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Abstract: There are two main types of methods available to obtain precipitable water vapor (PWV)
with high accuracy. One is to assimilate observations into a numerical weather prediction (NWP)
model, for example, the Weather Research and Forecasting (WRF) model, to improve the accuracy of
meteorological parameters, and then obtain the PWV with improved accuracy. The other is the direct
fusion of multi-source PWV products. Regarding the two approaches, we conduct a comparison
experiment on the West Coast of the United States of America with the data from May 2018, in which
the WRF data assimilation (DA) system is used to assimilate the Global Navigation Satellite System
(GNSS) PWV, while the method by Zhang et al. to fuse the GNSS PWV, ERA5 PWV and MODIS
(moderate-resolution imaging spectroradiometer) PWV. As a result, four groups of PWV products are
generated: the assimilated GNSS PWV, the unassimilated GNSS PWV, PWV from the fusion of the
GNSS PWV and ECWMF (European Centre for Medium-Range Weather Forecasts) ERA5 (ECWMF
Reanalysis 5) PWV, and PWV from the fusion of the GNSS PWV, ERA5 PWV and MODIS PWV.
Experiments show that the data assimilation based on the WRF model (WRFDA) and adopted fusion
method can generate PWV products with similar accuracy (1.47 mm vs. 1.52 mm). Assimilating the
GNSS PWV into the WRF model slightly improves the accuracy of the inverted PWV by 0.18 mm.
The fusion of the MODIS PWV, GNSS PWV and ERA5 PWV results in a higher accuracy than the
fusion of GNSS PWV and ERA5 PWV by a margin of 0.35 mm. In addition, the inland canyon
topography appears to have an influence on the inversion accuracy of both the methods.

Keywords: data fusion; WRF data assimilation; precipitable water vapor (PWV)

1. Introduction

Water vapor makes up less than 4% of the atmosphere’s mass, but it plays an important role in
atmospheric processes at all scales. When passing through the neutral atmosphere, electromagnetic
waves will be affected by the water vapor, resulting in velocity delay and path bending. Precipitable
water vapor (PWV) is the most commonly used term to express the amount of atmospheric water vapor.
It is defined as the total atmospheric water vapor contained in a vertical column of unit cross-sectional
area extending between any two specified levels and commonly expressed in terms of the height to
which that water substance would stand if completely condensed and collected in a vessel of the same
unit cross section [1,2]. Obtaining high-precision precipitable water vapor is conducive to not only the
description of the atmospheric processes, but also the high-precision inversion and interpretation of
Earth observations. There are many different sources of PWV products, such as numerical weather
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prediction (NWP) models, for example, ECWMF (European Centre for Medium-Range Weather
Forecasts), NCEP (National Centers for Environmental Prediction), geodetic observations based on
electromagnetic waves, for example, GNSS (Global Navigation Satellite System), and satellite remote
sensing data, for example, MODIS (moderate-resolution imaging spectroradiometer). PWV from
different sources have different precision and spatial-temporal resolutions. The GNSS PWV has the
advantages of high temporal resolution, high accuracy and weather-proof, but its spatial resolution is
sparse. The PWV generated by NWP models has high resolution, but its accuracy is generally lower
than that of the GNSS PWV. In order to obtain PWV products with both high precision and high
spatial-temporal resolution, many data fusion methods have been proposed. They can be divided
into two categories. The first one is the data assimilation (DA) method, in which the observed PWV
data is assimilated into an NWP model, for example, the DA based on the Weather Research and
Forecasting (WRF) model. As a result, the accuracy of the predicted meteorological parameters
including temperature, pressure and relative humidity is improved, as well as the accuracy of the
inverted PWV. The other is to directly use mathematical methods to generate high-precision PWV
products by fusing multi-source PWV data.

