W4 2650 0.1 0.733 0.526087 FraUAS
5 MiW4, 10 °C, 0 g/L 10.5 0.00 10.90 Millisil W4 2650 0.1 0.733 0.543260 FraUAS
6 MiW4, 10 °C, 20 g/L 10.2 0.02 NaN Millisil W4 2650 0.1 0.733 0.550813 FraUAS
7 MiW4, 10 °C, 20 g/L 10.2 0.02 NaN Millisil W4 2650 0.1 0.733 0.501018 FraUAS
8 MiW4, 10 °C, 20 g/L 10.2 0.02 NaN Millisil W4 2650 0.1 0.733 0.532258 FraUAS
9 FRS, 10 °C, 0 g/L 10.2 0.00 15.58 FRS.Q3.17 2250 22.0 0.717 0.392484 FraUAS
10 FRS, 10 °C, 0 g/L 10.2 0.00 10.28 FRS.Q3.17 2250 22.0 0.717 0.413721 FraUAS
11 FRS, 10 °C, 0 g/L 10.2 0.00 15.60 FRS.Q3.17 2250 22.0 0.717 0.300207 FraUAS
12 FRS, 10 °C, 20 g/L 10.2 0.02 NaN FRS.Q3.17 2250 22.0 0.717 0.358178 FraUAS
13 FRS, 10 °C, 20 g/L 10.2 0.02 NaN FRS.Q3.17 2250 22.0 0.717 0.327766 FraUAS
14 FRS, 10 °C, 20 g/L 10.2 0.02 NaN FRS.Q3.17 2250 22.0 0.717 0.361925 FraUAS
15 GBS, 21 °C, 0 g/L 21.0 0.00 7.97 GBS.Q1.17 2320 18.0 0.732 0.450207 FraUAS
16 GBS, 21 °C, 0 g/L 21.0 0.00 14.29 GBS.Q1.17 2320 18.0 0.732 0.387164 FraUAS
17 GBS, 21 °C, 0 g/L 21.0 0.00 17.52 GBS.Q1.17 2320 18.0 0.732 0.409283 FraUAS
18 GBS, 10 °C, 0 g/L 10.2 0.00 11.42 GBS.Q1.17 2320 18.0 0.732 0.414079 FraUAS
19 GBS, 10 °C, 0 g/L 10.2 0.00 18.11 GBS.Q1.17 2320 18.0 0.732 0.370370 FraUAS
20 GBS, 10 °C, 0 g/L 10.2 0.00 16.70 GBS.Q1.17 2320 18.0 0.732 0.371663 FraUAS
21 GBS, 10 °C, 20 g/L 10.3 0.02 NaN GBS.Q1.17 2320 18.0 0.732 0.390397 FraUAS
22 GBS, 10 °C, 20 g/L 10.3 0.02 NaN GBS.Q1.17 2320 18.0 0.732 0.378151 FraUAS
23 GBS, 10 °C, 20 g/L 10.3 0.02 NaN GBS.Q1.17 2320 18.0 0.732 0.287815 FraUAS
24 ECL, 21 °C, 0 g/L 21.0 0.00 12.89 ECL.Q2.17 2600 8.0 0.744 0.487755 FraUAS
25 ECL, 21 °C, 0 g/L 21.0 0.00 15.00 ECL.Q2.17 2600 8.0 0.744 0.459959 FraUAS
26 ECL, 21 °C, 0 g/L 21.0 0.00 11.89 ECL.Q2.17 2600 8.0 0.744 0.488753 FraUAS
27 ECL, 10 °C, 0 g/L 10.1 0.00 11.68 ECL.Q2.17 2600 8.0 0.744 0.397959 FraUAS
28 ECL, 10 °C, 0 g/L 10.1 0.00 12.94 ECL.Q2.17 2600 8.0 0.744 0.393075 FraUAS
29 ECL, 10 °C, 0 g/L 10.1 0.00 13.65 ECL.Q2.17 2600 8.0 0.744 0.441955 FraUAS
30 ECL, 10 °C, 20 g/L 10.3 0.02 7.30 ECL.Q2.17 2600 8.0 0.744 0.482759 FraUAS
31 ECL, 10 °C, 20 g/L 10.3 0.02 6.90 ECL.Q2.17 2600 8.0 0.744 0.473577 FraUAS
32 ECL, 10 °C, 20 g/L 10.3 0.02 11.90 ECL.Q2.17 2600 8.0 0.744 0.311715 FraUAS

