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Abstract: In the past few decades, the shrinkage of the Aral Sea is one of the biggest ecological
catastrophes caused by human activity. To quantify the joint impact of both human activities and
climate change on groundwater, the spatiotemporal groundwater dynamic characteristics in the Amu
Darya Delta of the Aral Sea from 1999 to 2017 were analyzed, using the groundwater level, climate
conditions, remote sensing data, and irrigation information. Statistics analysis was adopted to analyze
the trend of groundwater variation, including intensity, periodicity, spatial structure, while the Pearson
correlation analysis and principal component analysis (PCA) were used to quantify the impact of
climate change and human activities on the variabilities of the groundwater level. Results reveal that
the local groundwater dynamic has varied considerably. From 1999 to 2002, the groundwater level
dropped from −189 cm to −350 cm. Until 2017, the groundwater level rose back to −211 cm with
fluctuation. Seasonally, the fluctuation period of groundwater level and irrigation water was similar,
both were about 18 months. Spatially, the groundwater level kept stable within the irrigation area
and bare land but fluctuated drastically around the irrigation area. The Pearson correlation analysis
reveals that the dynamic of the groundwater level is closely related to irrigation activity within the
irrigation area (Nukus: −0.583), while for the place adjacent to the Aral Sea, the groundwater level is
closely related to the Large Aral Sea water level (Muynak: 0.355). The results of PCA showed that
the cumulative contribution rate of the first three components exceeds 85%. The study reveals that
human activities have a great impact on groundwater, effective management, and the development of
water resources in arid areas is an essential prerequisite for ecological protection.
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1. Introduction

The Aral Sea is located in the deserts of western Central Asian, within Kazakhstan and Uzbekistan
(43◦24′~46◦56′ N; 58◦12′~61◦59′ E), situated in a semi-arid to arid region west of the Tian Shan and the
Pamir (Figure 1) [1]. The Aral Sea has two tributaries, Amu Darya and the Syr Darya rivers, mainly fed
by precipitation and snowmelt of the high mountain ranges. Both of them discharge freshwater into
the Aral Sea, which has no further outflow [2]. The average annual temperature is 9.4 ◦C, and the
annual precipitation is between 100 and 140 mm (Figure 2) [1].
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Figure 2. Schematic diagram of the multi-year monthly average temperature (yellow line)
and precipitation (blue line) (1991–2018) at the Nukus meteorological station; and runoff (blue
bar) (1992–2018) at Samanbay hydrological station. With a similar numeric range of variation,
the precipitation and temperature share the secondary y-axis.

Since 1960, the Aral Sea has rapid desiccation and severely salinized, caused a series of ecological
and environmental crises [3]. With a surface area of 67,500 km2, the Aral Sea was once the fourth-largest
inland lake on the planet in 1960, while in the following years, the irrigation activity drastically reduced

http://srtm.csi.cgiar.org/
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the inflow and further led to a sharp shrinkage [4]. Since then, it has shrunk by more than 80% of
its surface area with approximately 90% of its volume and further led to a rapid increase in salinity,
which rocketed up by 20 times from the year 1960 to 2010 [5]. As the lake’s bottom dries up to about
4000 km2, the groundwater level has dropped dramatically. In September 2009, the Aral Sea separated
into the South (Large) Aral Sea in Uzbekistan and North (small) Aral Sea in Kazakstan by the artificial
dam built in Kazakhstan. Since then, the northern part has been recovered while the southern part
continues to deteriorate [6].