The data assimilation based on an NWP model can generate the water vapor products with
improved accuracy, and improve the weather forecast accuracy. One of the NWP models is the WRF
model, which was developed and maintained by Mesoscale and Microscale Meteorology (MMM)
Laboratory of the National Center for Atmospheric Research (NCAR). It uses numerical weather
prediction products (such as NCEP FNL (final), etc.) as its background field, and actual observations
(such as GNSS PWV/zenith total delay (ZTD)) as assimilation data source to improve the background
field accuracy. The ZTD can be divided into two part, one is the zenith hydrostatic delay (ZHD),
another is the zenith wet delay (ZWD). Sharifi et al. [3] conducted a GNSS PWV assimilation experiment
based on the WRF model in northern Iran and found that the assimilation of GNSS PWV could improve
rainfall forecast accuracy. Mateus et al. [4] studied the assimilation of InSAR (interferometric synthetic
aperture radar) PWV into the WRF model and found that the bias of the PWV forecast was corrected
after the assimilation, and the precipitation accuracy of small or moderate rain was improved even
9 h after the assimilation. Saito et al. [5] assimilated GNSS PWV into the Japan Meteorological
Agency (JMA) operational mesoscale model in Tokyo, and it showed some improvement in weather
forecast. Other studies include the assimilation of ZTD into NWP models [6–9]. On a wider front on the
water-related applications, the data assimilation is attracting significant attention, for example in [10–12].
Wang et al. [10] improved real-time forecasting of water quality indicators with a combination of
process-based models and data assimilation techniques. Wang et al. [11] took both the spatial and
temporal relations into consideration to develop models of correcting water level outputs in the
Singapore Regional Model (SRM) and its coarse version (SRMC). Karri and Babovic [12] enhanced tidal
prediction performance through the use of the data assimilation tool OpenDA in which the ensemble
Kalman filter is integrated into a hydrodynamic model.

In addition to the data assimilation approach, high-precision PWV can also be obtained by the
fusion of multi-source PWV products. Li [13] fused GNSS PWV and MODIS PWV with inverse
distance weighting method to produce a 1 km × 1 km PWV product. Alshawaf et al. [14] fused InSAR
PWV and GNSS PWV by a geostatistical data fusion approach based on the method of fixed-rank
Kriging. Zhang et al. [2] fused ECWMF ERA5 (ECWMF Reanalysis 5) PWV, MODIS PWV and GNSS
PWV using a spherical cap harmonic model and Helmert variance component estimation to generate
high-precision PWV products. These approaches are all for the PWV product fusion. Other approaches
with neural networks and neural networks-chaos theory combination have been developed to improve
the forecast accuracy of current speeds in the Danish Oresund Strait [15] with neural networks, and the
accuracy of tidal prediction at measurement stations in the Singapore Regional Model domain with
time-delay neural networks combined with chaos theory [16].

In this paper, the data assimilation based on the WRF model (WRFDA) and the method of
Zhang et al. [2] are used to process the PWV data in the western United States of America, and various
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results are compared. The assessment of these two methods by comparing the differences in the
PWV products could help data assimilation researchers to better understand new fusion methods and
possibly obtain more accurate assimilation data sources; on the other hand, it could help data fusion
researchers to better understand the data assimilation approach and use data of various sources better
in the fusion.

In the following, the research area and the multi-source PWV data are presented first. The WRFDA
approach and the data fusion method by Zhang et al. [2] are briefly discussed in Section 3. Section 4
presents the results, followed by the conclusion in Section 5.

2. Research Area and Multi-Source Data

2.1. Research Area

The research area is shown in Figure 1, with latitude from 33◦ N to 38◦ N and longitude from
118◦ W to 123◦ W, covering southern California and part of Nevada. The area contains Central
Valley stretching through the middle of California from just north of Sacramento to Los Angeles.
The Sierra Nevada in eastern California contains a large number of peaks over 3962 m of altitude,
including Mount Whitney (4421 m). There are more than 20 GNSS stations, two radiosonde stations
and abundant MODIS data in this range, which is well suited for experimenting the numerical DA and
data fusion methods. In addition, the topography of the study area is very undulating, which brings
some challenges to the experiment.

2.2. Multi-Source Data

The data used in this paper include reanalysis data from the numerical weather prediction model
(e.g., ECWMF, NCEP), the GNSS PWV and the MODIS PWV. In the data assimilation experiment,
because the default background field error file provided by WRFDA was generated based on NCEP
data, we choose NCEP FNL (final) Operational Global Analysis Data as the background data with
a temporal resolution of 6 h and a spatial resolution of 1◦ × 1◦. The reanalysis data is produced by
the Global Data Assimilation System (GDAS). In the data fusion experiment, we use the PWV data
provided by ECWMF ERA5, which has a temporal resolution of 1 h and a spatial resolution of about
31 km.

