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Abstract: Polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds had been widely
recognized as priority organic pollutants in wastewater with toxic effects on both plants and
animals. Thus, the remediation of these pollutants has been an active area of research in the field
of environmental science and engineering. This review highlighted the advantage of adsorption
technology in the removal of PAHs and phenols in wastewater. The literature presented
on the applications of various porous carbon materials such as biochar, activated carbon (AC),
carbon nanotubes (CNTs), and graphene as potential adsorbents for these pollutants has been
critically reviewed and analyzed. Under similar conditions, the use of porous polymers such as
Chitosan and molecularly imprinted polymers (MIPs) have been well presented. The high adsorption
capacities of advanced porous materials such as mesoporous silica and metal-organic frameworks
have been considered and evaluated. The preference of these materials, higher adsorption efficiencies,
mechanism of adsorptions, and possible challenges have been discussed. Recommendations have
been proposed for commercialization, pilot, and industrial-scale applications of the studied adsorbents
towards persistent organic pollutants (POPs) removal from wastewater.

Keywords: adsorption; phenols; polycyclic aromatic hydrocarbons; wastewater

1. Introduction

Organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), phenols, and their derivatives,
are one of the major pollutants that are frequently detected in wastewater. They are usually originated
from both natural and anthropogenic sources, such as bush-burning, volcanic eruptions, petroleum
exploration and refining, mining etc. [1,2]. They are usually run-off into the water bodies where
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they reside in the ground and surface water, thus resulting into environmental problem for decades.
They are highly lipophilic, semi volatile, and accumulative in water and can be transported into various
water compartments due to their non-biodegradable and persistent nature [3,4]. They are categorized
as persistent organic pollutants (POP’s) in the water. When present in the living cells, they are capable
of undergoing bioaccumulating and biomagnifying through food webs into different trophic levels
of organisms, and subsequently into humans [5].

PAHs are organic compounds consisting of two or more fused benzene ring molecules. They mostly
result from petroleum refining, fuel combustion, coal mining and processing, coke production, oil shale
pyrolysis, chemicals production, and other industrial processes. Various research conducted in different
parts of the world have shown considerable increase in the PAHs concentrations in the receiving water
bodies. Thus, PAHs could be ubiquitously transported into the rivers [6,7], fresh and terrestrial water [8],
municipal wastewater treatment plants [9], and consequently exposed to the human being and aquatic
organism. They are classified based on the number of rings they contained into low molecular weight
(LMW-PAHs) and higher molecular weight (HMW-PAHs). The former comprised those PAHs with
two to three benzene rings, while the latter are made of four to six rings. In comparisons, the latter are
more toxic and persistent to the water due to their low solubility [10,11]. The United States Protection
Agency (USEPA) has listed 16 PAHs as potential toxic and carcinogenic and thus they have priority
concerned. The structures, molecular weight, and log p values of the PAHs are highlighted in Table 1.

Table 1. Chemical structures and log p values of polycyclic aromatic hydrocarbons (PAHs).

Compound Formula Abbreviation Structure
Molecular

Weight
(g/mol)

Partition
Coefficient

Naphthalene C10H8 NAP
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Table 1. Cont.

Compound Formula Abbreviation Structure
Molecular

Weight
(g/mol)

Partition
Coefficient
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Phenols are a class of organic compounds having hydroxyl group (–OH) attached to the carbon atom
that is part of the aromatic ring. They have found numerous applications as intermediates for industrial
production of petrochemicals, dyes, herbicides, pesticides, pharmaceuticals and cosmetics, etc. [12].
Apart from that, they are also used in household products such as flavorings, cleaners and mouthwash.
Thus, they are usually discharged in the wastewater and effluents from those industries [13,14].
Even though small quantity of phenols are produced from the decomposition of plants and animals,
but anthropogenic sources has been a major contributor of phenols in the environment wastewater
effluents in high concentration up to even several thousands of mg/L [15,16]. Considering their adverse
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effect to living organisms in the environment, they are also classified as priority pollutants [17,18].
The frequent discharge of phenolics without treatment leads to environmental toxicities to the extent
that they are posing serious threats to human health. Some of their toxic effects includes; skin and eyes
irritations, respiratory complications, weight loss, diarrhea, vertigo, salivation, and dark coloration
of urine etc. [19,20]. Table 2 presents some of the most frequently reported phenols and their dissociation
constants (PKa).

Table 2. Chemical structures and log p values of polycyclic aromatic hydrocarbons studied.

Compound Formula Structure
Molecular

Weight
(g/mol)

Partition
Coefficient

Phenol C6H6O
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Table 2. Cont.

Compound Formula Structure
Molecular

Weight
(g/mol)

Partition
Coefficient
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In recognition of the mobilities and high toxicities of these pollutants in environmental waters,
a prompt response from various environmental monitoring and protection is needed to reduce
their concentrations, or to ideally completely eliminate them. Thus, considerable attention has
been paid to develop suitable techniques for their effective remediation [21,22]. Over the last
three decades, extensive studies have been conducted using different technologies including
coagulation and flocculation, phytoremediation, reverse and forward osmosis, chemical oxidation,
photocatalytic degradation and adsorption [23–25]. Table 3 highlights the pros and cons of some
of the remediation techniques employed. Generally, most of these techniques failed to address
the persistent problem, partly because the pollutants are highly lipophilic. In a conventional wastewater
treatment plant (WWTPs), they are resistant to bioremediation and photolysis is insignificant for their
degradations [26]. Additionally, the excessive chemical remediation might cause secondary pollution
because of the unreasonable proportions of the reagents used and formation of oxygenated species that
are potentially hazardous [27,28]. Photocatalytic degradation has been limited by the semi conducting
property of the materials and the utilization of light energy. Additionally, most of the techniques are
non-feasible and non-economical.
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Table 3. Pros and Cons of Wastewater treatments process used for PAHs and phenols remediation.

Method Pros Cons

Coagulation
− The colloidal particles are easily settled down by

the coagulants added to the wastewater

− It is time-consuming
− Incomplete removal of the organic pollutants are

always the case
− It resulted in secondary pollution inform of sludge

Flocculation

− Availability of various flocculants that have
been commercialized.

− Some of the flocculants have shown a high affinity
to the organic pollutants.

− It is highly dependent on the physicochemical
parameters of the pollutants; such as pH and
ionic strength.

− The flocculants often resulted
in secondary pollution.

Bioremediation; including the use of microbes such as
bacteria, fungi, and algae.

− It was employed for the treatments of PAHs
at the contamination site and wastewater
treatment plants

− Availability and low-cost of various microbes.
− It is a simple process

− The method requires nutrients for the microbes
to flourish.

− Temperature optimization for the condition has
been a challenge.

− A long time is required to degrade
organic pollutants.

Reverse Osmosis

− No chemicals are added to the pollutants; hence
no secondary pollutants are generated.

− It is available for large scale application using
sophisticated reverse osmosis membranes systems

− It is costly, especially for small and
medium-scale applications.

− It is a time-consuming process.

Chemical oxidations

− The organic pollutants such as PAHs and phenols
are easily oxidized to carbon dioxide and water.

− No sludge is generated in the process; thus, it is
environmentally friendly.

− The high cost of operation and maintenance
− Since it involved the use of hydrogen peroxide,

it may result in harmful effects to humans if not
considerably removed.
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Table 3. Cont.

Method Pros Cons

Solvent extraction and ion exchange process

− It is a rapid process with high efficiency for the
removal of PAHs and phenols in wastewater.

− The cost of operation is cheap
− The extractants are mostly reusable, thus,

it is economical.

− Some solvents are toxic; thus, cross-contamination
may occur.

− The use of volatile solvents may result
in fire emission.

− Not suitable at the low concentration
of the pollutants.

Photocatalytic degradation

− Complete mineralization of the pollutants to
carbon dioxide and water

− The photocatalysts are upon reusable from the
economic point of view.

− It is an environmentally friendly technique.
− It is mostly operated under room temperature.

− A sufficient light source of energy is required to
excite the photocatalyst.

− Some of the photocatalysts are expensive, thus not
economical for industrial-scale applications.

− The photocatalytic reactor is expensive for
both purchasing and maintenance.

Adsorption process

− It is simple to design and operate.
− Availability of various forms of locally synthetic

adsorbents materials.
− Low-cost adsorbents and commercial adsorbents

are available.
− Complete adsorption of the pollutants can be

achieved within a short time.
− It is an environmentally friendly technique.
− Reusability of the adsorbents.

− Adsorbent regeneration is often difficult
and costly.

− A high temperature is needed to dissolve high
molecular weight pollutants.