The dramatic shrinking of the Large Aral Sea has caused severe damage to the local ecological
environment, economic and human habitation [7]. Dryness and exposed lake beds not only lead to the
disappearance of the fishing industry but also frequent salt/sand storms, as well as ill effects on the
crops, wild and livestock, particularly in the Amu Darya Delta [8]. This human-made environmental
degradation was considered one of the greatest ecological catastrophes of the 20th century [9]. The main
reason for the shrinking of the Aral Sea is the human activity and climate change, including the
unsustainable recharge from the inflowing Amu Darya and Syr Darya rivers, which were adopted
to supply irrigation for agriculture [10]. Crop production in arid areas consumes large amounts
of water [11]. To meet the increasing crop demand driven by the population growth, agricultural
consumption of freshwater soars correspondingly. The local government expanded irrigation areas
from around 5 million ha in 1960 to 8.2 million ha in 2010, which greatly diminished the discharge of
the Amu Darya and Syr Darya rivers. Featured as a terminal lake, there is no surface outflow in the
Aral Sea, therefore, its water level is fundamentally determined by the joint effect of Amu Darya runoff,
the groundwater discharge, and the net evaporation. The lake’s water level has fallen sharply since the
1960s, and groundwater input is likely to increase, thereby increasing the hydraulic gradient [6]. As the
Amu Darya did not reach the Large Aral Sea anymore, the groundwater becomes a more decisive
factor over the past several decades. Net groundwater inflow is estimated at −1.3 to 3.4 km3/year and
is considered a significant part of water balance [12]. Due to the lack of long-term measurement of
groundwater level for the entire basin, the understanding of the water balance in the Aral Sea is still
inaccurate and incomprehensive.

Recent research indicated that the main reasons for the decrease in groundwater were reduced
precipitation, shrinking river runoff, increased water consumption, low utilization rates of water
resources [13–17]. Over the past decades, lots of efforts have been devoted to groundwater monitoring
and characterization. Micklin [1] mainly used hydrologic and other data to analyze the changes in the
hydrology and ecological environment of the Aral Sea concluded that in the early 1960s, excessive
irrigation activities broke through the tipping point of the natural environment. Meanwhile, with the
help of several future scenarios of the Aral Sea, he pointed that the restoration of the Aral Sea not only
requires major capital and technical innovations, but also a feasible fundamental policy for long-term
sustainable development. With the help of a 3-D sea-ice groundwater model, the groundwater
discharge—as one of the investigated factors, could have influenced the Aral Sea salinity distribution
in the 1990s [9]. Johansson et al. [18] analyzed the historical data set of groundwater level and salinity
measurement of 24 monitoring wells located in Amu Darya Delta, the results showed that in the
current unirrigated downstream area, the salinity of shallow groundwater (average 23 g/L) was much
higher than current irrigation water (average 3 g/L). Ibrakhimov et al. [5] analyzed the spatial-temporal
dynamics of the groundwater level and salinity in the Khorezm region, and the results showed that by
the dynamic of position and salinity in the water table, the soil salinization increased by 3.5–14 t/ha of
salts annually.

As a crucial factor in meeting the region’s freshwater demands, the influence of the sharp shrinkage
of the Aral Sea on groundwater flow needs to be quantified. By using the water balance expression,
and considering the uncertainty of the main evaporation terms, the groundwater could be treated as a
fitting parameter in the Aral Sea water balance equation. An investigation by Jarsjö and Destouni [19]
demonstrated a redistribution of the local groundwater flow field, where the groundwater discharge
kept consistent in the southeast of the Aral Sea but increased in the northwestern area. However,
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most of the previous works that focused on water level and quality changes in local areas lacked
spatial-temporal research on the groundwater of the entire Aral Sea Basin. From a global perspective,
groundwater resources have played an irreplaceable role in solving water shortage in arid regions.
Besides, scientific demonstration and effective management are essential guarantees and necessary
premises for the development and utilization of groundwater resources in the arid areas [11]. The macro
spatial distribution of the arid region and its degree of change are the keys to formulate a strategy
for the rational use of regional groundwater. Therefore, it is of great importance to seek the possible
causes of the variation. Nevertheless, several studies have investigated the spatiotemporal variation of
the groundwater level, but due to the lack of sufficient, frequent, and regular data, the analysis of the
temporal variation of the groundwater is still insufficient.

