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Abstract: In this paper we propose a stochastic model reduction procedure for deterministic equations
from geophysical fluid dynamics. Once large-scale and small-scale components of the dynamics
have been identified, our method consists in modelling stochastically the small scales and, as a result,
we obtain that a transport-type Stratonovich noise is sufficient to model the influence of the small
scale structures on the large scales ones. This work aims to contribute to motivate the use of stochastic
models in fluid mechanics and identifies examples of noise of interest for the reduction of complexity
of the interaction between scales. The ideas are presented in full generality and applied to specific
examples in the last section.

Keywords: stochastic model reduction; Wong-Zakai principle; transport noise

1. Introduction

This work deals with stochastic models in fluid mechanics. The literature on the subject is very
large, but it is mostly of theoretical nature. Having in mind potential applications, two main questions
arise: (i) Why should we use stochastic models in fluid mechanics? (ii) Which noise is more interesting,
the classical additive noise or other forms? Among various answers to these questions, one is based on
stochastic model reduction, the topic discussed in this work. In a sentence, it claims that stochastic
models may reduce the complexity of interaction between scales and the noise arising from such a
reduction is not the classical additive noise added to the equations in most of the literature (which
however is interesting for other reasons), but a multiplicative one of transport type, described here and
in related works. We address an audience made up of both mathematicians and practitioners, and our
hope is to contribute to the understanding of fluid mechanics PDEs with transport noise and how they
are related to applications.

Going into details, in this paper we are interested in general models of geophysical fluid-dynamics
with the following form, {

∂tu + J(u,∇u) = − 1
ρ∇p +D(u) + f ,

∂tρ +∇ · (uρ) = 0.
(1)

The spatial domain on which the equations are studied is denoted by D and, depending on the
particular problem under investigation, can be either two- or three-dimensional: dim D = n = 2 or 3.
The unknowns of the equations above are the velocity vector field u : R+ × D → Rn and the pressure
scalar field p : R+ × D → R.

The quantity ρ : R+ × D → R+ describes the density of the fluid and is deduced from u by
conservation of mass, mathematically translated as the continuity equation ∂tρ +∇ · (uρ) = 0.
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The term J(u,∇u) represents the inertial force per unit of mass acting on the fluid due to advection,
for instance,

J(u,∇u) = (u · ∇)u

for Navier–Stokes equations, but it can assume different forms in certain regimes, like the small aspect
ratio regime proper of Primitive Equations.

D(u) represents the force per unit of mass of any dissipation mechanism acting on the fluid.
Usually dissipation occurs via viscosity

D(u) = ν∆u, ν ≥ 0,

or friction

D(u) = −αu, α ≥ 0,

or a combination of the two, depending on the model under consideration. Indeed, in general viscosity
is due to the interaction of the fluid particles with themselves and is therefore an intrinsic property of
the fluid: typical experimental values of ν at room temperature and pressure are νair = 1.5× 10−5 m2/s
for air and νwater = 1.1× 10−6 m2/s for water. On the other hand, friction describes well the interaction
of a roughly two-dimensional fluid with a solid bottom (or top) layer: for instance, for a fluid of depth
h the value of α is related to ν via the relation

α ∝
ν

h2 .

In particular, friction forces dominate viscous forces (at low wavenumbers) for values of h which
are small compared to the other typical lengths of the fluid, while viscous forces dominate friction
forces for larger values of h. It is worth mentioning that in certain idealised models dissipation is
neglected: α = ν = 0, see, for instance, Euler equations and related models.

The term f represents any other force per unit of mass acting on the fluid, either inertial
(e.g., the Coriolis force) or not.

System (1) is usually accompanied with suitable boundary conditions on u, depending on the
geometry of the domain and physical meaning.

Under the assumption of incompressibility ρ = ρ0 is constant and (1) assumes the form{
∂tu + J(u,∇u) = − 1

ρ0
∇p +D(u) + f ,

∇ · u = 0,
(2)

so that continuity equation simplifies into the condition that the velocity vector field u is solenoidal:
∇ · u = 0. Mathematically speaking, we assume in the following that J is a bilinear operator and D is a
linear operator, possibly unbounded.

It is clear to everybody that atmospheric and oceanic dynamics show a superposition of structures
of different sizes, ranging from continental, with order of magnitude of 1000 km, to human scale
structures of size 1 m. In this paper we propose a stochastic model reduction procedure for
deterministic geophysical fluid dynamics models of the form (2), which, in our opinion, is able
to isolate the evolution of large scale structures via a closed equation which is a stochastic modification
of (2), where a transport-type Stratonovich noise is sufficient to model, with a certain degree of
approximation, the influence of the small scale structures on the large scales ones.

The literature on the topic of either stochastic or deterministic model reduction is wide and
the motivations beyond the interest in reduction procedures for geophysical fluid-dynamics models
are several.
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From the numerical point of view, especially when one is interested in the simulations of
complex turbulent flows like weather forecast, one necessarily has to deal with the fact that limited
computational power often implies an under-representation of the real physical processes with spatial
or temporal scale smaller than a certain threshold, typically the length of the grid parametrisation and
the time discretisation step. However, these small scale processes may have a non-trivial impact on
the large scales ones, and thus it is important to take this impact into the account in order to obtain
accurate description of the evolution of the simulated process, see in [1] and the references therein.