− Spent adsorbent may be considered hazardous
but are usually incinerated.
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However, adsorption has been recognized as the major technique for the effective removal due to
the high affinity the various adsorbents for the organic pollutants. Additionally, the process has been
recognized for its simplicity, low-cost, availability of various adsorbents materials, non-environmental
toxicity, ease of design, etc. Figure 1 presents the literature survey conducted via web of science and
for publications reported and patents for various remediation for PAHs and phenols. The prominence
of adsorption is clearly seen among the techniques. It is thus justifiable that this review was conducted
for the removal of PAHs and phenols using adsorption techniques. Critical analysis was conducted
using various advanced porous adsorbents and the adsorptive performance of the materials have been
highlighted. To some extent, the mechanism for the adsorptions have been discussed.
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phenols in the water [30]. It has been estimated, around 5–30 million tons of crude oil spilt into the 
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oxidation, Coagulation, Flocculation, PAHs, Phenols, Phytoremediation, Photocatalytic degradation,
Reverse osmosis.

1.1. Sources of PAHs and Phenols

Industrial activities driving by energy and power demands have been the major source of PAHs
and phenolic compounds in the environment. In particular, the refining of crude oil is usually associated
with the production of various by-products such as petrol, diesel, coal tar, etc. [29]. Crude and refined
oil leakage have also been widely recognized as one of the major sources of PAHs and phenols
in the water [30]. It has been estimated, around 5–30 million tons of crude oil spilt into the ocean
every year [31], as a result of either accident or leakage oil tankers. One of the most recent ones is
the oil spill which occurred in Ambarnaya river and Mauritius coast in May and July 2020, respectively.
In both cases, the spills were reported to occupy large area and consequently washed into the oceans.
Petroleum and industrial sludges have also been a major deposit of PAHs and phenols [32,33].

Apart from petroleum and petrochemicals, coal processing to generate heat and power, as well as
coke production, has also been identified as another way through which PAHs and phenolic compounds
get into the water [34]. The generation of electricity from coal has been widely practiced, taking about
one third of the total electricity generation [35]. According to the Environmental Protection Agency,
coal fire plants contributed to about a third of the total global water pollution due to the various toxic
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chemicals such as PAHs, phenolic compound, and heavy metals discharged into the rivers, streams,
and other water bodies [36]. Thus, the concentrations of these pollutants in the coal wastewater is
high when discharged into the atmosphere and are said to be contributing to the persistent problem
of global warming [37].

PAHs and phenols have been identified as one of the major contaminants in wastewater, ans usually
exist in complex. The textile and dyeing industry have been a major contributor to PAHs. According to
the China environmental statistics yearbook of 2012, discharge of wastewater from dyeing industries
was about 2.37 billion. Accordingly, Ning et al., (2014), reported that the total number of 16 different
PAHs with concentration range of 1463–16,714 ng/g has been detected in textile dyeing sludge from
Guangdong [38]. Natural and anthropogenic sources of phenols have been discussed by Anku
et al., (2016), highlighting the contribution of dissolved organic matter in increasing the phenols
concentrations in the environment [39]. Floodwater is another source of which PAHs and phenolic
compounds get into wastewater. The catastrophe of flooding has been a common phenomenon
in different places of the world, particularly in the tropical areas, where rainfall is very high over
a long period of the year [40]. For example, Chukwujindu et al. (2017) reported on the prevalent
occurrences of flood along the River Niger and River Benue in Nigeria, as a result of excessive rainfall
during the wet season [41]. Even though no established finding between the magnitude and frequency
of a flood event has been found (especially large floods), the resulting environmental changes has been
reported. However, Ciesielczuk et al. (2014) described that PAHs and phenols are usually adsorbed
on the humic acids in the floodwaters and thus migrated to the water [42].

1.2. PAHs and Phenols in Wastewater Treatment Plants (WWTPs)

WWTPs has been the secondary source of PAHs and phenols. WWTPs serve as the major reservoir
of wastewater collected from a wide range of domestic and industrial sources. Thus, various pollutants
from these sources have been found to concentrate along with the solid particles in the wastewater [25].
According to the J. Liu et al. (2011), PAHs were detected in domestic WWTP in Xian, China for a period
of one year, originated from domestic usage of petrochemical substances such as oil and grease,
cosmetics, etc. Therefore, WWTPs is acting as the secondary source of PAHs from the different
sources [43].

1.3. Toxicities of PAHs and Phenols to Humans

Much attention has been given to the study of toxicities of PAHs and phenols to humans. The source
of human exposure has been mostly linked to consumption of contaminated water, air inhalation
or from infected foods [44,45]. The exposure is more pronounced to communities living at the site
of petroleum exploration and refining or near the coastal areas where discharged wastewater is released
into rivers, oceans or seas [46]. Industrial water has higher risk of contaminations than the municipal
WWTPs as in the former, the wastewater is directly coming from the source such as coke production
plants which contains mixture of complex compounds such as PAHs, phenols and nitrogen containing
aromatics [47].

The level of bioaccumulation of PAHs in humans is determined by the toxicities which increased
with molecular weight. Long term exposure usually resulted in acute toxicities, associated with
carcinogenicity and mutagenicity [48]. High exposure increased the risk of cancer of various organs
such as lung, breast, prostate, kidney, bladder, stomach, and skin [26]. They are also reported to
suppress the immune of the body, thus they are labeled as endocrine disruptors [49]. Chukwujindu et al.
(2017), studied the effect of exposure to PAHs due to overflooding of PAH contaminated water with
the associated health risk. They employed the technique of incremental lifetime cancer risk (ILCR) to
determine the extent of the PAHs exposure among various age groups in the study area. The finding
shows that on the average, the total ILCR values obtained in 2014 were 443 and 308 chances in a million
among the children and adults, respectively, and that the number of the risk of cancer was 6450
and 4480 chances for children and adults, respectively, about a 15-fold decrease in the average total
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ILCR values. Thus, they estimated high risk of exposure among adults than children, attributed to
the prolong duration of exposure for the adults [41].

On the other hand, phenols are potential human carcinogens. They are found to exert toxic effects
even at lower concentrations. At higher concentrations, phenols has the tendency to coagulate with
the proteins in the body, which may result in cellular and cytoplasmic permeability, hence, could cause
damage of the sensitive cells, cardiovascular, and central nervous system [50]. Prolonged ingestion
of phenols may result into mouth sore, dark urine, and even diarrhea [51].

1.4. Environmental Regulations on PAHs and Phenols

In an effort to eliminate the effect of PAH and other toxic chemicals into the environmental
waters, the United Nation has set the regulation to stop the establishment of coal power plants
around the globe to tackle the climate change and water pollution challenges [47,52]. The United
States Protection Agency (USEPA) has categorized 16 PAHs as priority pollutants of carcinogenic and
mutagenic effect in water [25]. To limit the PAHs and other toxic contaminants from the environmental
water, E.U has regulations to forbid sludge disposal. The Ministry of Environmental Protection
of China has set the level of toxic PAHs and B[a]PYR in wastewater treatment plant as 50 µg/L and
0.03 µg/L [2,9] respectively.

Phenol has been detected in various water samples ranging from hazardous waste sites, surface
water, rainwater, ground water, sediments, industrial and urban runoff, as well as the drinking water.
The level of toxicity of phenol in human and aquatic animals has been identified as 9–25 mg/L [53].
Considering the toxicity and environmental impact of phenolic compounds in water, the USEPA has
included them under the listed of priority pollutants with limited environmental discharge of less
than 1 mg/L in the treated effluents and set their maximum content in potable water as 0.5 mg/L [54].
Similarly, the World Health Organization (WHO) has regulated the concentration of phenol in potable
drinking water at 0.001 mg/L [55].

2. PAHs and Phenols Remediation in Wastewater

Considering the negative impact of PAHs and phenols with their derivatives in wastewater,
various forms of remediation have been proposed. Some of these techniques reported includes
conventional methods such as coagulation, flocculation, activated sludge, and bioremediation [42,56].
Other techniques such as membrane technology, photocatalytic degradation, advanced oxidation,
and electrochemical catalysis have also been reviewed [57,58]. Some of these techniques have shown
considerable promise [26], while some are facing challenges of incomplete removal or degradation
of the pollutants, generations of other toxic contaminants [24,59], complexity of the method, as well as
the cost of application and maintenance. Hence, the quest for more alternative techniques has
seemed endless.

Adsorption techniques using various adsorbent materials from natural and synthetic origins
have been well studied due to their prospects to effectively removed the pollutants from water.
These technique are simple, economical, and practicable [60]. The ease of operation and non-generation
of secondary pollutants are other advantages enjoyed by the method.

2.1. PAHs and Phenols Removal by Adsorption

In the adsorption process, pollutants in the solution are trapped on the surface of suspended
particles, known as the adsorbent materials. Adsorption technology is motivated by the availability
of a broad spectrum of low-cost adsorbents obtained from abundant naturally occurring and waste
substances such as mineral deposits, agricultural waste products, particulate organic matters, and solid
industrial wastes [61]. Thus, it provides an alternative for transforming waste materials into useful
material for environmental sustainability.