The GNSS PWV data used in the experiment were derived from SuomiNet Network, with a time
resolution of 30 min. The specific GNSS PWV processing and acquisition method can be referred to
Zhang et al. [2].

The MODIS PWV includes NIR (near infrared) PWV and IR (infrared) PWV, with resolutions
of 1 km and 5 km, respectively. The accuracy of the NIR PWV is higher than that of the IR PWV.
The MODIS PWV is vulnerable to cloud and rain, and its quality is relatively poor against GNSS PWV.
Therefore, it is necessary to assess its quality. First, the quality control information provided with the
MODIS PWV is used to screen out the PWV data under cloudy and sunny weather. Then, negative
PWV and abnormally large PWV are deleted. Detailed data processing methods are presented in
Zhang et al. [2]. Altitude information of the MODIS PWV is obtained by interpolating STRMDEM
(Shuttle Radar Topography Mission Digital Elevation Model) Version 4.1 data which has a resolution
of 250 m [17,18].

In this paper, data from two radiosonde stations is also used. The data of the station near VAN6 is
in the IGRA2 (Integrated Global Radiosonde Archive) radiosonde data files, while that of the station
near P224 is provided by the University of Wyoming.
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Figure 1. (a) Research area, the triangle is for the Global Navigation Satellite System (GNSS) station,
and the star for the radiosonde station; (b) a map of the USA showing the research area within
the square.
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3. Method

3.1. WRF Data Assimilation

In the experiments of this paper, WRF Version 3.7 and WRFDA 3-D variational model are adopted
to assimilate the GNSS PWV provided by SuomiNet data [19]. Considering that the accuracy of
the GNSS PWV is generally at 1–2 mm level, those with accuracy lower than 2 mm are excluded.
The background data is from the NCEP FNL (final) Operational Global Analysis whose time resolution
is 6 h and spatial resolution is 1◦ × 1◦. The pressure of the top layer is set to 50 hPa. There are 10 layers
in the planetary boundary layer (PBL). In the vertical direction, 37 isobaric layers are formed, and all
the altitudes in the experiments are converted into the normal height system. The flowchart of the
WRFDA experiment is shown is Figure 2.
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The background field would be processed by the WPS (WRF preprocess system) and real.exe.
The GNSS PWV is written in the Little_R format. The default background data error file be.dat
of WRFDA is used. The MODIS PWV is not assimilated into the WRF model due to its poor
accuracy. When the GNSS PWV file, background data and background error information file are
prepared, we run WRFDA. The results are then processed by NCAR (National Centre for Atmospheric
Research) Command Language (NCL) [20], and the PWV after the assimilation is obtained by using
the following equation:

PWV = Π × ZWD (1)

where Π is a dimensionless conversion factor, and it is calculated by Equation (2):

Π =
106

ρwaterRw(k/Tm + k′)
(2)

where ρwater is the density of water, Rw = 461 (J × kg−1
× K−1) the water vapor ratio constant,

k = (3.776± 0.014) × 105 K2
× hPa, k′ = 16.48 K× hPa−1 and Tm is the weighted average temperature

computed with the method by Yao et al. [21]. The ZWD in Equation (1) is calculated by the method
presented in Vedel and Huang [22].

ZWD =
∑ p× q

0.622
× (k1 +

k2

T
) ×

h
T

(3)



Water 2020, 12, 2943 6 of 13

where p is the pressure in Pa, q the specific humidity in g/g, T the temperature in K, k1 = 2.21× 10–7 K/Pa,
k2 = 3.73 × 10−3 K2/Pa, h the layer height in m.