Another field of application is climate prediction [2–5]; indeed, the high complexity of real
geophysical models allows an accurate forecast only for relatively short time intervals, that is, it is
impossible to have good weather predictions over a time span greater than a few days. On the other
hand, decreasing the complexity of a model allows for better error control in long-term simulations,
thus opening the way to the study of climate tendency.

By the theoretical point of view, model reduction has always played a primary role in geophysics
and, more generally, in fluid mechanics; here, model reduction is meant in the broad sense, as the
operation of reducing the complexity of a model in order to conveniently describe certain phenomena.
For example, if one is interested in the evolution of a certain geophysical flow on a relatively small
portion of Earth’s surface, then the spherical geometry of the problem is usually not so important and
the use of spherical coordinates is an unnecessary complication: it is way more convenient to study
the problem in Cartesian coordinates. The dynamical effects of Earth’s rotation are therefore captured
with the so-called f -plane approximation [6] (and more generally with the β-plane approximation),
which constitutes a nice simplification of the problem yet capable of describing very interesting
phenomena, like the motion of cyclonic flows at geostrophic balance and the Taylor–Proudman effect.

Our reduction procedure consists in splitting (2) into a system of two coupled equations,
describing the evolution of the large scale component uL and the small scale component uS separately.
As already explained, we are not interested in solving explicitly the equation for the small scale
process uS, which instead is modelled stochastically as described in Section 2. This operation can be
performed whenever the structures produced in a geophysical system have a wide range of spatial
scales, which corresponds to a wide range of temporal scales. For the sake of modelling, among the
various temporal scales, we select three particular of them satisfying certain relations, see below
for details. The stochastic modelling depends on a parameter ε describing the separation between
these temporal scales, and our result, obtained by taking the limit of infinite separation of time scales,
consists in the convergence of the large scale velocity uL towards the solution of the stochastic equation{

∂tuL + J(uL,∇uL) = − σ
γ J(◦Ẇ,∇uL)− 1

ρ0
∇pL +D(uL) + fL,

∇ · uL = 0,

where W is a Brownian motion, σ and γ are suitable coefficients and fL denotes the large scale forces
acting on the fluid. Our results therefore add further motivation to the study of transport-type noise
in equations from fluid-mechanics, which started with the works in [7–10] and has received a lot of
attention in the last years, see in [11–15] and more recently in [16–18].

Our approach differs from the many already available in the literature for being purely
infinite-dimensional. In fact, although finite-dimensional models are usually sufficient to provide good
numerical simulations of the real geophysical processes, for the theoretical motivations explained
above it is important to have reduction procedures that act directly on the infinite-dimensional model
under investigation. In our particular case, the special form of the limiting equation (stochastic PDE
with Stratonovich transport noise) gives access to a vast range of results and techniques from stochastic
analysis to study some properties of a geophysical system like, for instance, the existence of invariant
measures, ergodicity, Large Deviations estimates for small intensity of the noise, and others.
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2. Main Results

First of all, we clarify from the beginning that the theory illustrated in this work applies to systems
with a wide range of space-time scales, this sentence to be understood as explained below. Among this
variety of scales, for the sake of modelling we identify three reference scales that constitutes the basis
of our analysis.

Concerning the time scales, we need a small time scale TS, which is the characteristic time of the
small scale dynamics, we need an intermediate scale TM, and then we need a third, large time scale TL

typical of the large scale dynamics. The following relation will play a role,

TS

TM
=
TM

TL
= ε. (3)

In terms of spatial scales, we take three reference scales: one small scale XS, one intermediate scale
XM and one large scale XL. The scales XS and XL are understood, respectively, as the characteristic
length of small-scale and large-scale dynamics.

The specific values of scales TS, TM TL, XS, XM and XL are not fundamental in our analysis,
and can be modified for other applications of our arguments. Relations between spatial and temporal
scales are specified below.

An example, although ideal, may be the lower-layer atmospheric fluid over a large region,
which interacts with the irregularities of the ground. This system can be described, with a certain
degree of approximation, by means of the ideal model (2):{

∂tu + J(u,∇u) = − 1
ρ0
∇p +D(u) + f ,

∇ · u = 0.

Suppose we are observing our system at a certain combination of space-time scales X and T .
Dimensional analysis of (2) above gives the following identity,

U
T +

U 2

X ∼ F ,

where U is the reference order of magnitude of velocities and F is the reference order of magnitude of
forces per unit of mass in the system (2). Hereafter, we adopt the natural choice

U =
X
T , F =

X
T 2 .