Apart from the naturally occurring materials, synthesized particles with higher surface area and
pore volumes such as organic and inorganic polymers, porous carbon materials, graphene, silica-based
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materials, have been successfully utilized as adsorbents for the PAHs and phenols removal from
the wastewater [62,63]. Adsorption process is usually carried out in a batch reactor on a small scale,
non-continuous process such as in research laboratories [64], or using a more advanced technique
of fixed bed reactors or column for a pilot-scale industrial and water treatment plants application [65].
Villegas et al. (2016) [53] discussed on various methods for phenols removal in wastewater, however,
emphasis was laid mainly on activated carbon (AC), those other highly porous adsorbents such as
silica and metal-organic frameworks (MOFs) have not been considered.

In this article, we aimed at reviewing and discussing past and present scenario of using various
adsorbent materials for the removal of PAHs and phenols from water. The review also provides
scientific analysis and propose future research directions on the use of promising adsorbent materials
for PAHs and phenols adsorptive removals in the water.

2.2. Adsorption of PAHs and Phenols onto Porous Carbon Materials

The use of porous carbon materials as adsorbents for organic pollutants removal from aquatic
environment was first mentioned by Walters and Luthy (1984) [66]. They argued that porous carbon
adsorbents are superior to soils, sediments, and suspended organic matters in terms of removal of PAHs.
This claim has catalyzed discoveries of various porous carbon materials for wastewater remediation.
The use of porous carbon materials such as activated carbon (AC) prepared from various agricultural
waste materials [67,68], biochar [69,70], carbon nanotubes (CNTs) [71,72], and other derived carbon
materials for the adsorption of PAHs have been studied.

2.2.1. Biochar

Biochar is a carbonaceous solid obtained from waste materials such as agricultural wastes, sewage
sludge (SSL), and petroleum sludge (PS). For example, sewage sludge is generated as a by-product
of sewage treatment. It is composed of many organic and inorganic substances as well as hazardous
biological materials [73,74]. Thus, these solid wastes are harmful to the environment and requires
proper disposal. Interestingly, pyrolysis is used as an alternative thermochemical technique to
convert the waste sludge into useful biochar for effective industrial and environmental applications.
It has been identified as one of the major forms of porous derived carbon. Godlewsky et al. (2019)
investigated the effect of atmosphere nitrogen (N2) and carbon dioxide (CO2) for the production
of sludge derived-biochar under pyrolysis temperatures of 500–700 ◦C. The use of CO2 atmosphere
was able to generate biochar with improved properties such as higher BET surface area, porosity as
compared to those obtained under N2 atmosphere [56].

Biochar that are derived from biomass-derived is by far the most important means to produce
the porous carbon materials. It has been estimated that, the world production of dry biomass is
about 220 billion tons annually [75], thus pyrolysis treatment to energy and biochar is interesting
option [76,77]. Agricultural waste materials such as rice husk [78], wheat straw [79], and palm kernel
seeds [80] have been reportedly used for PAHs and phenol adsorption in water.

The review by Bedia et al. (2018) focused mainly on the use of biomass derived biochar for emerging
contaminants adsorptions in water streams [81]. In comparison to sludge derived-biochar, biomass
derived-biochar has been found to possess higher specific surface area and pore volumes which was
attributed to the higher carbon content in the latter [77]. Thus, high removal of PAHs (pyrene and
benzo[a]pyrene) has been reported by Qiao et al. (2018) using biomass derived biochar generated
from Enteromorpha prolifera at 200 ◦C. The Langmuir monolayer maximum adsorption capacities were
estimated to be 187.27 µg/g and 80.00 µg/g, for the pyrene and benzo[a]pyrene, respectively [82].
Recently, Arshad et al. (2019) reported on response surface method (RSM) optimizations of phenol
adsorption onto oil–palm bunch derived biochar [80]. Lee et al. (2019) reported on the effective
removal of phenol using biochar generated from food waste Factors that affect the adsorption of PAHs
and phenols onto biochar include pore size and volume of the adsorbent as well as the concentration
of the pollutants [20]. The review by Lamichhane et al., 2016 [25] also highlighted some advantages
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of biochar in the removal of PAHs. Different biochars for the adsorptions of PAHs and phenols in water
streams are summarized in Table 4.

Table 4. Adsorptions of PAHs and phenols using biochars.

Adsorbent Pollutant Concentration
(mg/L)

Qe
(mg/g)

Equilibrium
Time Ref

RHB
PHE 5

17
1 h [78]

Magnetic modified RHB 42
Biochar

PHE 1
2 3 days [83]

graphene/biochar composite 3
Rice-350-M PHE 1 43 24 h [69]

Elephant grass biochar

BaA

0.1

19

250 min [84]BkF 19
BaP 18

DahA 8
Poplar Catkins biochar PHE 30 384 1120 min [85]

Sewage sludge char PHE
0.8

-
24 h [56]

PYR -
Wood biochar PYR

Wheat straw biochar
PHE 9.1 -

48 h [79]FLU 10.0 -
PYR 11 -

Chitin biochar
phenol

500
184

12 h2-nitrphenol 206
Hizikia fusiformis biochar phenol 50 30 1440 min [86]

Black spruce biochar phenol 200
233 18 h [87]

White birch biochar 150 4 h
Chinese herb biochar phenol 50 - 360 min [88]

scots pine bark biochar phenol 500
149

24 h [89]
spruce bark biochar 84

Bamboo biochar phenol 10
17

24 h [90]
Oak wood biochar 13
Food waste biochar phenol 10 3 30 min [20]

Japanese red pine char Phenol
200

6
30 min [61]

Yellow poplar char Phenol 7
Pine fruit shell biochar Phenol 50 27 24 h [91]

2.2.2. Activated Carbon (AC)

AC are highly porous carbon materials obtained from agricultural wastes, with high carbon
contents such as cellulose, hemicellulose, lignin, lipids, proteins, simple sugars, and starch [67,92].
The production of AC involved thermal decomposition of these materials under limited supply
of air, followed by the activation to generate highly porous carbon material. Thus, precursors
for AC are usually low-cost agricultural waste materials such as husk [93], shells [94], wood [95],
sawdust [96], rice husk [66], etc. The use of other materials such as bones, cartilages, coke etc. have
also been employed [97]. It has been widely employed for a variety of industrial applications such as
gas separations and purifications, liquid and gas storage, super capacitors, electrodes, catalysis,
and removal of toxic substances in contaminated wastewater etc. [98]. They are usually characterized
by a large surface area and large porosity than most of the conventional adsorbents ever reported.
However, the properties are largely dependent on the precursor material, pyrolysis temperature,
and the activation conditions. In some cases, the AC produced might contain heteroatoms and mineral
matter (ash content) depending on the nature of the raw material used as precursor. A literature has
shown that over 26,000 articles have been published by Elsevier on the use of AC for the adsorption
of pollutants in aqueous medium. Danish and Ahmad 2018, has reviewed on the production of AC
from wood biomass as adsorbent materials. Pore size, pore diameter distribution, of AC as the major
contributing factor for the adsorption of the pollutants [92].
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Different forms of AC such as AC powdered activated carbons (PAC) and granular activated
carbons (GAC) [99,100] from different biomass has been reportedly used for organic pollutants removal
from water (Figure 2). Additionally, the use of modified AC to regulate its pore structure and
chemical properties for the effective removal has been studied [101]. Wu et al. (2020) recently reported
on the preparation of walnut shell AC (WAC) with a surface area of 438.5 m2/g via microwave-assisted
KOH activation process at 900 W for the competitive adsorption of NAP and PHE in aqueous medium.
Equilibrium adsorption of 40 min, with the adsorption capacities of 39.58 and 63.37 mg/g for the NAP
and PHE respectively were obtained [98]. More porous AC were produced via modified coal-base AC
(MCAC) and iron-modified coal-base AC (Fe-MCAC) with BET surface area of 1062 and 1079.67 m2/g
respectively for PAHs adsorption [102]. Similarly, optimizations studies for the phenols adsorption was
studied using AC obtained from Terminalia chebula (TCAC). Equilibrium time of 24 h with the monolayer
adsorption capacity of 36.77 mg/g were observed. Table 5 presented more literature on the application
of AC as adsorbent for PAHs and phenols removal.
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Table 5. Adsorptions of PAHs and phenols using different forms activated carbon (AC).

Adsorbent Pollutant Concentration
(mg/g)

Qe
(mg/g)

Equilibrium
Time Ref

Commercial PAC
ANT - 143 4 h, 5 min [68]
PYR 142 4 h, 10 min

Commercial AC
PHE 120 46

24 h [104]FLA 80 36
BaA 12 9.7

Rice husk AC
NAP 8 14

24 h [66]PHE 17
PYR 18

Flamboyant pod back AC
ACE 50

4.7
2 h [105]Milk bush kernel AC 4

Rice husk AC 5.6

Rice husk AC
NAP

8
15

24 h [106]PHE 17.5
PYR 18

Rice husk AC
PHE

10
- 60 min [107]

FLU - 30 min
Rice husk AC ACE 50 46 3 h [93]

Vitis vinifera leaf AC (Zncl2)
PHE 1

94
180 min [108]Vitis vinifera leaf AC (H3PO4) 89
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Table 5. Cont.