It is noted that the assimilation results are unrelated to the physical parameter setting of the
WRF [23]. However, it would still be useful to examine whether the grid resolution used in the
assimilation experiment has any significant effect on the results. As such, we set four grid resolutions
of 5000 m, 7500 m, 10,000 m and 12,500 m, respectively, along the east-west and south-north directions
with the center at (35.5◦ N, 120.5◦ W), and the grid numbers are thus 112 × 112, 74 × 74, 56 × 56
and 46 × 46, respectively. Radiosonde data is treated as true value. Since the radiosonde is launched
only at 0:00 UTC and 12:00 UTC daily, the experiments can only be made at those times (by the way,
the radiosonde data at 12:00 UTC on 6 May and 0:00 UTC on 7 May is missing). With this setup, we can
obtain four PWV result sets with respect to the four grid resolutions at the radiosonde locations.

In this article, bias means the average of the data, STD means the standard deviation, and RMS
means the root mean square. Bias, STD and RMS are used as the accuracy measures which are
computed by Equations (4)–(6), respectively.

Bias = 1/N

N∑
i=1

(x̃i − xi) (4)

STD =

√√√
1/N

N∑
i=1

(Di−u)2; Di = (x̃i−xi); u = 1/N

N∑
i=1

Di (5)

RMS =

√√√
1/N

N∑
i=1

(x̃i− xi)
2 (6)

where x̃i is the reference value, xi denotes the value estimated by the model and N is the number
of observations.

The differences between the inverted and reference PWV values for the four grid resolutions,
given in Table 1, appear only at the second decimal place, which indicates that the grid resolution has
little influence on the accuracy of the inverted PWV.

Table 1. Differences between the WRFDA PWV with respect to the grid resolution and the radiosonde
PWV, unit: mm.

Resolution (m) 5000 7500 10,000 12,500

Bias 1.14 1.19 1.20 1.15
STD 1.57 1.55 1.57 1.60
RMS 1.91 1.93 1.94 1.94

Secondly, we also checked the temperature (T), pressure (P) and relative humidity (RH) of
the experimental results by using the radiosonde data, and the differences are listed in Table 2.
The differences between the maximum and minimum RMS values of the four groups were 0.01 K,
0.02 hPa and 0.1%, respectively, for T, P and RH. It can be seen that the resolution of the assimilation
grid has little influence on inverted temperature, pressure and relative humidity.
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Table 2. Differences between the WRFDA output temperature (T), pressure (P) and relative humidity
(RH) with respect to the grid resolution and radiosonde data.

Resolution (m) 5000 7500 10,000 12,500

T (K)
Bias −0.08 −0.08 −0.08 −0.09
STD 1.74 1.73 1.73 1.72
RMS 1.74 1.73 1.73 1.73

P (hPa)
Bias 0.56 0.57 0.56 0.55
STD 0.59 0.60 0.63 0.60
RMS 0.81 0.83 0.84 0.82

RH (%)
Bias 1.82 1.81 1.83 1.80
STD 13.38 13.34 13.36 13.34
RMS 13.49 13.45 13.47 13.46

To sum up, within the experimental area, the resolution of the assimilation grid has little influence
on the accuracy of the inverted PWV, temperature, pressure and relative humidity from the assimilation
results. Since the grid resolution of 5000 m results in the minimum RMS for the inverted PWV, in the
subsequent experiments, we set the grid resolution to 5000 m in the assimilation.

3.2. Data Fusion

We use the method by Zhang et al. [2] in this paper to perform data fusion experiments since the
combined PWV obtained by this method can not only reflect the features of the individual PWV maps
but also suppress regional deviations. The core idea is to use a spherical cap harmonic (SCH) model to
describe the PWV field on the sphere and to use the Helmert variance component estimation (HVCE)
to determine the weights for data of different sources.

Before fusion, data from different sources need to be corrected for systematic differences. We use
the GNSS PWV data to calibrate the ERA5 PWV and MODIS PWV data since the accuracy of the
GNSS PWV is as high as 1–2 mm [13,24–26]. The way to determine the systematic bias is as follows.
First, an SCH model is used to fit the MODIS (or ERA5) PWV, and then the fitted model is used to
calculate the PWV at the GNSS stations. We take the average of the differences between GNSS PWV
and MODIS (or ERA5) PWV as the systematic bias.