The last reference quantity we introduce is reference massM, which for convenience we take as

M = ρ0X 3. (4)

Following [6], Equations (2) can be non-dimensionalised via the substitutions:

u =
u
U , x =

x
X , t =

t
T , f =

f
F , p =

p
FMX−2 , ρ0 =

ρ0

MX−3 ,

and take the form {
∂tu + J(u,∇u) = −∇p +D(u) + f,

∇ · u = 0,

where ∂t and ∇ are nondimensional derivatives with respect to variables t and x, and the
non-dimensionalised density ρ0 is unitary thanks to (4).
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2.1. Small Scale

By small scale we mean the system observed by the point of view of an observer whose
characteristic unit of measure are small, that is,

X = XS, T = TS.

Assume we split the initial conditions according to some reasonable rule (geometric, spectral. . . ),
in large and small scales

u|t=0 = uL (0) + uS (0) .

Small scales describe the fluid fluctuations at space distances of order XS; large scales those which
impact at the regional level (national, continental), namely, with structures with size of order XL.
We assume this separation of scales at time t = 0.

Given this separation of the initial datum, we split (2) into the following system of equations,
∂tuL + J(uL,∇uL) = −J(uS,∇uL)− 1

ρ0
∇pL +D(uL) + fL,

∂tuS + J(uL,∇uS) = −J(uS,∇uS)− 1
ρ0
∇pS +D(uS) + fS,

∇ · uL = 0, ∇ · uS = 0,

(5)

where fL corresponds to large scale external forces and fS incorporates the small scale inputs due to
ground irregularities. We assume that fS acts on small scale, namely, it includes variations at distances
of order XS, with changes in time in a range of order of TS. The property above can be reformulated
in the following way; the non-dimensionalisation of fS with reference magnitude given by FS is of
order one

fS = FS fS =
XS

T 2
S

fS, with fS of order one,

and fS has typical variations at distances and times of order one. We assume that similar properties
hold for the small scale dissipation term D(uS). In particular, under suitable assumptions on the initial
condition uS(0), the non-dimensionalised small scale velocity uS with reference magnitude given by
US is of order one as well:

uS = US uS =
XS

TS
uS, with uS of order one.

In addition, uS undergoes appreciable changes over time intervals and distances of order one,
in formulae

∂tuS,∇uS of order one,

where ∂t and ∇ are nondimensional derivatives with respect to variables t = t/TS and x = x/XS.

Remark 1. It is easy to check that the splitting (5) is consistent with (2), in the sense that if (uL, uS) is a
solution of (5), then u = uL + uS is a solution of (2). However, we point out that a priori one could have split
the equation in a different way, for instance, exchanging the role of J(uS,∇uL) and J(uL,∇uS): both splittings
would have been consistent with the initial equation.

In other words, the physics only prescribes the evolution of uL + uS and not the evolution of uL and uS
individually, and therefore the choice of a splitting for (2) corresponds de facto in the choice of a model for the
evolution of uL and uS separately, and vice versa.
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The main issue here is that not every splitting is also consistent with the heuristic idea that the two
components of the system model the dynamics of large and small structures separately. As far as this is concerned,
the splitting (5) is part of the trend called location uncertainty [1], which prescribes the evolution of uL in a way
that is substantially equivalent to the splitting of (2) at the level of velocity.

Nevertheless, motivated by the works in [15,19–21], we also point out as a possible alternative approach the
so-called stochastic advection by Lie transport. According to this scheme, the evolution of uL is prescribed in a
manner that is basically equivalent to the splitting of (2) at the level of vorticity, see, for instance, in [22] and
Theorem 1 below.

For the reader’s convenience, we rewrite system (5) in non-dimensionalised variables:
∂tuL + J(uL,∇uL) = −J(uS,∇uL)−∇pL +D(uL) + fL,

∂tuS + J(uL,∇uS) = −J(uS,∇uS)−∇pS +D(uS) + fS,

∇ · uL = 0, ∇ · uS = 0.

(6)

2.2. Intermediate Scale

Let us observe the same system from the viewpoint of an observer whose reference unit of
measure are

X = XM, T = TM.

Assume that the order of magnitude of US and UM are comparable:

XS

TS
∼ XM

TM
.

As a result, the non-dimensionalised velocity uS has the same order of magnitude, independently
of the choice of US or UM as reference unit of measure. However, the typical time of the fluctuations of
the small scale velocity uS is TS: this implies that non-dimensionalising the velocity with respect to
reference measure UM gives a non-dimensionalised velocity process with fluctuations of typical period

TS

TM
= ε.

Similarly, as uS changes in space over distances of order XS, the non-dimensionalised velocity
process with respect to reference measure UM changes in space over distances of order

XS

XM
= ε.