Adsorbent Pollutant Concentration
(mg/g)

Qe
(mg/g)

Equilibrium
Time Ref

Walnut shell AC
NAP 10 49.6

40 min [103]
PHE 10 63.8

flamboyant pod AC
NAP 50

294.2
2 h [94]

milk bush kernel shell AC 63.3

Coal-based AC
NAP

200
78.2

20 min [98]PHE 111.4
PYR 117.2

Fe-modified Coal-based AC
NAP

30
167.8

40 min [101]PHE 190.4
PYR 20.3

Terminalia chebula AC phenol 100 26.2 24 h [109]
Commercial AC phenol 1000 132.3 360 min [110]
Commercial AC phenol
Miswak root AC phenol 100 142.2 120 min [111]
Coal-based GAC

phenol 300
169.9

180 min [112]Coal-based PAC 176.6
Coconut shell PAC 213
Cherry stone AC phenol 25 80 24 h [113]

Agave Utahensis AC
Phenol 14

1.7
3h [114]Euphorbia Resinifira AC 1.9

Banana peel AC 2.0
Oily sludge AC phenol 100 434 30 min [115]
Tea waste AC phenol 100 132.5 4 h [67]

Babul sawdust AC phenol 50 15.3 60 min [96]
Olive stone AC phenol 800 44,269 4 h [116]

Palm oil bunch AC phenol 40 55.3 2 h [117]
Wood fiberboard AC phenol 250 208 120 min [95]
Avocado kernel AC phenol 0.7 3.3 100 min [118]

Date pit AC Phenol 50 46 1 h [119]
Sugar cane bagasse AC Phenol 100 27 30 min [120]

Lantana camara AC Phenol 150 112.5 7 h [121]
Magnetic AC phenol 80 107.5 15 min [122]

Granular activated carbon
(GAC)

Phenol,
50

4.9
60 min [123]2-chlorophenol 4.3

4-chlorophenol 4.5
Red pine AC

Phenol 200
454.5

30 min [61]Yellow poplar AC 625
Commercial AC 500

Generally, AC produced from agricultural wastes displayed better removal capacity and shorter
equilibrium time for the adsorption of PAHs and phenols in the aqueous medium as compared to
biochar. This is perhaps associated with the higher porosities of the AC. However, in terms of sources,
biochar can be generated from different varieties and abundant agricultural waste feedstocks [70].
Additionally, from economic point of view, biochar has cheaper production cost than the AC. Unlike
in the latter, the former consumes less energy and activation is necessary in most cases [79]. However,
both materials are considered superior to raw biomass in their affinity towards PAHs and phenols [124].
In both cases, the adsorption occurs via hydrogen bonding andπ–π electron- donor–acceptor interactions
between the active sites on the surface of the AC with the benzene rings of the organic pollutants
and the functional groups on the phenol as seen in the Figure 3. For both AC and biochar, better
removal capacities are achieved by surface modifications of the porous carbon materials. Additionally,
the surface modifications could result in more stable adsorbents [98].
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2.3. Other Porous Carbon Materials as Adsorbents for PAHs and Phenols

Apart from biochar and AC, other porous carbon nanomaterials such as graphene, carbon
nanotubes (CNTs), nanohorns, nanofibers, fullerenes, soot, molecular carbon sieves, and other
carbonaceous-derived materials [126] have been studied. They are chemically heterogenous and
high carbon content materials that are usually obtained from either partial or complete combustion
of plant materials [127]. Many of the carbon-based nanomaterials have been investigated as adsorption
material for water remediation. The most widely employed are graphene and CNTs. They are
recognized with extra-ordinary physical and chemical properties that are superior to other carbon-based
materials. They possess good chemical and thermal stability with much higher surface area than
AC and biochar [62,128]. Their improved surface properties allow them to interact with organic
pollutants via covalent and non-covalent bond formation such as hydrogen bonding, electrostatic
forces, π-π stacking, van der Waals forces, and hydrophobic interactions [14].

2.3.1. Graphene, Graphene Oxides, and Reduced Graphene Oxides

Graphene is a form of nanomaterial having a honeycomb-like structure of sp2 hybridized carbon
atoms with single atom of graphite layer. The allotrope of graphene is called graphite, having
a planar structure [129]. It exhibits outstanding physical and chemical properties, such as good
electrical and thermal conductivity, high strength, high specific surface area and pore volumes,
flexibility, and negligible thickness [130,131]. Apart from that, graphene chemical mobility, which
allow for its modification to form other functionalized advanced carbon materials. Graphene oxides
(GOs) and reduced graphene oxide (rGO) are among the most advanced graphene-based engineering
materials (Figure 4) [132,133] They are regarded as the fascinating forms of graphene materials and
thus have versatile applications in various fields such as biomedicines, sensors, metrology, electronic
devices, as well as environmental pollutant’s remediation in environmental waters [134].
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In adsorption studies, their unique chemical properties and high specific surface area has
been emphasized. Sun et al. (2013), has reported on the batch adsorptions of NAP, ANT, NAP,
and PYR onto graphite, GOs and RGOs. The performance of the materials in decreasing order were
rGOs > GOs > graphite, with the former having adsorption capacities of 15.92, 247.17, and 369.06 mg/g
for NAP, ANT, and PYR, respectively [135]. Recently, application of graphene wool for the removal
of PHE and PYR from aqueous environment has been reported by Adedapo et al. (2019). Effective
removal of 99.9 and 99.1% were achieved for PHE and PYR respectively, within 24 h of contact between
the PAHs and the adsorbent. The adsorbent material can be repeatedly used with little or no decreased
in percentage removals over 8 successive cycles [136].

In the case of phenols removal, graphene and functionalized graphene materials have been
reportedly used as adsorbents. Zhou et al. (2017) reported on the fabrication of graphene composite
Fe3O4@PANI-GO for the batch removal of bisphenol A, t-octyl phenol and α-naphthol in water.
The complete removal of the pollutants within shortest time (5 min) for bisphenol A, t-octyl phenol
respectively, whereas the α-naphthol experienced slightly longer time, (300 min) to equilibrium.
The promising application of the material was demonstrated by its effective reusability (10 successive
cycles) without decreased in the removal capacity of the pollutants [137]. The report of Wang et al.,
(2018) have shown that the adsorption of phenols pollutants; 2-phenylphenol (PPE), bisphenol
A (BPA), 4-isopropylphenol (IPE), 4-methylphenol (ME), and phenol (PE) were more effective onto
the rGO (Figure 5) as compared to the GO, attributed to the decreased in electron density in the latter,
hence the strong π-π interactions between the phenols and the adsorbent [138]. Tian et al. (2019),
reported on the rapid adsorption of bisphenol A (3.4 s), onto hybrid material of graphene oxide with
amino functionalized polypropylene (PP-g-DMAEMA/GO). The adsorbent possessed dual channel
structure which allows bisphenol A to easily access the surface of the GO through the nanochannels
of the propylene molecule [139].

In most cases, graphene was shown to have better performance in terms of adsorption capacity
as compared to GO and rGO. In comparison to rGO, GO has more oxygen containing functional groups
and lesser π electron density [138]. It has been established that the hydrophobic effects of the organic
contaminants were the reasons for their strong absorption onto the graphene which occur though π-π
interactions [63,140]. In the case of GO, the dense carbonyl groups at the edge of the carbon layers were
responsible for the strong adsorption of hydrophobic organic pollutants onto the surface of the material
through electrostatic, hydrogen bonding, and anion-π interactions. More details of the adsorptions
of PAHs and phenols onto the graphene, GO, rGO, and their derivatives have been highlighted
in Table 6.
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Table 6. Adsorptions of PAHs and phenols onto graphene, GO and reduced graphene oxide (rGO) and
their composites.

