
Supplementary Material: Document S1,
Application Source Code Availability
This document provides instructions for obtaining the source code for the three case study applications as well
as for using a starter template to create a new application using the Interactive Catchment Explorer (ICE)
framework.

Case Study Applications

The following table provides links to the archived snapshots and active repositories for the source code of the
three case study applications. The archived snapshots contain the version of the code as it existed at the time
of publication. The code in the active repositories may differ as each application is updated following
publication. Instructions for building each application is provided in the  README.md  file in each repository.

Application Archived Snapshot Active Repository

Northeast https://doi.org/10.5281/zenodo.4058455
https://github.com/walkerjeffd/ice-
northeast

Crown of the
Continent Ecosystem

https://doi.org/10.5281/zenodo.4058453
https://github.com/walkerjeffd/ice-
cce

Lower Mississippi-Gulf https://doi.org/10.5281/zenodo.4058446
https://github.com/walkerjeffd/ice-
lmg

Starter Template

For readers interested in creating a new application for other datasets and model outputs, we have created a
starter template for the ICE framework. This template contains a working demo of the ICE framework that
presents two example datasets in order to demonstrate the proper file structures and formats.

Please note that use and modification of this template requires some familiarity with modern web application
development, JavaScript programming, and the use of the various third-party libraries (specifically vue.js,
d3.js, crossfilter.js, leaflet.js, among others). We have attempted to make this template as simple as possible so
that the number of changes to the source code are minimal. The bulk of the effort is related to processing the
data into the appropriate formats and creating the configuration files that define the datasets and variables.

Download Source Code

https://doi.org/10.5281/zenodo.4058455
https://github.com/walkerjeffd/ice-northeast
https://doi.org/10.5281/zenodo.4058453
https://github.com/walkerjeffd/ice-cce
https://doi.org/10.5281/zenodo.4058446
https://github.com/walkerjeffd/ice-lmg


Similar to the case study applications, the following table provides a static snapshot of this template as well as
a link to the active repository. The  README.md  file in this repository contains intstructions for using the
template, similar to what is provided in this file.

Application Archived Snapshot Active Repository

Starter
Template

https://doi.org/10.5281/zenodo.4058490
https://github.com/walkerjeffd/ice-
template

To obtain the template code as it existed at the time of publication, navigate to the archived snapshot URL, and
download the zip file containing the complete source code ( ice-template-v1.0.0.zip ). Unzip this file to your
target working directory.

Prerequisites

To develop a new ICE application, you will need to install Node.js (v12 or newer) as well as some global
packages.

Instructions for installing Node.js on Windows, Mac or Linux can be found at https://nodejs.org/en/.

After installing Node, use the node package manager ( npm ) to install the Vue CLI and http-server.

npm install -g @vue/cli http-server

Quick Start – Running the Demo

Complete the following steps to run the demo application, which includes two example datasets. See
 data/scripts/README.md  for details about these datasets and how they were created.

Project setup

Install dependencies defined in the  package.json  file.

npm install

Run Development Server

To start a development server that runs the demo application, run the  dev  command using  npm , which serves
the  data/  folder at port  8000 , and runs the vue CLI  serve  command.

https://doi.org/10.5281/zenodo.4058490
https://github.com/walkerjeffd/ice-template
https://nodejs.org/en/
https://cli.vuejs.org/
https://github.com/http-party/http-server


npm run dev

Then open your browser and navigate to http://127.0.0.1^8080/. This page should contain the demo application
for the two example dataset (Northeast, Northwest).

Building a New Application

This section describes the primary steps for adapting this template to new datasets.

Step 1: Generate Themes

A  theme  in the ICE framework contains the configuration, data, and geospatial data associated with a single
dataset.

Each theme is comprised of the following files:

theme.json         - configuration file
data.csv           - CSV file containing the dataset
layer.json         - GeoJSON file containing the spatial features
features/<ID>.json - JSON files containing additional data forfor each individual feature

These files are organized by subfolders within the  data/  folder. The files for each theme must be stored within
a subfolder named after the theme id (e.g.,  data/northeast/  contains the files for the  northeast  theme).

theme.json

Each  theme.json  must contain attributes for the  id ,  label ,  description , and  variables .