In formulae, the arguments above can be summarised as follows,

uS = UM uS =
XM

TM
uS, with uS of order one,

and

∂tuS,∇uS of order ε−1,

where ∂t and ∇ are nondimensional derivatives with respect to variables t = t/TM and x = x/XM.
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This motivates our main modelling assumption, see also in [23–25]. We replace the small scales by
a stochastic equation, Gaussian conditionally to the large scales; that is, we replace the second equation
in (6) by

∂tuS + J(uL,∇uS) = −
γ

ε
uS −∇pS +

σ√
ε

ẆS, (7)

where WS is a Brownian motion on the velocity space L2(D,Rn), with ∇ ·WS = 0 and possibly
additional boundary conditions, and γ, σ are positive constants. The condition ∇ ·WS = 0 is not
restrictive for our purpose, see Remark 4 below. For technical reasons we assume that the space
covariance of WS is sufficiently regular. For the sake of simplicity we take (cfr. also the discussion
in [26])

σWS(t, x) = ∑
k∈N

σk(x)βk
t , (8)

where {βk}k∈N is a family of independent standard Brownian motions on a given probability space
(Ω,A,P) and σk ∈ C2(D,Rn) for every k ∈ N with

∑
k∈N
‖∇∇σk‖L∞ < ∞. (9)

We make this modelling choice for a number of reasons: first, we work under the implicit
assumption that quickly varying fluctuations in the small scales dynamics are given by the combined
effect of a large number of weakly coupled factors, so that Central Limit Theorem applies. Therefore,
it is natural to model the self-interaction −J(uS,∇uS) and the external forcing fS with a Gaussian
source of noise.

The presence of the damping term − γ
ε uS simulates dissipation, where γ is of order one.

The coefficient ε−1 in front of the damping is motivated by the fact that, in the regime under
investigation, the velocity uS is of order one, while the dissipative forces acting on the fluid are
of order

FS

FM
= ε−1,

and therefore a coefficient ε−1 is needed to make damping of the same order of magnitude
as dissipation.

Finally, given the factor ε−1 in front of the damping, we observe that the coefficient in front of the
random term σ√

ε
ẆS, which models −J(uS,∇uS) and fS, is the only compatible with the fact that uS is

of order one, with typical period of fluctuation of order ε. Indeed, neglecting for simplicity the terms
J(uL,∇uS) and pS in the equation for uS and taking uS(0) = 0, one has

uS(t) =
∫ t

0
e−γε−1(t−r) σ√

ε
ẆS(r)dr

and the covariance between uS(t) and uS(s) is equal to

Cov(uS(t), uS(s)) =
σ2

2γ

(
e−γε−1|t−s| − e−γε−1(t+s)

)
,

in accordance with the fact that uS is of order one, as its variance is approximately equal to σ2

2γ ,
and has typical period of fluctuation of order ε, as the covariance between uS(t) and uS(s) decays
approximately as e−γε−1|t−s|. These two properties can not hold simultaneously with a random term
of the form σ

εα ẆS, α 6= 1/2, thus motivating our choice.
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Moreover, in [23] it is shown, under certain hypotheses on the spatial correlation of the noise,
that a model similar to that considered here is capable of representing in silico the main statistical
properties of two-dimensional turbulence: energy spectra, inverse energy cascade and direct enstrophy
cascade. This fact adds further justification to our modelling choice.

We remark that, in addition to the physical motivation just discussed behind our modelisation,
there is also a practical reason: indeed, the Ornstein–Uhlenbeck process v given by

∂tv = −γ

ε
v +

σ√
ε

ẆS

is mathematically very treatable, thus making possible explicit computations for (7).

Remark 2. A posteriori, we will see that the large scale non-dimensionalised large scale velocity process uL is of
order ε when expressed with respect to reference measure UM (see subsection below). Using this, together with
the fact that ∇uS is of order ε−1 when expressed with respect to UM, one has

J(uL,∇uS) of order one

at intermediate scales. On the other hand, for the quadratic self-interaction and external forces we have

J(uS,∇uS), fS of order ε−1

at intermediate scales. This suggests that the scattering term J(uL,∇uS) plays only a minor role in the dynamics
of uS, which can be made rigorous in some particular case.

2.3. Large Scale

By this we mean the same system, lower atmospheric layer over a large region, observed by a
satellite. The unit of measure are

X = XL, T = TL.

We assume now the following relation,

UM

UL
= ε−1,

which corresponds to

XM = XL.

Equation (7) becomes

∂tuS + J(uL,∇uS) = −
γ

ε2 uS −∇pS +
σ

ε2
˙̃WS, (10)

where W̃S satisfies W̃S(t, x) = ε1/2 WS(t/ε, x), in particular W̃S also is a Brownian motion.
Now go back to the equation for the large-scale velocity:

∂tuL + J(uL,∇uL) = −J(uS,∇uL)−
1
ρ0
∇pL +D(uL) + fL.
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Assume that the typical order of magnitude of uL is UL, that is, the large-scale structures travel
a distance of order XL in a time of order TL. This means that the non-dimensionalisation of uL with
reference magnitude given by UL is of order one

uL = UL uL =
XL

TL
uL, with uL of order one,

and also

∂tuL,∇uL of order one,

where ∂t and ∇ are nondimensional derivatives with respect to variables t = t/TL and x = x/XL.
Similarly, the forces acting on uL due to pressure, dissipation and external sources are of

magnitude FL, so that their non-dimensionalisation with reference magnitude given by FL is of
order one as well. Therefore, looking at the whole system in non-dimensionalised variables, with unit
of measure XL, TL, it takes the following form (recall that by assumptions W̃S is divergence-free),

∂tuL + J(uL,∇uL) = −J(uS,∇uL)−∇pL +D(uL) + fL,

∂tuS + J(uL,∇uS) = − γ
ε2 uS −∇pS +

σ
ε2

˙̃WS,

∇ · uL = 0, ∇ · uS = 0.