Adsorbent Pollutant Concentration
(mg/L)

Qe
(mg/g)

Equilibrium
Time Ref

Graphene wool PHE 0.8 5
24 h [126]

PYR 5 200

rGO
NAP 30 16

7 days [125]ANT 0.05 247
PYR 0.1 369

GO/FeO·Fe2O3 NAP 0.1 6 48 h [64]
Graphene

GO NAP 4.6 1
66 4 h [63]

Graphene
GO NAP - 9

8 10 min [141]

Sulfonated graphene NAP 0.39 2 5 days [142]

rGO@Sand NAP
ACE 0.8 4

6 120 min [143]

Magnetic graphene nanosheet PHE 0.5 0.02 1 h [72]
Magnetic GO

Magnetic chemically GO
Magnetic rG

PHE 1
14
30
26

24 h [60]

TiO2-Graphene
PHE 4.2 1.2

180 min [59]FLAN 4.5 0.9
BaP 2.5 0.5

GO
rG

Reduced graphene
NAP 20

21
52

145
24 h [144]

Fe3O4@PANI-GO
Bisphenol A 5 14 5 min

[137]t-octyl phenol 5 31 5 min
α-naphthol 10 23 300 min

rGO

2-phenylphenol 0.470 12 60 min

[138]
bisphenol A 0.350 1.56

4-isopropylphenol 0.587 1.117
4-methylphenol 0.550 0.841

phenol 0.850 0.483
CTAB-modified graphite bisphenol A 300 125 10 min [129]

Amino-functionalized GO Bisphenol A 1 2.3 3.4 s [139]
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Table 6. Cont.

Adsorbent Pollutant Concentration
(mg/L)

Qe
(mg/g)

Equilibrium
Time Ref

rGO
GO phenol 50 16

23

GO

bisphenol A
4-nonylphenol

tetrabromobisphenol
A

2,4,6-trichlorophenol

20

21
10
11
18

1400 min [14]

Graphene 4-chloro-2-nitrophenol 10 25 60 min [145]
GO
rGO Phenol 50 23

16.32 100 min [146]

MGO-IL phenol 30 741 12 min [147]
Graphene Bisphenol A 10 87 5 h [62]

Sulfonated graphene 1-naphthol 0.7 2.41 5 days [142]
Graphene phenol 50 28 400 min [148]
GO sheet

GO sponge 2,4,6-trichlorophenol 5 10
21

30 min
12 min [149]

GO Bisphenol A - 49 30 min [150]

GO tetrabromobisphenol
A 1 41 120 min [151]

GO p-nitrophenol 200 138 24 h [51]
GO

Chemically GO
rG

1-naphthol 50
21
52

145
24 h [144]

GO
Ultrasonic GO

Conventional GO
Ultrasonic GO

2-chlorophenol 50

32
134
50

209

50 min [152]

2.3.2. Carbon Nanotubes (CNTs)

CNTs are sheets of pure form of carbon atoms covalently bonded to one another in hexagonal
arrays which are rolled into a hollow cylindrical shape, with the outer diameter ranging between
1–100 nm, while the size up to several tens of micrometers [153]. Since its discovery in 1992, CNT have
been identified with unique physical and chemical properties such as high strength and specific gravity,
good conductivity and thermal stability, high porosity [154,155], making them potential materials have
for various applications such as in optical appliances, energy conversion, electrochemical sensors,
catalyst and adsorbent, micro analytical devices, biomedical devices, and drug delivery [156,157].
The application of CNTs in environmental remediation have also been investigated [158,159]. CNTs have
been employed as potential adsorbents for organic and inorganic pollutants removal from wastewater
due to its superior properties and more tailored surface chemistry, presenting higher surface
porosities and strong chemical and physical interactions with the organic pollutants than the AC
and corresponding carbon-derived adsorbents [160,161]. The surface morphology of the CNTs and
the functional groups present in the organic pollutant has been contributing factor for their higher
affinity for the pollutants, thus, rapid removal with higher adsorption capacities [162].

The potential of CNTs for environmental remediation of organic pollutants has been well studied.
Wu et al. (2016) explored on the affinity of various aromatic compounds onto CNTs. About 22 different
organic pollutants including phenols, substituted benzenes, and PAHs, have been considered and
the findings confirmed positive correlations between the adsorption capacities of the CNTs based
on their mesoporous surfaces to the properties of the pollutants [163]. A review on the prospects and
applications of carbon nanostructured materials in water treatment was presented by Selvaraj et al.
(2020) [164]. Apur et al. (2015) discussed the adsorption of organic pollutants including PAHs and
phenols onto the CNTs [165]. Another report was presented by Ahmad et al. (2019) on the removal
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of organic pollutants in wastewater by CNTs [166]. The preparations, properties, and modifications
of the CNTs have been discussed. The adsorptions of PAHs, pharmaceutical and personal care products,
surfactants and pesticides has been explored and the nature of the interactions between the pollutants
and the CNTs has been highlighted. However, in most of the review articles written detailed
of the optimized adsorption conditions of phenols and PAHs onto the CNTs were not mentioned.

Earlier work on the removal of PAHs from wastewater was conducted by Yang et al. (2006)
using commercially obtained single-walled carbon nanotubes (SWCNTs) and multi-walled carbon
nanotubes (MWCNTs). The adsorptions were found to be pH independent due to the neutral nature
of the PAHs [167]. The adsorption modeling of PAHs onto CNTs has been studied by Kah et al.
(2011). Various concentrations of the PAHs were analyzed, achieving higher adsorption capacities
at both lower and higher concentrations, attributed to the higher surface area of the CNTs in the range
of 200–500 m2/g [168]. Zhang et al. (2019) reported the use of magnetic CNTs for the removal of PHE
from water. The magnetization of the CNTs has been shown to increase the removal efficiency as well
as ease of the regeneration and reusability of the adsorbents [72]. The non-linearity of the PAHs and
their non-ionic and hydrophobic nature, enable them to interact with CNTs through π-π bonding [169].
Hybrid simulation analysis was employed by Yali et al. (2019) to predict the adsorption coefficient
of PAHs onto MWCNT using quantitative structure-property relationship (QSPR) using genetic
algorithm-multiple linear regression (GA-MLR). The data was subjected to training and testing.
The explanation given was that the electrostatic and steric parameters of PAHs were the major factors
responsible for the higher adsorption capacities for the MWCNT. Hence the molecular docking
simulation was accurate and reliable to predict the sorption efficiency [170]. Wu et al. (2020),
studied the sorption mechanisms for PAHs onto CNTs through density functional theory (DFT) and
molecular dynamics simulation. The sorption energies for the individual PAHs (NAP and PHE,
−33.48 and −42 kcal/mol, respectively) were calculated from the compass force field. The simulation
studies were able to predict that CNTs and PAHs interacted through π-π stacking and the Van der
Waals interactions [171].

For the adsorption phenol onto CNTs, researchers have identified multiple interactions via π-π,
hydrogen bonds, and electrostatic interactions. Kragulj et al. (2015) reported on the removal
of chlorinated phenols (2,4-dichlorophenols, 2,4,6-trichlorophenols, and 2,3,4,5-tetrachlorophenols)
onto originally synthesized MWCNT via catalytic chemical vapor deposition (CCVD) and acid
functionalization (FMWCNTs). The FMWCNTs has outstanding performance compared to the pristine
form as shown by the increased in the BET surface area functionalization (61.3 m2/g and 600 m2/g
for MWCNT and FMWCNT, respectively). Except for 2,4,6-trichlorophenol, which was slightly lower
than 2,4-dichlorophenol, the adsorption was found to be positively correlated with molecular weight
of the pollutants [172]. The mechanism for phenol adsorption onto SWCNTs and MWCNTs using
quantum mechanics molecular modeling was investigated by Rezakazemi et al. (2018) [136]. The strong
affinity of CNTs onto the phenols has been emphasized by the formation of π-π interactions between
the delocalized π electrons in the surface of the sp2 hybridized carbon structure of the CNTs. However,
modified CNTs such as oxidized CNT (CNTO) can form hydrogen bonding with the phenol, thus
better affinity than the pristine CNT (Figure 6). Other factors affecting the adsorption of phenols
onto the CNTs include pH, ionic strength, as well as the dispersion of the CNTs in the solution. Table 7
discussed the adsorptions of phenols and PAHs onto various CNTs.



Water 2020, 12, 2921 20 of 40
Water 2020, 12, x FOR PEER REVIEW 18 of 40 
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Figure 6. Schematic diagram for the mechanism of phenol adsorption onto carbon nanotubes (CNT).
Reproduced from ref [146].

Table 7. Adsorptions of PAHs and phenols onto CNTs and their composites.