Many researchers use geostatistics as water resource management and decision tools to reveal
the spatial-temporal structure of groundwater level fluctuations [20]. Statistical tests like the linear
regression model, M–K [21] test were applied to understand the trend and rate of change in the
groundwater level. This study focused on changes in the groundwater dynamic from 1999 to 2017.
The linear regression analysis, wavelet analysis, and M–K test were used to detect the trend of
groundwater changes, mutation points, and change points in time series. The Pearson correlation
analysis was used to quantify the relationship and contribution of runoff, irrigation water, the Aral Sea
water level, Normalized Vegetation Index (NDVI), and evapotranspiration (ET) on groundwater level
changes. The PCA was used to quantitatively analyze the degree of influential factors driving changes
in the groundwater level. This study aims to provide essential insight into quantifying groundwater
recharge volume to the Aral Sea and understanding the mechanism of recharge.

2. Materials and Methods

2.1. Study Area

The Amu Darya Delta contains both surface water and groundwater that discharge into the
shrinking Large Aral Sea and ultimately control its future destiny [18]. Karakalpakstan is an autonomous
republic that covers the entire northwestern of Uzbekistan. As Karakalpakstan is the primary
recharge area for groundwater in Amu Darya Delta, in this paper, groundwater level data from
Karakalpakstan is used to analyze the characteristics of groundwater level changes in the Amu Darya
Delta. The Karakalpakstan (41◦19′~45◦35′ N; 56◦0′~62◦20′ E) has an area of 160,000 km2, the elevation
ranges between −42 and 458 m, bare area and cropland are the major land use/cover types, cotton and
wheat are the main crops. The Aral Sea was subdivided into two separate waterbodies, while the
Amu Darya river is the sole tributary of the Large Aral Sea. which serves as the drainage for the
endorheic basin.

The land cover types in the study area are mainly cropland and bare areas (Figure 3), in which the
groundwater varies differently. Cropland is primarily distributed around the Nukus district, and the
rest is mostly bare areas. There are four main irrigation areas in the Amu Darya Delta, including
Suenli, Kattagar-Bozatau, Kizketken-Kegeyli, and Kuanish Jarma, while their locations could be seen
in Figure 6. According to acreage, land use type, variation characteristics, etc., four representative
districts were selected for further analysis in this study. Nukus district is the capital of Karakalpakstan,
where the most intensive human activities happen. Muynak district is closest to the Large Aral Sea,
where the groundwater level has fallen the fastest from 1999 to 2017. Kungrad district covers the
largest area in Karakalpakstan and mostly are bare areas. Part of the Karauzyak is an irrigation area,
where groundwater levels have risen the fastest from 1999 to 2017.
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2.2. Dataset

The monthly regional average groundwater depth from 1999 to 2017 at the Karakalpakstan
was acquired from the Centre of Hydrometeorological Service of Uzbekistan. It was applied to
estimating the trends of spatial-temporal variation. The data series of regional groundwater average
was calculated basing on all wells within the district. The correlation between the groundwater
dynamic and the joint effect of climate change and human activities was calculated by adopting the
hydrometeorological data and remote sensing data. The hydrometeorological data, including the
upstream runoff, the volume of irrigation water, the water level of the Large Aral Sea, was supplied by
the local measurement of the Centre of Hydrometeorological Service of Uzbekistan. Among them,
the upstream runoff data was represented by the nearest station (Samanbay station) to the study area.
Remote sensing data includes the NDVI, the ET data, and the land cover data. The NDVI data are
MODIS/MODIS13A1 datasets from 2000 to 2017 provided by the United States distributed data center
for land processes (https://ipdaac.usgs.gov). The spatial resolution is 500 m and the temporal resolution
is 16 d. The downloaded NDVI dataset is a 16-day synthesized L3-level data product, which has been
pre-processed by radiation correction, atmospheric correction, and geometric correction. The maximum
synthesis method is used to further eliminate partial interference cloud, atmosphere, and sun altitude
angles. This paper mainly deals with the following data: the MODIS projection conversion tool MRT
(MODIS Reprojection Tool) is used to splice, convert the projection type, and format the remote sensing
images [22]. The ET data are Landsat TM/ETM/OLI and Landsat 8 products. The data were acquired
from XIEG (the Key Laboratory of Remote Sensing and Geographic Information System, the Xinjiang
Institute of Ecology and Geography, Urumqi, China), Chinese Academy of Sciences [23]. Considering
the interference of cloud on data accuracy, the ET data were from the growing season (April to October)
of 2000, 2005, 2010, 2012, and 2015. The XIEG calculates ET in the study area using the SEBAL (Surface
Energy Balance Algorithms for Land) model. The SEBAL model is a typical method for ET inversion
using remote sensing imagery based on the principle of energy balance. The model assumes that there
are cold and hot limit pixels in the study area, which takes the spatial heterogeneity of the arid land
into account, therefore, the SEBAL model has been widely used in remote sensing ET estimation in