The SCH model is of the following form:

PWV =
N∑

k=0

k∑
m=0

a(
a
r
)

nk(m)+1

Pm
nk(m)

(cos θ) · {gm
k cos(mλ) + hm

k sin(mλ)} (7)

where a = 6,378,137 m is the radius of the Earth, r, θ, λ are the geocentric distance, co-latitude and
longitude of a point on the Earth’s surface in the spherical coordinate system. The PWV data will be
expanded onto the sphere of radius equal to r. Pm

nk(m)
is the associative Legendre function of the first

kind of boundary value problem. nk(m) and m are the order and degree of the SCH model, respectively.
k is an integer used to label the order of nk(m). According to boundary conditions proposed by
Haines [27], m needs to be a positive integer, nk(m) is real and k ≥ m ≥ 0. N is the highest order of
the SCH model expansion. gm

k and hm
k are the model coefficients representing the amplitude of the

harmonic which are to be determined. When m is equal to 0, sin(mλ) is equal to 0, it is impossible to
determine the value of h0

k . Thus, there are (N + 1)2 coefficients in total to be determined.
As data fusion involves data from different sources with different accuracy, they should be

weighted appropriately. The a priori information on the data accuracy is usually not well known,
the posterior method would be needed to determine the weight relation of various data [28]. A common
one is the variance component estimation technique, which not only can estimate the variances of
observations with different accuracy, but also provides a regularization method [29]. Here the Helmert
variance component estimation method is used to determine the weights of PWV from different sources.
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The data fusion flowchart is shown in Figure 3. As shown, we first use the spherical cap harmonic
function to fit ERA5 (MODIS) PWV, and then the function is used to obtain the interpolated PWV
at GNSS stations. The systematic bias is now determined as the average of the differences between
GNSS PWV and interpolated ERA5 (MODIS) PWV, and it is used to correct the ERA5 (MODIS) PWV.
Next, we determine the weights for PWV of different sources by HVCE. Finally, the PWV data of
difference sources is fused with the SCH model, in which the model coefficients are estimated. It is
noted that the coordinate transformation, the calculations of nk(m) and the Legendre polynomials are
important in the use of the SCH model to obtain fused PWV.
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Figure 3. The flowchart of spherical cap harmonic (SCH) and Helmert variance component estimation
(HVCE) data fusion method proposed by Zhang et al. (2019).

The treatment of the uncertainty associated with different data sources in Zhang et al. (2019)’s
method includes two aspects. One is regarding the average difference between GNSS PWV and ERA5
(MODIS) PWV as systematic bias; another is to use HVCE to determine weights for PWV data of
different sources.

It is now possible to perform the data fusion experiments. In this paper, the ERA5 PWV and
GNSS PWV are fused by a SCH model of order 7, and the order is 8 for the fusion of the ERA5 PWV,
GNSS PWV and MODIS PWV.

4. Results

Due to the limited resolution of NCEP FNL (final) Operational Global Analysis data, its combination
with the GNSS PWV in the experimental area would be rank deficit if using a high-order model,
and inaccurate if using a low-order model. Therefore, the GNSS PWV and ECWMF REA5 data
are fused. In addition, in the original text of Zhang et al. [2], MODIS PWV is also fused with the
GNSS PWV and ERA5 PWV. As a result, we set out to perform four experiments. The first one is
to assimilate the GNSS PWV into the WRF model, and the result is labeled as DA_PWV. Compared
with DA_PWV, the PWV obtained from the WPS and real.exe is labeled as None_PWV which has no
assimilation involved. Fuse_PWV is the result from the fusion of the GNSS PWV and ERA5 PWV,
while M_Fuse_PWV is that of the GNSS PWV, ERA5 PWV and MODIS PWV.

Because there is no overlap time period between the fused PWV and radiosonde PWV data, some of
the high accuracy GNSS PWV is used as the reference to examine the fusion performance. We choose
the GNSS PWV data at stations P729, P056 and LUTZ, which are marked with a red box in Figure 1,
as reference, and they are excluded in the assimilation and fusion experiments. The assimilation
experiment is carried out for the same time period as of the fusion experiment throughout May 2018.