Adsorbent Pollutant Concentration
(mg/L)

Qe
(mg/g)

Equilibrium
Time Ref

MWCNT NAP 200 69.2 5 days [173]

Commercial MWCNT
NAP
PHE
PYR

- 10.9
10.6
10.6

5 days [167]

Magnetic SWCNT
Magnetic MWCNT PHE 500 24.82

19.37 30 min [72]

MWCNT phenol
3-chlorophenol

0.147
1.25

0.13
0.38 3 days [174]

CNT-polymer bead p-chlorophenol 100 24 1200 min [71]
CNT-polyethylene glycol phenol 20 27 40 min [54]
CNT-polymer composite phenol 30 262 50 min [162]

SWCNT
MWCNT phenol 50 51

65
54 min
36 min [127]

CNT
CNT-Fe2O3

phenol 2 1.1
2.8 2 h [175]

Magnetic-N2H4-SH/MWCNT phenol 40 39 700 min [176]
Chitosan hydrogel-CNT phenol 200 404 120 min [177]

CNT
CNT-Al2O3

phenol
4-chlorophenol

phenol
4-chlorophenol

2

1.1
1.3
2.8
2.8

120 min [34]

CNT
CNT-deep eutectic solvent phenol 50 62

120 24 h [13]

Chitosan-MWCNT phenol 150 88 24 h [17]

CNT
CNT-activated

phenol
2-chlorophenol
4-chlorophenol

phenol
2-chlorophenol
4-chlorophenol

150

24
86
52
64

240
105

50 min
50 min
30 min
50 min
50 min
30 min

[178]

MWCNT
Nitrogen doped-MWCNT bisphenol A 0.37 111

440 3 days [179]

MWCNT phenol 25 32 300 min [180]
SWCNT

SWCNTO
MWCNT
MCNTO

phenol 50

20
21
18
16

100 min [146]

CNT-Mg-Al hydroxide phenol
4-chlorophenol 50 13

14 [181]

MWCNT 2,4,6-trichlorophenol 120 2.3 48 h [182]
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Thus, the efficiency of the carbon-based materials as adsorbents for PAHs and phenols removal
has been well established. AC to a larger extent has been the most widely reported adsorbent. It has
been prepared from the various agricultural waste materials under different conditions. Additionally,
the commercial AC has been available in the markets. Thus, their removal efficiency towards the PAHs
and phenols is superior to that of the corresponding biochar derived from similar agricultural waste.
Generally, CNTs have been shown to offer better removal efficiency than their corresponding graphene
adsorbents. This is attributed to their remarkable high surface area. The strong affinity of the materials to
the pollutants is made possible by the presence of hydrogen and π-π bonding interactions as illustrated
in Figure 5.

2.4. Other Porous Materials for PAHs and Phenols Adsorption

Porous polymers (e.g., polymer beads, molecular imprinted polymers (MIPs)) [27], mesoporous
chitosan [183], and advanced porous materials, such as mesoporous silica (examples; MCM-41, MCM-48
and SBA-15) [184], metal-organic frameworks (MOFs) [185], and other corresponding composites
materials synthesized or are usually synthesized from other known materials. They have been
known to possess physical and chemical properties superior to that of precursor components and that
of the conventional porous materials. They have ultra-high porosity and surface area, high crystallinity,
uniform surface morphology, high chemical and thermal stabilities, and other promising features.
Thus, they have found numerous applications in various fields such as catalysis, gas storage, sensors,
actuators, drug delivery, microextraction, and wastewater remediation [186,187].

The applications of synthesized polymers and advanced porous materials as adsorbents for PAHs
and phenol removals have been investigated by various researchers. In most cases, the efficiency
of these materials surpasses that of carbon-based materials such as AC, due to their larger pore
size and volumes providing more adsorption sites for the pollutants [188,189]. Additionally, some
of these materials have displayed good selectively for the PAHs and other phenolic compounds with
the formation of hydrogen bonding and π-π interactions.

2.4.1. Chitosan

The applications of chitosan, a polymer material obtained from the shell of seafoods and
natural substances for adsorption of pollutants from wastewater have received considerable attention.
The advantages of the material are the low-cost and large content of hydroxyl functional groups
on the surface of the materials [190]. The price of commercial chitosan is much lower compared to
that of the AC and zeolites and it can be easily synthesized with much less energy consumption [191].
The adsorptions of PAHs and phenols onto the chitosan are predominated by hydrogen bonding,
hydrophobic, and π-π interactions [192,193].

Bibi et al. (2015) used membranes synthesized from chitosan and poly vinyl pyrrolidone (CW)
and carbon nanotube (CNT). The membranes with a surface area of 246 and 253 m2/g were used
for the adsorption of NAP from aqueous solution. The membranes were applied for the adsorption
of NAP from aqueous solution with the removal efficiency of 93 and 97% were achieved within
120 and 150 min, respectively [194]. Crisafully et al. (2008) reported on the comparisons of various
natural and commercial adsorbents materials including chitosan for the removal of PAHs [4].
Filho et al. (2018) reported on the synthesis of pectin/chitosan and pectin/chitosan/cyclodextrin
polymers for the adsorption of 3 PAHs, PYR, B[b]F, and B[a]P. The adsorption of PAHs and phenols
onto chitosan is summarized in Table 8. Efficient removal of the pollutants was achieved with good
reusability of the adsorbents [195].

Alves et al. (2019) reported on the modification of chitosan with carbon nanotube composite with
enhanced BET surface area of 1130 m2/g for the adsorption of phenol. Equilibrium was reached within
120 min with adsorption capacity of 404.2 mg/g [177]. A similar finding was reported Bahmani et al.
(2019) using chitosan grafted with ZIF-8 for the phenol removal, achieving adsorption capacity of
152.3 mg/g within 30 min [196]. Guo et al. (2019) comprised the of adsorption of phenol using
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chitosan and MWCNT modified chitosan. The composite material achieved higher adsorption capacity
of (86.96 mg/g) than the pristine chitosan with (61.69 mg/g) [17]. Karamipour et al. (2020) reported
the adsorption of phenol using cellulose acetate/chitosan (CA/Chitosan) composite. The adsorption
capacity achieved was 97.43 mg/g within 9 h. A modification of the CA/Chitosan with iron (III) oxide,
(Fe2O3-CA/Chitosan) improved the physical stability of the adsorbent, achieving good reusability with
the adsorption capacity to 163 mg/g [197].

2.4.2. Molecularly Imprinted Polymers (MIPs)

MIPs are obtained from the interactions of organic and or inorganic monomers of polymerizable
capabilities which are assembled around a specific template known as the ‘imprint’, resulting
into crosslinking of the monomers to form a solid framework [198]. They are well known for their high
porosity resulting from the removal of the template molecules, forming large cavities allows for the easy
access of the molecules to the recognition sites [27,199]. The MIPs of inorganic molecularly imprinted
materials are more flexible in comparison to those obtained from the organic monomers due to the more
availability of the inorganic monomers to be selected from, hence the rigidity of the solid network
as well as the adaptable porosity [200].

The adsorptive properties of the MIP towards pollutants removals in wastewater has been
emphasized on their large porosity, providing more adsorption sites for the pollutants [201],
as highlighted in Table 6. They also offer high selectivity to the pollutants, mainly via hydrogen bonding,
ion-pair interactions, hydrophobic interactions, and Van der Waals forces [28]. The adsorptions of PAHs
onto the functionalized silica aerogels has been recently reported by Saad et al., (2020). The adsorbent
material has proven to be effective in the removal of NAP, ANT, and PYR, with the fluorescence
measurements showing effective adsorption and selectivity of the material in the highest order of NAP,
ANT, and PYR, respectively [200]. Wei et al. (2015) reported on the selective recognition of PAHs
by MIPs. In comparison to the hydrophilic MIP (H-MIP) and co-monomer glycidyl methacrylate
(G-MIP), the conventional MIP has higher binding capacity to the PAHs, attributed to the hydrophobic
nature of the material [202].

Bhatnagar and Anastopoulos (2017) reported the adsorption of bisphenol A and other phenolic
compounds in water [190]. Bayramoglu et al. (2016) reported on the synthesis and selectivity of MIP
and non-imprinted polymer (NIP) for the adsorption of bisphenol A, 4-aminophenol, p-toluidine,
and 2-napthol in the binary and multiple component system. The adsorption capacity of bisphenol
A for the MIP and NIP were 76.7 and 59.9 mg/g, respectively, indicating the selectivity and removal
efficiency of the latter [203]. Adsorptive recognition of phenolic compounds bisphenol A, phenol,
4-nitrophenol, 2-amino-4-chlorophenol and 2-napthol has been reported by Lyu et al. (2020), using
MIP and ionic liquid mediated MIP (IL-MIP). Higher selective of the bisphenol A has been achieved by
the IL-MIP as compared to the conventional MIP, attributed to the complementary of the imprinted
cavity of the IL-MIP to the bisphenol structure [198].

Table 8. Adsorption of PAHs and phenols using chitosan and molecularly imprinted polymers (MIPs).

Adsorbent Pollutant Concentration
(mg/L)

Qe
(mg/g)

Equilibrium
Time Ref

Chitosan

Pec-β-CD/Chitosan
PYR
B[b]F
B[a]P

2
0.1
0.2
0.2

1200 min [195]

Chitosan phenol
Chitosan/CNT phenol 400 404 120 min [177]

Chitosan-cyclodextrin
phenol 150 34

- [193]p-chlorophenol 157 180
p-nitrophenol 150 21
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Table 8. Cont.