(11)

To ease the notation we denote WS = W̃S in the following.

Remark 3. Looking at (11) above at large scales, one immediately notice that all the terms in the equation
for uL are of order one, except J(uS,∇uL). Indeed, as the non-dimensionalised small scale velocity uS is of
order ε−1 when expressed with respect the reference velocity UL, the term J(uS,∇uL) is of order ε−1 as well.
However, for small ε, the quickly varying-in-time of uS has an averaging effect on the term J(uS,∇uL), which
thus converges (in a suitable sense) to noise of transport type, see subsection below.

2.4. Asymptotic Behaviour of Coupled System

As already said, we are interested in the large scale component uL of (11) above. In particular our
goal is to find a new equation for uL which is closed in uL, namely, we do not want to solve for uS in
order to compute the coupling term −J(uS,∇uL). We notice that, in the limit as ε→ 0, the small-scale
velocity is well approximated by the stationary Ornstein–Uhlenbeck process vε given by

∂tvε = − γ

ε2 vε +
σ

ε2 ẆS,

almost independently on the initial condition uS(0), as time correlation decays as exp(−γε−2t).
The process vε formally converges to a white-in-time noise, because of the following computation,

∫ t

0
vε

s ds =
∫ t

0
vε

0e−γε−2sds +
∫ t

0

(∫ s

0
e−γε−2(s−r) σ

ε2 ẆS(r)dr
)

ds

=
∫ t

0
vε

0e−γε−2sds +
∫ t

0

(∫ t

r
e−γε−2(s−r)γε−2ds

)
σ

γ
ẆS(r)dr

=
∫ t

0
vε

0e−γε−2sds +
∫ t

0

(
1− e−γε−2(t−r)

) σ

γ
ẆS(r)dr

=
σ

γ
WS(t) + O(ε).

The asymptotic behaviour of (11) as ε→ 0 can therefore be studied in a rigorous mathemathical
framework as an example of Wong–Zakai approximation principle for stochastic PDEs. Starting from
the seminal work of Wong and Zakai [27], a number of results have been obtained in this direction:
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we mention among others the works in [28–33] and, more recently, those in [34,35] based on rough
path theory. The aforementioned results suggest, as a rule of thumb, to interpret the formal limit
of vε as a white-in-time noise in Stratonovich sense, that is, for every suitable process ϕ and some
appropriate notion of convergence

∫ t

0
ϕsvε

s ds→
∫ t

0
ϕs

σ

γ
◦ ẆS(s)ds

= lim
max |si+1−si |→0,

0=s1<···<si<···<sN=t

N−1

∑
i=0

ϕsi+1 + ϕsi

2
σ

γ
(WS(si+1)−WS(si)) ,

where the latter is a limit in mean square.
Therefore, the candidate limit equation for the sole large scale velocity uL is the following,{

∂tuL + J(uL,∇uL) = − σ
γ J(◦ẆS,∇uL)−∇pL +D(uL) + fL,

∇ · uL = 0,
(12)

where ◦ẆS stands for stochastic integration in the Stratonovich sense. In the particular case

σWS(t, x) = ∑
k∈N

σk(x)βk
t ,

by bilinearity of J Equation (12) above takes the more explicit form{
∂tuL + J(uL,∇uL) = −γ−1 ∑k∈N J(σk,∇uL) ◦ β̇k

t −∇pL +D(uL) + fL,

∇ · uL = 0.

Remark 4. In the argument above we have used the approximation uS ∼ vε, thus neglecting the terms
J(uL,∇uS) and∇pS, which is indeed the case if∇ ·WS = 0. We point out that in the general case∇ ·WS 6= 0
the process uS does not converge to ◦ẆS, but thank to the presence of the stochastic pressure term it converges to

˙◦Wσ
S , where Wσ

S is the solenoidal part in the Helmhotz decomposition of WS, satisfying

∇ ·Wσ
S = 0, WS −Wσ

S is a gradient.

In particular, the limit Equation (12) would have been the same, except for Wσ
S replacing WS, and therefore

the assumption ∇ ·WS = 0 is not restrictive when investigating the limit behaviour of the large-scale
velocity process.

Remark 5. By a physical point of view, taking the limit ε→ 0 in (11) corresponds to implicitly assume infinite
separation of time scales. This hypothesis, although not matching strictly speaking with reality, constitutes a
sufficiently good approximations and is a very practical working assumption. This also motivates the interest in
the identification of the rate of convergence of Wong–Zakai approximations to their limits, see for instance [29,36].
However, we do not treat this problem here.

We summarise the heuristic discussion above with the following.