For the None_PWV and DA_PWV results, the bilinear interpolation and altitude correction are
applied to obtain the PWV at the three reference stations. The temperature, pressure and humidity
information are also obtained from the results of the respective experiments. The M_Fuse_PWV and
Fuse_PWV at the three stations are computed from their fusion models, respectively. The comparison
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between the experiment results and the reference data is shown in Figure 4, and the bias, STD and
RMS values are given in Table 3.
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Figure 4. Comparison of four groups of results with true values. (The Fuse_PWV is the result from
the fusion of the GNSS PWV and ERA5 PWV by Zhang et al., while M_Fuse_PWV that of the GNSS
PWV,ERA5 PWV and MODIS PWV. DA_PWV is the result from assimilating the GNSS PWV into
the WRF mode. Compared with DA_PWV, the PWV obtained from the WPS and real.exe is labeled
as None_PWV which has no assimilation involved. The x-axis is the time. 2018122.1755 is read as
“at 17:55 on DOY 122 of 2018”, and so on).
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Table 3. Differences between four PWV result sets and GNSS PWV at three reference stations.

None_PWV DA_PWV

P729 P056 LUTZ All P729 P056 LUTZ All

Bias −0.66 −1.21 0.24 −0.54 0.43 −0.77 −0.39 −0.25
STD 1.20 1.95 1.11 1.57 0.95 1.87 1.16 1.46
RMS 1.35 2.27 1.12 1.65 1.02 1.99 1.21 1.47

Fuse_PWV M_Fuse_PWV

P729 P056 LUTZ All P729 P056 LUTZ All

Bias −0.46 −1.99 −0.81 −1.09 0.09 0.11 −0.41 −0.07
STD 0.71 1.04 0.75 1.06 1.38 1.16 0.88 1.17
RMS 0.84 2.23 1.09 1.52 1.36 1.15 0.96 1.17

The three reference stations are widely separated in the study area, with LUTZ in the upper
left corner, P729 in the lower right corner and P056 in the middle right edge of an intermountain
valley. The fused or assimilation-inverted results at the three stations are all close to their reference,
which shows the reliability of the results.

For the P729 station, the difference between the None_PWV group and DA_PWV group in the
period from days of year (DOY) 132 to 150 is large, while the differences during other assimilation time
periods are small. The M_Fuse_PWV is close to the Fuse_PWV on the whole, but the differences in the
period between DOY 130 and 132 are obvious. For this station, the Fuse_PWV result is slightly smaller
than the reference, and the M_Fuse_PWV result is larger than the reference.

The Fuse_PWV is the result from the fusion of the GNSS PWV and ERA5 PWV by Zhang et al.
(2019), while M_Fuse_PWV that of the GNSS PWV, ERA5 PWV and MODIS PWV. DA_PWV is the
result from assimilating the GNSS PWV into the WRF mode. Compared with DA_PWV, the PWV
obtained from the WPS and real.exe is labeled as None_PWV which has no assimilation involved.
The x-axis is the time. Additionally, 2,018,122.1755 is read as “at 17:55 on DOY 122 of 2018”, and so on.

For the P056 station, the Fuse_PWV result is also smaller than the reference, while the M_Fuse_PWV
one is larger than the reference, and it is closer to the reference than the Fuse_PWV group.
The None_PWV group is very close to the DA_PWV group. Since the absolute value of bias of
None_PWV is smaller than Fuse_PWV, the closeness of the None_PWV to the reference is better than
that of the Fuse_PWV group.

For the P729 station, the minimum absolute bias occurs in the M_Fuse_PWV group, and the
maximum and minimum RMS values are in the M_Fuse_PWV group and Fuse_PWV group, respectively.
The maximum and minimum values of RMS at LUTZ station are in DA_PWV and M_Fuse_PWV,
respectively. For the P056 station, the maximum RMS is in the None_PWV group, and the minimum in
the M_Fuse_PWV group.

Because of the existence of the bias, the RMS is a more important measure of the result accuracy,
with the minimum RMS indicating the best, and the maximum the worst. From the overall RMS value
given in the last column, the M_Fuse_PWV result is the best among the four groups. With respect to
the individual stations, both P056 and LUTZ have their minimum RMS values with M_Fuse_PWV,
but P729′s minimum RMS is with Fuse_PWV, which is significantly smaller than the station’s maximum
RMS unexpectedly from M_Fuse_PWV. This shows that, although there are only three reference stations,
the performance in terms of the RMS is not uniform with the data processing methods.