Specify wcrit with respect to the sampling time

In [43]:
w_crit = 0.76 / (4 * 60) # m/s

Model A: Spherical particles

In [44]:
def settling_velocity_dist_exp(t_exp_tmp, w_nacl_exp_tmp, rho_s_exp_tmp):
    df_sim_tmp = PSD_weibull_df.copy()
    df_sim_tmp['w'] = \
    df_sim_tmp.apply(lambda x: 0 if x['d (µm)'] == 0 else w_complete(t_exp_tmp, w_nacl_exp_tmp, x['d (µm)'], 
                                                                     rho_s_exp_tmp), axis=1)
    return df_sim_tmp

def settled_frac_func(df_sim_tmp):
    f_sim_tmp = interpolate.interp1d(df_sim_tmp['w'], df_sim_tmp['m_fraction (-)'], kind='linear')
    return 1- f_sim_tmp(w_crit)

def settled_frac_func_apply(t_exp, w_nacl_exp, rho_s_exp):
    df_sim_tmp = settling_velocity_dist_exp(t_exp, w_nacl_exp, rho_s_exp)    
    return settled_frac_func(df_sim_tmp)
In [45]:
df_sim_results['settled model A (-)'] = \
df_sim_results.apply(lambda x: settled_frac_func_apply(x['t (°C)'], x['w_nacl (-)'], x['rho_s (kg m-3)']), 
                     axis=1)

Model B: Spherical particles considering sample volume

In [46]:
def h_func(V):
    # V = Withdrawn sample volume in mL
    # h_cone = height of the truncated cone (hcone) with the same shape like 
    # the utilized glass columns and volume of the withdrawn sample in cm
    if V != 0:
        return 5**(2/3) * (12 * V / np.pi + 5)**(1/3) - 5 # in cm
    else:
        return np.nan
    
def w_crit_exp_func(V):
    return (76 - h_func(V)) / 100 / (4*60)
In [47]:
df_sim_results['w_crit_exp (m s-1)'] = df_sim_results.apply(lambda x: w_crit_exp_func(x['sample volume (mL)']),
                                                            axis=1)
In [48]:
def settled_frac_exp_func(df_sim_tmp, w_crit_exp):
    f_sim_tmp = interpolate.interp1d(df_sim_tmp['w'], df_sim_tmp['m_fraction (-)'], kind='linear')
    return 1- f_sim_tmp(w_crit_exp)

def settled_frac_exp_func_apply(t_exp, w_nacl_exp, rho_s_exp, w_crit_exp):
    df_sim_tmp = settling_velocity_dist_exp(t_exp, w_nacl_exp, rho_s_exp)    
    return settled_frac_exp_func(df_sim_tmp, w_crit_exp)
In [49]:
mask = ~df_sim_results['sample volume (mL)'].isnull()

df_sim_results['settled model B (-)'] = \
df_sim_results[mask].apply(lambda x: settled_frac_exp_func_apply(x['t (°C)'], x['w_nacl (-)'],
                                                                 x['rho_s (kg m-3)'], x['w_crit_exp (m s-1)'])
                           ,axis=1)

Model C: Non-spherical particles

In [50]:
def settling_velocity_dist_exp_nonspherical(t_exp_tmp, w_nacl_exp_tmp, rho_s_exp_tmp, phi_exp_tmp):
    df_sim_tmp = PSD_weibull_df.copy()
    df_sim_tmp['w'] = \
    df_sim_tmp.apply(lambda x: 0 if x['d (µm)'] == 0 else w_nonspherical(x['d (µm)'],
                                                                         t_exp_tmp,
                                                                         w_nacl_exp_tmp,
                                                                         rho_s_exp_tmp,
                                                                         phi_exp_tmp),axis=1)
    return df_sim_tmp

def settled_frac_func(df_sim_tmp):
    f_sim_tmp = interpolate.interp1d(df_sim_tmp['w'], df_sim_tmp['m_fraction (-)'], kind='linear')
    return 1- f_sim_tmp(w_crit)

def settled_frac_func_apply_nonspherical(t_exp, w_nacl_exp, rho_s_exp, phi_exp):
    df_sim_tmp = settling_velocity_dist_exp_nonspherical(t_exp, w_nacl_exp, rho_s_exp, phi_exp)    
    return settled_frac_func(df_sim_tmp)
In [51]:
df_sim_results['settled model C (-)'] =\
df_sim_results.apply(lambda x: settled_frac_func_apply_nonspherical(x['t (°C)'], x['w_nacl (-)'], 
                                                                    x['rho_s (kg m-3)'], x['circularity (-)']),
                     axis=1)