Conjecture 1. Fix T > 0. For every ε > 0 denote uε
L the solution of (11) on the time interval [0, T] and let uL

be the solution of (12) on the time interval [0, T]. Then, the following convergence in probability holds,

uε
L → uL, as ε→ 0,

where uε
L and uL are intended as random variables in C([0, T], L1(D,Rn)).
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A few remarks are in order.
First of all, we are tacitly assuming well-posedness of (11) and (12); otherwise, the result just

conjectured may not have a precise meaning. A global well-posedness result in this abstract setting,
however, is not available: the theory of incompressible equations from fluid-dynamics is very different
depending on the dimension n, on the type of dissipation and on the boundary conditions. Therefore,
it is impossible to unify everything in one single theorem, and each case must be treated separately.

At least two different situation are worth of special mention. The first is the case where
well-posedness holds globally for (12), but only locally for (11), up to a (possibly random) time
τε converging to ∞ as ε→ 0. In this case, the convergence of Conjecture 1 may still hold if we replace
uε

L with its stopped version uε
L(· ∧ τε): we are in front of global well-posedness in the limit. The second

scenario is when (12) is globally well-posed, but its deterministic counterpart (2) is not: in some
sense, the presence of the noise regularises the equations. Regularisation by noise has been widely
investigated (see in [37] and the references therein) and is still an active topic of research.

The second remark concerns the strategy of the proof of convergence uε
L → uL. As already said,

the validity of this result heavily depends on many factors, so we do not aim to give an universal
approach to this problem, but rather some ideas. If dissipation in the large scale component of (11)
is sufficiently strong, then the evolution semigroup eDt is regularising and one can consider the
mild formulation

uε
L(t) =−

∫ t

0
eD(t−s) J(uε

L(s),∇uε
L(s))ds−

∫ t

0
eD(t−s) J(uε

S(s),∇uε
L(s))ds

−
∫ t

0
eD(t−s)∇pε

L(s)ds +
∫ t

0
eD(t−s)fL(s)ds + eDtuL(0).

If the quantities eD(t−s) J(uε
L(s),∇uε

L(s)), eD(t−s) J(uε
S(s),∇uε

L(s)), etc. are sufficiently
well-behaved, then one can prove the desired convergence arguing as in some of the available works
on Wong–Zakai principle we already mentioned.

Another strategy, that is specific for equations of transport type, may be the following.
For simplicity, and having in mind Remark 1, we present the idea contained in [22] for 2D Euler
equations on the two dimensional torus D = T2 in vorticity form{

∂tω + u · ∇ω = 0,

u = K ∗ω,

where K is the Biot–Savart kernel on T2, so that ∇ · u = 0 and ∇× u = ω. Splitting the system above
in large scale and small scale and non-dimensionalising we obtain

∂tω
ε
L + uε

L · ∇ωε
L = −uε

S · ∇ωε
L,

∂tωS + uε
L · ∇ωε

S = − γ
ε2 ωε

S +
σ
ε2 ẆS,

uε
L = K ∗ωε

L, uε
S = K ∗ωε

S.

(13)

The large-scale component of the system above has an explicit solution:

ωε
L(t, x) = ωL(0, (Φε

t )
−1(x)),

where ωL(0) is the initial condition and Φε(x), x ∈ T2 are the characteristics, which are given by the
solution of {

∂tΦε
t (x) = uε

L(t, Φε
t (x)) + uε

S(t, Φε
t (x)),

Φε
0(x) = x,
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and a similar formula holds for the limit equation. Therefore, it is possible to deduce a convergence
result for the vorticity ωε

L (and as a consequence also for the velocity uε
L) from a convergence result at

the level of characteristics. To be precise, in [22] it is proved the following.

Theorem 1. Let T > 0 and take WS such that (8) and (9) hold. For a zero-mean initial vorticity ωL(0) ∈
L∞(T2), let ωε

L be the solution of (13) and let ωL be the unique solution of the stochastic equation
∂tωL + uL · ∇ωL = ◦B · ∇ωL,

uL = K ∗ωL,

ωL|t=0 = ωL(0),

where B = −K ∗WS. Then, the process ωε
L converges as ε → 0 to ωL in the following sense; for every

f ∈ L1(T2):

E
[∣∣∣∣∫T2

ωε
L(t, x) f (x) dx−

∫
T2

ωL(t, x) f (x) dx
∣∣∣∣]→ 0

as ε→ 0, for every fixed t ∈ [0, T] and in Lp([0, T]) for every finite p. In addition, the velocity field uε
L = K ∗ωε

L
converges as ε→ 0, in mean value, to uL = K ∗ωL, as random variables in C([0, T], L1(T2,R2)).

3. Examples

In this section, we give some examples of the general scheme developed so far. We provide
a stochastic model reduction for two systems: two-dimensional Navier–Stokes equations and
three-dimensional Primitive equations. A mathematically rigorous derivation of the results stated in
this section is omitted here; we will address this issue in future works.