{
  "id": "northeast",
  "label": "Northeast Example",
  "description": "Example dataset of the northeast U.S.",
  "variables": [
    ...
  ]
}

The  variables  attribute must be an array that defines a series of properties for each variable in the dataset.

Numeric variables must have the following format.

{

http://127.0.0.1:8080/


  "id": "variable1",         // must match column name in the data.csv file
  "label": "Variable 1",     // how the variable is displayed in the interface
  "description": "A dummy variable from 0 to 1",
  "units": null,             // units (optional)
  "type": "num",             // must be "num" for numeric variables
  "group": "Variable Group", // the group this variable belongs too 
                             // (dropdown menus list variables by group)
  "map": true,               // true if this variable should be an option for the map variable
  "filter": true,            // true if this variable should be an option for the crossfilters
  "formats": {               // format specification for displaying values
                             // see https://github.com/d3/d3-format#locale_format
    "value": ".1%",          // for writing a single value (e.g. tooltip)
    "filter": ".1%"          // for the crossfilter axis labels
  },
  "scale": {
    "domain": [0, 1],        // 2-element array defining min/max values of this variable
    "transform": "linear"    // transformation type, can be "linear" or "log"
  }
}

Categorical variables must have the following format.

{
  "id": "variable3",         // must match column name in the data.csv file
  "label": "Variable 3",     // how the variable is displayed in the interface
  "description": "A categorical variable", // additional description
  "units": null,             // null for categorical variables
  "type": "cat",             // must be "cat" for numeric variables
  "group": "Variable Group", // the group this variable belongs too
                             // (dropdown menus list variables by group)
  "map": true,               // true if this variable should be an option for the map variable
  "filter": true,            // true if this variable should be an option for the crossfilters
  "formats": {
    "value": null,           // null for categorical variables
    "filter": null           // null for categorical variables
  },
  "scale": {
    "domain": [              // domain is an array that maps each unique value in the dataset to a label
                             // (e.g. `A` -> `Value A`)
      {
        "value": "A",        // value used in data.csv
        "label": "Value A"   // label for displaying this value
      },
      {
        "value": "B",
        "label": "Value B"
      },
      {
        "value": "C",
        "label": "Value C"
      }
    ]
  }
}



layer.json

The  layer.json  file defines the geospatial data (i.e., coordinates) of the spatial features using GeoJSON
format. This file must use the WGS84 (EPSG 4326) projection (latitude/longitude).

Each feature must contain a unique  id , which corresponds to the  id  column in the  data.csv  file.

Note that in this starter template, the ICE framework is only configured to render point geometries. However,
alternative geometries (polylines, polygons) could be supported by modifying the render functions within the
 src/components/IceMapLayer.vue  component.

{
  "type": "FeatureCollection",
  "name": "layer",
  "crs": {
    "type": "name",
    "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" }
  },
  "features": [
    {
      "type": "Feature",
      "id": "170501090104",
      "geometry": {
        "type": "Point",
        "coordinates": [ -117.939631420651409, 42.590973510329043 ]
      }
    },
    {
      "type": "Feature",
      "id": "170501041304",
      "geometry": {
        "type": "Point",
        "coordinates": [ -116.674185426499221, 42.454648318749527 ]
      }
    },
    ...
  ]
}

data.csv

The  data.csv  file contains the theme dataset in comma-separated values (CSV) format. Each row contains
the values for one spatial feature, and each column represents a different variable. This table must include a
column named  id , which corresponds to the  id  field of the GeoJSON layer. For each of the other columns,
the  theme.json  file must contain a variable definition with the  id  attribute equal to the column name (see
above).

id,variable1,variable2,variable3
170501090104,0.24387659435160458,0.2369458530249091,B
170501041304,0.6368760853074491,1.877845762558082,B

https://geojson.org/


170402080305,0.7774140483234078,-0.1166326835861824,A
170402100904,0.05460463068448007,0.6259004795984403,A
170501041305,0.21677141194231808,-1.0887155657567542,A
170402060805,0.9966927575878799,-0.06722108592500253,C
...

features/ID.json

Lastly, the  features/  subfolder within the theme contains a collection of JSON files, one for each unique
spatial features. Each file must be named using the  id  of the corresponding feature (same as the  id  column
in  data.csv  and the  id  attribute in the  layer.json  file).