Modeling Results

In [52]:
fig, (ax1) = plt.subplots(figsize=(double_col, 2.5), nrows=1, ncols=1)

sns.barplot(data=df_sim_results, x='experiment', y='settled exp (-)', ax=ax1, ci='sd', errwidth=0.75, 
            capsize=0.25)

for label in ax1.get_xticklabels():
    label.set_ha("center")
    label.set_rotation(90)
 
sns.swarmplot(x='experiment', y='settled model A (-)', data=df_sim_results,
              size=4, color=".3", linewidth=0, label='Model A')

sns.swarmplot(x='experiment', y='settled model C (-)', data=df_sim_results,
              size=4, color=".3", linewidth=0, marker='d', label='Model C')

plt.ylim(0,.8)

plt.ylabel('Settled mass fraction (-)')
plt.xlabel('Experiment')

ax1.yaxis.set_minor_locator(MultipleLocator(0.05))
plt.xticks(rotation=45, ha='right')

plt.grid(axis='y')

Overview of the data

In [53]:
df_sim_results
Out[53]:
experiment t (°C) w_nacl (-) sample volume (mL) material rho_s (kg m-3) LOI (%) circularity (-) settled exp (-) Operator settled model A (-) w_crit_exp (m s-1) settled model B (-) settled model C (-)
0 MiW4, 21 °C, 0 g/L 21.1 0.00 12.22 Millisil W4 2650 0.1 0.733 0.592292 FraUAS 0.529503 0.002921 0.546763 0.510195
1 MiW4, 21 °C, 0 g/L 21.1 0.00 12.95 Millisil W4 2650 0.1 0.733 0.603622 FraUAS 0.529503 0.002913 0.547347 0.510195
2 MiW4, 21 °C, 0 g/L 21.1 0.00 13.13 Millisil W4 2650 0.1 0.733 0.575453 FraUAS 0.529503 0.002911 0.547488 0.510195
3 MiW4, 10 °C, 0 g/L 10.5 0.00 11.98 Millisil W4 2650 0.1 0.733 0.537223 FraUAS 0.469725 0.002924 0.487714 0.450560
4 MiW4, 10 °C, 0 g/L 10.5 0.00 11.30 Millisil W4 2650 0.1 0.733 0.526087 FraUAS 0.469725 0.002932 0.487119 0.450560
5 MiW4, 10 °C, 0 g/L 10.5 0.00 10.90 Millisil W4 2650 0.1 0.733 0.543260 FraUAS 0.469725 0.002936 0.486759 0.450560
6 MiW4, 10 °C, 20 g/L 10.2 0.02 NaN Millisil W4 2650 0.1 0.733 0.550813 FraUAS 0.460593 NaN NaN 0.441300
7 MiW4, 10 °C, 20 g/L 10.2 0.02 NaN Millisil W4 2650 0.1 0.733 0.501018 FraUAS 0.460593 NaN NaN 0.441300
8 MiW4, 10 °C, 20 g/L 10.2 0.02 NaN Millisil W4 2650 0.1 0.733 0.532258 FraUAS 0.460593 NaN NaN 0.441300
9 FRS, 10 °C, 0 g/L 10.2 0.00 15.58 FRS.Q3.17 2250 22.0 0.717 0.392484 FraUAS 0.404697 0.002886 0.426373 0.383196
10 FRS, 10 °C, 0 g/L 10.2 0.00 10.28 FRS.Q3.17 2250 22.0 0.717 0.413721 FraUAS 0.404697 0.002944 0.421775 0.383196
11 FRS, 10 °C, 0 g/L 10.2 0.00 15.60 FRS.Q3.17 2250 22.0 0.717 0.300207 FraUAS 0.404697 0.002886 0.426389 0.383196