3.1. 2D Navier–Stokes Equations

The first example we treat is the 2D Navier–Stokes equations:{
∂tu + (u · ∇)u = ν∆u− 1

ρ0
∇p + f ,

∇ · u = 0,
(14)

The spatial domain is the two-dimensional sphere D = R S2, where R is the radius of the Earth.
We aim to use this model to describe the evolution of the lower layer atmosphere. The interaction of
the atmosphere with the surface of the Earth (either the ground or the ocean) affects the evolution of
the former, introducing small scale perturbations of the flows via the external force f . We neglect all
other external sources of force, that is a strong idealisation, but one can easily adapt the argument to
the general case.

We assume, for this model, the following small scales.

TS = 1 s, XS = 10 m.

To fit with our theory, the large-scale reference unit of measure must satisfy

TL

TS
=

(
XL

XS

)2
.

We therefore make the choice

TL = 1 d, XL = 3 km,

and as a consequence we have TM ∼ 5 min.
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Splitting (14) into large scale and small scales, and assuming that f acts on small scales only,
we obtain the following system.

∂tuL + (uL · ∇)uL = −(uS · ∇)uL + ν∆uL − 1
ρ0
∇pL,

∂tuS + (uL · ∇)uS = −(uS · ∇)uS + ν∆uS − 1
ρ0
∇pS + f ,

∇ · uL = 0, ∇ · uS = 0.

Arguing as in Section 2, looking at the previous system from the point of view

T = TL, X = XL,

we arrive to the following non-dimensionalised system.
∂tuL + (uL · ∇)uL = −(uS · ∇)uL + νL∆uL −∇pL,

∂tuS + (uL · ∇)uS = − γ
ε2 uS −∇pS +

σ
ε2 ẆS,

∇ · uL = 0, ∇ · uS = 0,

where ε−1 ∼ 300 and γ, σ, νL are non-dimensional coefficients. The spatial covariance of the noise
WS takes account of the external sources of perturbation, like irregularities of the ground, so that the
production of noise is more important near the locations of the sources.

According to our theory, the limit equation for the sole large scale velocity uL is given by{
∂tuL + (uL · ∇)uL = − σ

γ (◦ẆS · ∇)uL + νL∆uL −∇pL,

∇ · uL = 0,

which is a stochastic Navier–Stokes equation with Stratonovich transport noise. This equations have
been studied on D = R2 in [10], and global well-posedness holds under relatively mild assumptions
on the coefficients for every L2 divergence-free initial datum uL(0), see also [8,38]. We remark that a
Wong–Zakai result for 2D Navier–Stokes equations in a setting slightly different from ours has already
been obtained, see for instance [34].

3.2. 3D Primitive Equations

The second example we present is the 3D Primitive Equations:
∂tu + (u · ∇H)u + w∂zu = − 1

ρ0
∇H p + ν∆u + f ,

∂z p = −gρ0,

∇H · u + ∂zw = 0.

(15)

The constant ν is the viscosity coefficient and g is the intensity of the gravitational acceleration on
Earth, which is approximated to a constant: g ∼ 9.81 m/s2.

These equations are used to describe the evolution of a three-dimensional fluid on domains whose
ratio between the vertical and the horizontal typical length is small. A classical example is a portion of
ocean with size of several hundreds of kilometres: neglecting the curvature of the Earth, the domain
under investigation therefore has the form

D =
{
(x, z) ∈ D′ × rR : h(x) ≤ z ≤ 0

}
,

where D′ ⊆ rR2 is a portion of Earth surface and h : D′ → [−r, 0] is a function which describe the
depth of the ocean. The quantity r is approximately 1 to 10 km and the typical diameter of D′ is 100 to
1000 km.
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In Equation (15), the symbol ∇H stands for the horizontal gradient: ∇H = (∂x1 , ∂x2), while ∆
denotes the full Laplacian: ∆ = ∂2

x1
+ ∂2

x2
+ ∂2

z . The unknown u : R+ × D → R2 is the horizontal
velocity, and the vertical velocity w : R+ × D → R is a diagnostic variable, i.e., it is obtained from u,
continuity equation ∇H · u + ∂zw = 0 and boundary conditions:

w(t, x, z) = w(t, x, 0) +
∫ 0

z
∇H · u(t, x, z′)dz′.

A common choice of boundary conditions is the following,
(u, w) · n̂ = 0, (x, z) ∈ ∂D,

(u, w) = 0, z = h(x),

∂zu = 0, z = 0.

(16)

The first line of (16) is the so-called impermeability condition, here n̂ stands for the (outward)
vector at point (x, z) ∈ ∂D normal to ∂D. The second line is a non-slip boundary condition at the ocean
bottom and the last line of (16) is the free-layer boundary condition at the ocean surface: these last two
conditions describe, respectively, the interaction of the ocean with the solid ground at the bottom and
with the atmosphere on the top.

The forcing term f in (15) encodes external forces acting horizontally on the fluid, like, for instance,
the Coriolis force:

fCor = −2 sin(θ)ΩEarth ẑ× u = −2 Ω× u,

where θ is the latitude of the point (x, z), ΩEarth ∼ 7.27× 10−5s−1 is the angular velocity of the Earth
and Ω = sin(θ)ΩEarth ẑ. As in the previous case denote fS the inputs due to interaction of the fluid
with coastal borders and ocean bottom. Other external sources can be taken into account but we decide
to neglect them for the seek of simplicity, so that f = fCor + fS.