Adsorbent Pollutant Concentration
(mg/L)

Qe
(mg/g)

Equilibrium
Time Ref

chitosan-g-PNVCL/ZIF-8 Phenol 20 152 30 min [196]
CA/Chitosan

Fe2O3-CA/Chitosan phenol 100 97
163 5 h [197]

Chitosan
MWCNT-Chitosan phenol 150 62

87 24 h [16]

Fe-EDA/β-CD/Chitosan
phenol

p-nitrophenol
p-cresol

50
243
274
298

120 min [204]

Magnetic chitosan phenol 15 52 50 min [19]

Resin-chitosan phenol
4-chlorophenol 50 189

99
200 min
350 min [205]

EDTA/Chitosan/TiO2 phenol 50 209 240 min [206]
Chitosan-Carbon composite phenol 10 34 1 h

Magnetic
graphene-Chitosan 2-napthol 40 169 60 min [207]

β-cyclodextrin-chitosan

phenol
2-chlorophenol
4-chlorophenol

2,4-dichlorophenol
2,4,6-trichlorophenol

120

60
71
96
315
376

3 h [22]

Magnetic-Chitosan bisphenol A 100 55 120 min [208]
Glutaraldehyde-Chitosan phenol 50 21 60 min [209]

phenol
o-chlorophenol 100 71

51 240 min [210]

MIPs

MIP
BaP
PYR
CHR

1
75.9

7
7

3 h [211]

MIP PHE 0.6 16 90 min [212]
MIP PYR 1 11 90 min [213]
MIP bisphenol A 150 77 120 min [203]

vermiculite MP
magnetic vermiculite MP bisphenol A 1000 217

274 90 min [214]

Surface-MIP
phenol

p-nitrophenol
p-tert-butylphenol

0.75
86
8
7

4 h [50]

MIP/PES/SiO2
phenol

p-nitrophenol 4000 47
37 8 h [215]

AMPS-Am-MIP Phenol 50 97 180 min [18]
MIP

IL-MIP Bisphenol A 100 87
116 20 min [198]

Fe3O4@SiO2@PNP-SMIP 4-nitophenol 210 134 60 min [216]
MIP

SMIP bisphenol-A 20 24
23 240 min [217]

However, it should be stressed that pristine chitosan, upon long term usage as adsorbents, swells.
This has drastically limited its application as potential adsorbent material in wastewater remediation.
However, surface modification of the chitosan with other ideal functional materials helps to improve
the performance of the material and improve its long-term usage. Some reported chitosan composites
used for PAHs and phenols adsorption have been highlighted in Table 6.

2.4.3. Mesoporous Silica

With the advancement in nanotechnology and the attempted reproduction of silica nanoparticles
in 1990 in Japan [218], researchers all over the world continue to explore the potential of the materials
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in various areas. Mesoporous nano silica particles such as Mobil Crystalline Materials (such as MCM-41
and MCM-48) and Santa Barbara Amorphous (such as SBA-15 and SBA-16) have been synthesized
from rice husks, characterized and commercialized for various applications such as gas storage, drug
delivery, oil–water separations, catalysis, and pollutant remediation [186].

Mesoporous silica has well-defined pore structures (hexagonal mesopores), narrow pore size
distributions (4–12 nm), as well as high BET and Langmuir surface-area. Table 6 shows mesoporous
silica that have been used for the PAHs and phenols adsorption. The adsorption capacity and
equilibrium time have been stated.

Nasreen et al. (2018) synthesized highly porous mesoporous silica SBA-15 and MSU-H with
BET surface area of 521 and 580 units, respectively. Both SBA-15 and MSU-H were found to be
effective in the removal of NAP and PHE with the complete removal achieved within 20 min [218].
Costa et al. (2020) have reported the adsorptions of PAHs from aqueous solution using mesoporous
silica MCM-41-NH2 that have been hydrothermally synthesized, possessing high retention rate
of the pollutants with efficiency in the range of 93–98% [219]. Comparison for the removal efficiency
of MCM-48 and SBA-15 for the adsorption of NAP was investigated by Balati et al. (2014) with
the latter having better efficiency, attributed to its higher larger pore diameter [220]. Yuan et al. (2018)
investigated the mechanism for the PAHs adsorption onto the mesoporous silica. They have identified
π-π as the predominant interactions between the pollutants and the adsorbents [221].

The applications of mesoporous silica materials for phenols adsorptions has been investigated.
Nasreen et al. (2018) reported that SBA-15 and MSU-H were able to adsorb 4-aminophenol and
p-nitrophenol from the aqueous medium. The removal efficiency achieved was above 90% within
20 min. It was suggested that the initial properties of the silica has been retained even after
a series of regeneration and reusability, attributed to the high silicon content in the materials [218].
Highly porous mesoporous silica SBA-10 and PA-10 with a BET surface area of 925 and 353 m2/g
were synthesized by Yangui et al. (2017) for the adsorption of phenolic compounds. Adsorption
efficiency of 75% and 67% for phenol removal were reported within 2 h when the SBA-15 and PA-10
were modified with amine functional groups [222].

2.4.4. Metal-Organic Frameworks (MOFs)

The application of MOFs in wastewater remediation have recently gained more recognitions due to
the great potential of these materials. They are made from the coordination interaction of the metal
ion with organic moieties [223]. The metal node is the central building block, while organic moiety is
the ligand and together forming a framework of higher tunability [224]. They are known to possess
ultra-high porosity (over 90% by volume is empty) with BET surface area higher than that of AC
and mesoporous silica (up to 9000 m2/g) [225]. MOFs have higher crystallinity, thermal and moisture
stability, and they can be easily regenerated from the aqueous medium through simple decantation or
magnetic separation [226]. The topology of the framework also made it possible to modify the MOFs
with other functional groups and materials for versatile and particular applications.

The use of MOFs for PAHs adsorptions recently been published by our groups [227].
The application of Zr-based MOFs; UiO-66(Zr) and NH2-UiO-66(Zr) have been reported for ANT
and CRY adsorptions from the aqueous medium. The BET surface area of the MOFs was 1420 and
985 m2/g for the UiO-66(Zr) and NH2-UiO-66(Zr), respectively. Higher removal efficiency has been
achieved within short equilibrium time (25–30 min) with percentage removals of 98.6 and 97.9%
for the ANT and CRY, respectively, using UiO-66(Zr) MOF. Interestingly, all the reported MOFs
have displayed good reusability for the PAHs adsorption. We have also reported on the molecular
docking interaction of the Fe-based MOFs, MIL-88(Fe) and NH2-MIL-88(Fe) with CRY. Figure 7 has
illustrated the binding interaction of the MOFs with the CRY molecules with the MIL-88(Fe) having
the most stable complex structure with the higher binding energy (∆Gbind) of −3.88 kcal/mol and lower
inhibition constant (Ki) of 1.58 mM. Thus, the CRY molecules preferred to reside in the internal pores
of the MOF. However, for the NH2-MIL-88(Fe), the binding energy is slightly lower, and the inhibition
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constant is higher, −3.80 kcal/mol and 1.65 mM respectively, resulting into lower binding stability
of the complex. In the NH2-MIL-88(Fe), the CRY molecules preferred to adsorb on the outer pores
of the MOFs. The high selectivity of the MIL-88(Fe) has been emphasized by the larger BET surface
area and pore size of 1242 m2/g and 12.5 nm respectively. The BET surface area and the pore size
of the NH2-MIL-88(Fe) was 941 m2/g and 8.8 nm respectively [228]. Table 9 highlights the various
MOFs used for PAHs and phenols adsorptions in wastewater.
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Adsorbent Pollutant Concentration(mg/L) 
Qe 

(mg/g) 
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Time 
Ref 

Mesoporous Silica 
MCM-41 NAP 15 61 20 min [184] 

Periodic mesoporous 
organosilica 

NAP 
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10 

1.5 
0.9 
0.9 
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NH2-SBA-15 
NAP 
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1.4 
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24 h [232] 

MCM-41-PABA 

NAP 
B[b]FLUO 
B[k]FLUO 
B[b]PYR 

200 μg/L 

17.83 
20 
19 
19 

24 h [233] 

MCM-48 
SBA-15 

NAP 7 
0.7 
0.4 

24 h [220] 

NH2-SBA-15 
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115 
72 

6 h [234] 

MCM-41- 
phenol 
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50 

12 
30 

24 h [222] 

MCM-48-Chitosan Phenol 500 149 24 h [183] 

Figure 7. The molecular docking structure of (a) MIL-88(Fe) and (b) NH2-MIL-88(Fe) with the CRY
molecule, for the binding interactions [229]. Copyright: Elsevier (2020). Metal (Fe), carbon (C), oxygen
(O), and nitrogen (N) are colored as yellow, green, red, and blue, respectively. The CRY is indicated
in purple.