12 FRS, 10 °C, 20 g/L 10.2 0.02 NaN FRS.Q3.17 2250 22.0 0.717 0.358178 FraUAS 0.396562 NaN NaN 0.374970
13 FRS, 10 °C, 20 g/L 10.2 0.02 NaN FRS.Q3.17 2250 22.0 0.717 0.327766 FraUAS 0.396562 NaN NaN 0.374970
14 FRS, 10 °C, 20 g/L 10.2 0.02 NaN FRS.Q3.17 2250 22.0 0.717 0.361925 FraUAS 0.396562 NaN NaN 0.374970
15 GBS, 21 °C, 0 g/L 21.0 0.00 7.97 GBS.Q1.17 2320 18.0 0.732 0.450207 FraUAS 0.480574 0.002975 0.494663 0.459478
16 GBS, 21 °C, 0 g/L 21.0 0.00 14.29 GBS.Q1.17 2320 18.0 0.732 0.387164 FraUAS 0.480574 0.002899 0.500417 0.459478
17 GBS, 21 °C, 0 g/L 21.0 0.00 17.52 GBS.Q1.17 2320 18.0 0.732 0.409283 FraUAS 0.480574 0.002868 0.502773 0.459478
18 GBS, 10 °C, 0 g/L 10.2 0.00 11.42 GBS.Q1.17 2320 18.0 0.732 0.414079 FraUAS 0.417233 0.002930 0.435303 0.396665
19 GBS, 10 °C, 0 g/L 10.2 0.00 18.11 GBS.Q1.17 2320 18.0 0.732 0.370370 FraUAS 0.417233 0.002863 0.440672 0.396665
20 GBS, 10 °C, 0 g/L 10.2 0.00 16.70 GBS.Q1.17 2320 18.0 0.732 0.371663 FraUAS 0.417233 0.002876 0.439647 0.396665
21 GBS, 10 °C, 20 g/L 10.3 0.02 NaN GBS.Q1.17 2320 18.0 0.732 0.390397 FraUAS 0.409922 NaN NaN 0.389243
22 GBS, 10 °C, 20 g/L 10.3 0.02 NaN GBS.Q1.17 2320 18.0 0.732 0.378151 FraUAS 0.409922 NaN NaN 0.389243
23 GBS, 10 °C, 20 g/L 10.3 0.02 NaN GBS.Q1.17 2320 18.0 0.732 0.287815 FraUAS 0.409922 NaN NaN 0.389243
24 ECL, 21 °C, 0 g/L 21.0 0.00 12.89 ECL.Q2.17 2600 8.0 0.744 0.487755 FraUAS 0.522453 0.002914 0.540398 0.503347
25 ECL, 21 °C, 0 g/L 21.0 0.00 15.00 ECL.Q2.17 2600 8.0 0.744 0.459959 FraUAS 0.522453 0.002892 0.541997 0.503347
26 ECL, 21 °C, 0 g/L 21.0 0.00 11.89 ECL.Q2.17 2600 8.0 0.744 0.488753 FraUAS 0.522453 0.002925 0.539584 0.503347
27 ECL, 10 °C, 0 g/L 10.1 0.00 11.68 ECL.Q2.17 2600 8.0 0.744 0.397959 FraUAS 0.460323 0.002927 0.478160 0.441407
28 ECL, 10 °C, 0 g/L 10.1 0.00 12.94 ECL.Q2.17 2600 8.0 0.744 0.393075 FraUAS 0.460323 0.002913 0.479245 0.441407
29 ECL, 10 °C, 0 g/L 10.1 0.00 13.65 ECL.Q2.17 2600 8.0 0.744 0.441955 FraUAS 0.460323 0.002906 0.479828 0.441407
30 ECL, 10 °C, 20 g/L 10.3 0.02 7.30 ECL.Q2.17 2600 8.0 0.744 0.482759 FraUAS 0.454233 0.002985 0.467747 0.435179
31 ECL, 10 °C, 20 g/L 10.3 0.02 6.90 ECL.Q2.17 2600 8.0 0.744 0.473577 FraUAS 0.454233 0.002991 0.467283 0.435179
32 ECL, 10 °C, 20 g/L 10.3 0.02 11.90 ECL.Q2.17 2600 8.0 0.744 0.311715 FraUAS 0.454233 0.002925 0.472344 0.435179