In general, we may conclude that the background field accuracy can be improved when the GNSS
PWV is assimilated into the NWP model. The absolute values of bias, STD and RMS in the DA_PWV
group are less than those in the None_PWV group. For the two PWV fusion products, the accuracy
of the M_Fuse_PWV is higher than that of the Fuse_PWV, suggesting that the fusion of data from
more sources is beneficial to the accuracy of resulted PWV. The overall RMS values of the Fuse_PWV
group and M_Fuse_PWV group are all smaller than that of the None_PWV group, which indicates
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that, to some extent, appropriate data fusion can achieve better PWV field than that of the WRF model
without any assimilation.

The overall RMS of the DA_PWV is close to that of the Fuse_PWV but has a large difference with
that of the M_Fuse_PWV. In particular, for the two stations P729 and LUTZ located in the coastal area,
the two-source Fuse_PWV results are slightly better than those of the assimilation group (DA_PWV),
but for the station P056 in the inland valley, the DA_PWV results are better than the Fuse_PWV results.
There are two possible explanations. First, before the fusion, the GNSS PWVs have been used to correct
the ERA5 PWV for the system difference, while in the assimilation, the system difference between
GNSS PWVs and the background field is difficult to correct. Second, the ECWMF ERA5 product has a
better spatial resolution (0.25◦ × 0.25◦) than the NCEP FNL (1◦ × 1◦). However, the same correction
is applied to all stations to eliminate the system difference between ERA5 PWV and GNSS PWV
before the fusion, which may result in a relatively large residual deviation for stations in areas of large
topographical fluctuations, and this in turn would affect the fusion accuracy for these stations.

5. Conclusions

This paper presents a comparison study about the accuracy of the assimilated and fused PWV
products for a west coast area of the United States of America. The former is obtained from the
assimilation of the GNSS PWV into the WRF model, and the latter by the fusion of the GNSS, ERA5 and
MODIS PWV data using the method of Zhang et al. [2]. For the study area, high-precision PWV
products are obtained from both approaches. The results show that the high precision could be achieved
by either adjusting meteorological parameters or directly fusing multi-source data, with accuracy of
1.47 mm by the former and 1.52 mm by the latter. It is seen that the assimilation has reduced the RMS
of PWV products from 1.65 to 1.47, a significant improvement in the PWV accuracy, although the
temperature, pressure and relative humidity have little change. It also shows that, the fusion of data
from three sources including the MODIS PWV clearly outperforms the fusion without the MODIS
PWV with the RMS values of 1.17 and 1.52, respectively, suggesting more data sources are helpful to
achieve better accuracy.

The other finding from the accuracy comparison at the three reference stations is that, the accuracy
at the P056 station located in the inland valley is worse than those at the P729 and LUTZ stations
along the coast, indicating that complex topography may affect the performance of the applied data
assimilation and data fusion methods.
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Abbreviations

Abbreviations Full Name
DA Data assimilation
DOY Days of year
ECWMF European Centre for Medium-Range Weather Forecasts
ERA5 ECWMF Reanalysis 5
FNL Final
GDAS Global Data Assimilation System
GNSS Global Navigation Satellite System
HVCE Helmert variance component estimation
IGRA Integrated Global Radiosonde Archive
InSAR Interferometric synthetic aperture radar
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IR Infrared
JMA Japan Meteorological Agency
MODIS Moderate-resolution imaging spectroradiometer
MMM Mesoscale and Microscale Meteorology
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
NCL NCAR Command Language
NIR Near infrared
NWP Numerical weather prediction
PBL Planetary boundary layer
PWV Precipitable water vapor
RH Relative humidity
RMS Root mean square
SCH Spherical cap harmonic
SRM Singapore Regional Model
SRMC Singapore Regional Model Coarse
STD Standard deviation
STRMDEM Shuttle Radar Topography Mission Digital Elevation Model
WPS WRF preprocess system
WRF Weather Research and Forecasting
ZHD Zenith hydrostatic delay
ZTD Zenith total delay
ZWD Zenith wet delay
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