Adsorptions of phenolic compounds onto MOFs have also been studied. Most of the reported
MOFs are promising adsorbents for the removal of the pollutants studied. The famous HKUST-1
has shown good removal efficiency for the p-nitrophenol, with complete removal achieved
within 40 min (equilibrium adsorption capacity of 400 mg/g). The high adsorption capacity
of the MOF for the p-nitrophenol was attributed to the high affinity of the MOF to the NO2 side
of the pollutant, resulting into hydrogen bonding interactions [229]. The high selectivity and removal
efficiency of the crystalline and water stable Zr-based MOF, NH2-UiO-66(Zr) for the adsorptions
of 2,4,6-trinitrophenol, 2,4-dinitrophenol, 2,4,6-tri-nitrotoluene, and 2,4-dinitrotoluene in water was
also investigated. Higher equilibrium adsorption capacities was achieved with the hydrogen bonding
formation between the MOF and the pollutants [230]. Luo et al. (2019) reported on the enhanced
removal of bisphenol A using Al-based composite Al-MOF/SA-CS. The adsorption capacity was
136 mg/g. The adsorption mechanism has been explained by the formation of hydrogen bonding,
π-π stacking and cation-π interactions [231].

Table 9. Adsorption of PAHs and phenols onto mesoporous silica and metal-organic frameworks (MOFs).

Adsorbent Pollutant Concentration
(mg/L)

Qe
(mg/g)

Equilibrium
Time Ref

Mesoporous Silica

MCM-41 NAP 15 61 20 min [184]

Periodic mesoporous
organosilica

NAP
ACE
FLU

FLUO
PYR

10

1.5
0.9
0.9
0.7
1.3

24 h

Fe-SBA-15 PYR 0.1 0.034 20 min [188]

NH2-SBA-15
NAP
ACE
PHE

1
1.9
1.4
0.8

24 h [232]
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Table 9. Cont.

Adsorbent Pollutant Concentration
(mg/L)

Qe
(mg/g)

Equilibrium
Time Ref

MCM-41-PABA

NAP
B[b]FLUO
B[k]FLUO
B[b]PYR

200 µg/L

17.83
20
19
19

24 h [233]

MCM-48
SBA-15 NAP 7 0.7

0.4 24 h [220]

NH2-SBA-15
4-chlorophenol
4-bromophenol
4-iodophenol

250
141
115
72

6 h [234]

MCM-41- phenol
o-chlorophenol 50 12

30 24 h [222]

MCM-48-Chitosan Phenol 500 149 24 h [183]

SBA-15 4-aminophenol
4-nitrophenol - 10

8 20 min [235]

Rice husk silica phenol 15 4 60 min [236]
MCM-41 phenol 60

MOFs

UiO-66(Zr)
NH2-UiO-66(Zr)

ANT
CRY
ANT
CRY

4

24
24
22
19

30 min
25 min
30 min
25 min

[227]

MIL-88(Fe)
NH2-MIL-88(Fe) CRY 4 24

22 25 min [228]

MIL-88(Fe)
Mixed-MIL-88(Fe)
NH2-MIL-88(Fe)

ANT 4
24
23
21

30 min [237]

MIL-88(Fe)
NH2-MIL-88(Fe) PYR 4 24

23 40 min [238]

MIL-53(Al)
MIL-53(Al)-F127 bisphenol A 250 329

473
90 min
30 min [239]

MIL-68(Al)/PVDF p-nitrophenol 10 126 720 min [240]
HKUST-1(Cu) p-nitrophenol 200 400 30 min [229]

SiO2@MIL-68(Al) aniline 3000 532 40 s [241]
[Zn(ATA)(BPD)]

MOF-VII 2,4-dichlorophenol 60 -
- 90 min [242]

[Zn(TDC) MOF 2, 4-dichloropheno 60 - 180 min [243]
MIL-68(Al)

CNT@MIL-68(Al)
phenol
phenol 1000 118

257 120 min [244]

NH2-UiO-66(Zr)

2,4,6-trinitrophenol
Styphnic acid

2,4-dinitrophenol
2,4,6-tri- nitrotoluene

2,4-dinitrotoluene

100

23
24
30
0.5
2

36 h [230]

MIL-53(Al) dichlorophenoxyacetic
acid 150 556 1 h [245]

MIL–68(Al)
MIL–68(Al)/GO p–nitrophenol 300 271

332
17 h
17 h [51]

NH2-MIL-88(Fe) 2,4,6-trinitrophenol 35 164 40 min [246]
MOF-199(Cu) Phenol

p-nitro phenol 500 58
68

300 min
30 min [247]

Al-MOF/SA-CS bisphenol A 50 137 18 h [231]
Cu-BDC MOF
Cu-BDC@GrO
Cu-BDC@CNT

bisphenol A 200
60

182
164

40 min [248]

laccase@HKUST-1 bisphenol A 200 - 4 h [249]
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2.5. Pilot and Industrial Scale Adsorption of PAHs and Phenol in Wastewater

Pilot and industrial wastewater treatment plants have been the major repository of PAHs and
phenols. In most cases, these pollutants are washed from the soil by heavy rain or directly emitted from
petroleum refineries, petrochemical industries, and coal mining and processing areas. Thus, they are
deposited into the municipal wastewater and wastewater treatment plants. Various studies have
shown the presence of these pollutants at much higher concentrations than the maximum tolerable
limit in the water. Thus, the target of wastewater remediation technologies has been the wastewater
for both industrial and municipal treatment plants. Application of adsorption technologies at pilot
and industrial wastewater has been well explored [250].

Activated carbon has been the adsorbent most widely used for the post-treatment
of non-biodegradable pollutants such as PAHs and phenols in the wastewater treatment plants due
to its large surface area and uniformity of surface microspores [251]. With the availability of various
low-cost and highly porous adsorbents materials, some researchers have endeavored to explore
the adsorptive removals of the PAHs and phenols at both pilot and industrial scale treatment plants.
Kalmykova et al. (2014) have explored the performance of sand, granular activated carbon (GAC),
and peat moss filters for PAHs and phenol adsorption at pilot-plant. The performance of each filter has
been assessed with the GAC achieving complete removal of phenols, while the peat filter was able to
remove 50–80% of the phenols. For PAHs removal, the percentage achieved by GAC and peat were
50% and 63%, respectively [252]. The application of resin adsorbent, Amberlite XAD16, was reported
by Frascari et al. (2016) for the removal of phenols from olive mill wastewater using continuous
flow column at pilot-scale. The Amberlite XAD16 was well characterized with BET surface area
of 800 m2/g and average particle size of 0.63 mm. The adsorption capacity of the material was evaluated
by the Langmuir model at 40 mg/g with over 70% removal efficiency achieved by the material [253].
El-Nass et al. (2016) have reported on the pilot-scale removal of phenol from refinery wastewater.
About 250 kg of GAC with a particle size of 1.5 mm was used as the bed in the packed column of 1.8 m
and 0.6 m length and internal diameter respectively. Over 90% removal of the phenols was achieved
by the adsorbent, indicating the efficiency of GAC in removal of organic pollutants from the refinery
wastewater [251].

3. Conclusions

Ubiquitous transport, distributions, and the fate of PAHs and phenols in wastewater has been
a major environmental challenge for decades. These pollutants have been well identified as highly
toxic to both fauna and flora and pose carcinogenic and mutagenic effects to humans. Hence,
their environmental abatement, particularly from industrial, municipal, and wastewater treatment
plants (WWTPs), has been highly desired. Various wastewater remediation technologies have been
proposed. This article presented comprehensive review on the use of adsorption technology for PAHs
and phenols remediation from water. The application of various porous adsorbents materials has
been studied.

Porous carbon materials biochar and AC have discovered various applications in environmental
remediation. Those materials have been successfully prepared from various agricultural wastes and
been widely used as adsorbents for PAHs and phenols removal. In comparison to biochar, AC has
shown more promising and potential removal capacity, attributed to the higher porosity of the AC.
Apart from the biochar and AC, other derived porous carbons such as the graphene and CNTs
have been widely employed. Their potentially higher removal efficiencies have been commended.
This is attributed to their remarkable high surface area and strong affinity to the pollutants through
the formation of hydrogen and π-π bonding interactions, as we have illustrated.

Under similar conditions, the use of synthetic polymers, chitosan and MIPs, have been presented.
Despite the selectivity of the polymers, the swelling effect of the chitosan limits their applications.
However, modified chitosan has been shown to offer better removal capacity than the pristine form.
To the larger extent, the potentials of advanced porous materials; mesoporous silica (such as MCM-41,
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MCM-48, and SBA-15), and MOFs had been discussed. The superior adsorption capacity of the silica
and MOFs adsorbents had been in all way connected to their ultra-porosities and high stability
of the materials. Their strong affinity to the PAHs and phenol has been highlighted.

Thus, application of various porous adsorbents has been presented. Findings from previous
works from literature have been compiled and analyzed. This review thus highlighted the potential
of adsorption technique for the removal of PAHs and phenols from environmental wastewater.
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