We remark that the first equation in (15) is the momentum equation for the horizontal velocity
u of the fluid only. The momentum equation for the vertical velocity w is replaced by the so-called
hydrostatic balance condition ∂z p = −gρ0. Hydrostasy can be derived by vertical momentum equation
under the approximation of small vertical acceleration and advection compared to gravity, which is
usually the case in the ocean.

We split (15) into large scale and small scale as usual: we assume that the small scale velocity field
(uS, wS) satisfies boundary conditions (16) and the momentum equations:

∂tuS + (uL · ∇H)uS + wL∂zuS = −(uS · ∇H)uS − wS∂zuS

− 1
ρ0
∇H pS + ν∆uS − 2 Ω× uS + fS,

∂twS + (uL · ∇H)wS + wL∂zwS = −(uS · ∇H)wS − wS∂zwS

− 1
ρ0

∂z pS + ν∆wS − gS,

∇H · uS + ∂zwS = 0.

A little comment is in order. Indeed, the second equation of the system above is the vertical
momentum equation for the small scale velocity field. We do not assume hydrostatic balance at this
level, as here vertical acceleration and advection are not small compared to gravity, but rather the
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contrary is true. The term gS stands for the vertical forces acting on the system at small scales and it is
small. The full system has the following expression.

∂tuL + (uL · ∇H)uL + wL∂zuL = −(uS · ∇H)uL − wS∂zuL

− 1
ρ0
∇H pL + ν∆uL − 2 Ω× uL,

∂tuS + (uL · ∇H)uS + wL∂zuS = −(uS · ∇H)uS − wS∂zuS

− 1
ρ0
∇H pS + ν∆uS − 2 Ω× uS + fS,

∂twS + (uL · ∇H)wS + wL∂zwS = −(uS · ∇H)wS − wS∂zwS

− 1
ρ0

∂z pS + ν∆wS − gS,

∂z pL = −gρ0,

∇H · uL + ∂zwL = 0, ∇H · uS + ∂zwS = 0.

Notice that the equation ∂z pL = −gρ0 plays the role of vertical momentum equation for the large
scale velocity. By imposing this condition, we have implicitly assumed ∂z pS = 0, that is indeed the
case at points (x, z) ∈ D distant from the boundary ∂D (sources of randomness are localised at ∂D).

Applying our main modelling procedure to the small scale component of the system above and
non-dimensionalizing with respect to large scale unit of measure we get

∂tuL + (uL · ∇H)uL + wL∂zuL = −(uS · ∇H)uL −wS∂zuL

−∇HpL + νL∆uL − 2 Ω× uL,

∂tuS + (uL · ∇H)uS + wL∂zuS = − γ
ε2 uS −∇HpS +

σ
ε2 ẆS,x,

∂twS + (uL · ∇H)wS + wL∂zwS = − γ
ε2 wS − ∂zpS +

σ
ε2 ẆS,z,

∂zpL = −gL,

∇H · uL + ∂zwL = 0, ∇H · uS + ∂zwS = 0.

The limit equation for the sole large scale velocity is
∂tuL + (uL · ∇H)uL + wL∂zuL = − σ

γ (◦ẆS,x · ∇H)uL − σ
γ ◦ ẆS,z ∂zuL

−∇HpL + νL∆uL − 2 Ω× uL,

∂zpL = −gL,

∇H · uL + ∂zwL = 0,

which is a 3D stochastic Primitive equation with Stratonovich transport noise. This equations have
been studied by [17], where well posedness in the case of flat topography is proved under suitable
assumptions on the noise and the initial condition.
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36. Brzeźniak, Z.; Flandoli, F. Almost sure approximation of Wong-Zakai type for stochastic partial differential
equations. Stoch. Process. Their Appl. 1995, 55, 329–358. [CrossRef]

37. Flandoli, F. Random Perturbation of PDEs and Fluid Dynamic Models; Lecture Notes in Mathematics; Springer:
Heidelberg, Germany, 2011; Lectures from the 40th Probability Summer School held in Saint-Flour, 2010,
École d’Été de Probabilités de Saint-Flour.

38. Flandoli, F.; Gatarek, D. Martingale and stationary solutions for stochastic Navier-Stokes equations.
Probab. Theory Relat. Fields 1995, 102, 367–391. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/17442508808833533
http://dx.doi.org/10.1080/17442508908833554
http://dx.doi.org/10.1007/s00028-006-0280-9
http://dx.doi.org/10.1007/s00028-018-0473-z
http://dx.doi.org/10.1016/0304-4149(94)00037-T
http://dx.doi.org/10.1007/BF01192467
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Main Results
	Small Scale
	Intermediate Scale
	Large Scale
	Asymptotic Behaviour of Coupled System

	Examples
	2D Navier–Stokes Equations
	3D Primitive Equations

	References