Each file must be in JSON format, and all files should have an identical structure. The purpose of these files is
to provide all data associated with a each feature. This may include data that is not part of the  data.csv  (e.g.,
timeseries).

In the demo application, each feature details file simply contains the values of the three variables as well as the
feature id.

{
  "id": "010100020101",
  "variable1": 0.6696,
  "variable2": 0.1116,
  "variable3": "C"
}

Whenever a feature is selected on the map, the corresponding details file will be loaded and made available to
the theme component (see next section).

Step 2: Create Theme Components

For each theme, create a new vue component in the  src/components/themes/  folder. This component is used
to display the details of a selected feature in the right-hand side bar when a feature is clicked and the
corresponding feature details file ( data/<theme>/features/<id>.json ).

For the demo datasets, each component ( src/components/themes/Northeast.vue  and
 src/components/themes/Northwest.vue ) simply provides a pair of tables listing the values of each variable.
However, these components can be enhanced to include other data and charts. For more complex examples,
see the walkerjeffd/ice-lmg source code.

The name of each theme component must be a CamelCase version of the theme id (e.g.,  northeast ->
Northeast.vue  or  my-dataset -> MyDataset.vue ).

Step 3: Themes List

https://github.com/walkerjeffd/ice-lmg


The list of available themes is stored in the  src/assets/themes.json  file. This file must contain an array of
folders. Each folder has an  id  and  name , as well as an array of  children , which contain the themes for that
folder. Each theme must have an  id ,  name , and  description . Remember that the theme  id  must match
the name of the folder in  data/  containing the files for that theme.

To add a new theme, add a new entry to the  src/assets/themes.json  file.

[
  {
    "id": "project",
    "name": "Example Projects",
    "children": [
      {
        "id": "northeast",
        "name": "Northeast Dataset",
        "description": "Example dataset of the northeast (Region 01)"
      },
      {
        "id": "northwest",
        "name": "Northwest Dataset",
        "description": "Example dataset of the northwest (Region 17)"
      }
    ]
  },
  ...
]

Step 4: Content

Update the text content in the various dialog boxes as well as the application title in the  src/App.vue  file.

Step 5: Run Development Server

Once the files and components for the themes have been created, run the development server to view the
application.

npm run dev

Then open your browser and navigate to http://127.0.0.1^8080/. This page should contain the application with
your new themes avaible in the Dataset Browser.

Build Process

The following steps describe how to build the production version of the application.

http://127.0.0.1:8080/


Step 1: Configuration

Build configuration is set using  .env  files for each environment ( development ,  production ). See vue-cli for
details.

There are two required configuration variables:

BASE_URL=/                              # root path for the application
VUE_APP_API_URL=http://localhost:8000/  # location for fetching data

The  BASE_URL  variable defines the initial URL path of the application when it is deployed to the server. For
example, if the target URL is http://example.com/app/ice/ then set  BASE_URL=/app/ice/ .

The  VUE_APP_API_URL  variable defines the root URL where the data will be stored, which may differ from
where the application files are deployed. For example, if the data are accessible at
http://example.com/data/ice/theme-id then set  VUE_APP_API_URL=http://example.com/data/ice/ .

The default  .env  files can be overriden with  .local  variants (e.g.  .env.development.local ), which are not
tracked by the repo.

For production, create a new  .env.production  (or  .env.production.local ) file and define the  BASE_URL 
and  VUE_APP_API_URL .

Step 2: Production Build

Run the  build  command to build the application for production. This command will bundle all of the
application files, and write the output to the  dist/  folder.

npm run build

Step 3: Deployment

After building the application, copy the contents of  dist/  and  data/  to the appropriate folders on the
production server.

Disclaimer

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by
the U.S. Government.

https://cli.vuejs.org/guide/mode-and-env.html
http://example.com/app/ice/
http://example.com/data/ice/theme-id