https://ipdaac.usgs.gov
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arid land [24]. To identify the type of land use, this study adopted the data of land cover classification
map in 2015, while the spatial resolution is 300 m (http://esa-landcover-cci.org).

2.3. Methods

The Linear Regression Analysis is used to reveal the variation trend and intensity of groundwater
level in time series. The Wavelet Analysis has been applied to identify the significant fluctuation period
and extract useful information from the raw data [25–29]. The Non-Parametric M–K test was used to
analyze the trends in the long-term groundwater level data [21,30,31]. Pearson Correlation Analysis
is commonly used to analyze the relationship between two random variables [32,33]. To further
identify factors that influence groundwater level in the study area, a PCA based on the five selected
meteorological and hydrological parameters from the groundwater level dataset of 1999–2017 was
performed [34]. Each method has a different focus while combining the results will give a comprehensive
understanding of the groundwater system in the Amu Darya Delta (Figure 4).
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2.3.1. Trend Analysis

For estimating the trend and intensity of groundwater levels on the time scale, linear regression
analysis was adopted. The slope of the fitted equation can represent the variation trend of the
groundwater level. A positive slope (slope > 0) represents a decreasing trend, while a larger absolute
value of the slope suggests a faster reduction rate and vice versa. The definition of the statistic index
slope is calculated as

slope =

∑
(x− x) × (y− y)∑

(x− x)2 (1)

In the formula: x is the groundwater level, x is the average value of the groundwater level,
y represents the y-th year (1999–2017, y is from 1–19), y represents the average value of y. slope
represents the slope of the trend line [35].

2.3.2. Wavelet Analysis

The wavelet analysis method has the characteristics of multi-resolution analysis in the
time-frequency domain. Both can characterize multi-scale detailed analysis on the signal to obtain the
change of each frequency with time and the relationship between different frequencies, so it is widely
used in analyzing hydrological time series [36–38].

http://esa-landcover-cci.org
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Compared with the real wavelets, complex wavelets can be more accurate in reflecting the
periodicity of each scale of the hydrological sequence and the distribution of these periods in the
time domain. The modulus of the complex wavelet transform coefficient indicates the strength of
the characteristic time scale signal, and the real part represents the strength and phase information
at different times. Therefore, complex wavelet analysis was chosen for periodic analysis of the
groundwater level data series. The basic idea of wavelet analysis is to use a cluster of wavelet functions
to represent or approximate a specific signal or function [25]. The Morlet wavelet is defined as

ψ0(η) = π−
1
4 eiω0ηe−

1
2η

2
(2)

where ω0 is the dimensionless frequency and η is dimensionless time. Strech the wavelet by varying its
scale (s), so that η = s× t, and normalized to unit energy. The Morlet wavelet analysis (with ω0 = 6)
with time-frequency multi-resolution function, provides a good balance between time and frequency
localization. The basic objective of the continuous wavelet transform (CWT) is to identify the main
oscillations of signals in the time-frequency domain. The wavelet function is the key to wavelet
analysis. It refers to a class of functions that are oscillating and quickly decay to zero. The CWT of time
series (xn, n = 1, . . . , N), sharing a uniform time step δt, is defined as the convolution with a shifted
and scaled factor of xn and normalized wavelet. The CWT is shown as below:

WX
n (s) =

√
δt
s

N∑
n′=1

xn′ψ0

[
(n′ − n)

δt
s

]
(3)

The basic principle of wavelet analysis can be known from Equation (3), that is the low-frequency
or high-frequency information of the signal is obtained by increasing or decreasing the scaling scale a
and then analyzing the profile or details of the signal to achieve different local time characteristics and
spatial characteristics of the signal analysis [27]. In other words, CWT applies wavelet as a band-pass
filter to time series. CWT can clearly reveal the various oscillation period hidden in the time series,
fully reflect the variation trend of the system in different time scales.

Integrating the squared value of the wavelet coefficient in the b domain can obtain the wavelet
variance, it can be written as

Var(a) =
∫ +∞

−∞

∣∣∣W f (a, b)
∣∣∣2db (4)

It can be known from Equation (4) that it can reflect the distribution of the energy of the signal
fluctuation with the scale a. Therefore, the wavelet variance figure can be used to determine the relative
intensity of different scale disturbances in the signal and major time scale, which is the main period.
The MATLAB package of wavelet analysis is provided by Grinsted [26].

2.3.3. Non-Parametric Mann–Kendall Test

The M–K test is usually used to detect a series of trends in the long term of environmental data,
climate data, or hydrological data [39]. The main advantage of the M–K test is that the sample does not
need to obey any particular statistical distribution. The original hypothesis (H0) of the M–K test is that
in the sample analyzed, there is no trend or serial correlation with the alternative hypothesis (H1),
which assumes an increase or decrease in the monotonic trend.

The M–K test statistic S is calculated as follows:

S =
n−1∑
k=1

n∑
j=k+1

Sgn
(
x j − xk

)
(5)
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Sgn
(
x j − xk

)
=


+1

(
x j − xk

)
> 0

0
(
x j − xk

)
= 0

−1
(
x j − xk

)
< 0

(6)

When n < 10, the absolute value of S is directly compared with the theoretical distribution of
S derived by M–K. Positive values of S indicate an upward trend, while negative values indicate a
downward trend. When n = 10, the statistic S is normally distributed with a mean of 0.

The variance statistic is calculated as follow:

Va(S) = n(n− 2)(2n + 5)/18 (7)

If n > 0, the standard normal distribution system variable is given as

Z =


S−1√
Va(S)

, S > 0

0, S = 0
S+1√
Va(S)

, S < 0
(8)

The statistic Z is standard normally distributed. If Z > 0, it means an increasing trend, if Z < 0,
it means a decreasing trend. Testing for monotonic increases or decreases, a bilateral trend test at α
level of significance is used. If |Z| ≥ Z1−α/2, then the null hypothesis (H0) is rejected, which is “there is
no trend in time series of groundwater levels” [40]. If |Z| ≥ 1.96, the sample passes the significance test
at a confidence interval of 95%.

Another test statistic Sk can be calculated by building a column order:

Sk =
k∑

i=1

i−1∑
j

ai j (k = 2, 3, 4, . . . , n) (9)

ai j =

{
1 Xi > X j
0 Xi < X j

1 ≤ j ≤ i (10)

The statistical variables are calculated as follows:

UFk =
[Sk − E(Sk)]√

Var(Sk)
(k = 1, 2, . . . , n) (11)

E(Sk) =
k(k + 1)

4
(12)

Var(Sk) = k(k− 1)(2k + 5)/72 (13)

The UFk is standard normally distributed when |UFk| ≥ Ua/2, it indicates an obvious trend that
happened in the sequence. Reverse time series x and performing the corresponding calculations will
produce the following results: {

UBk = −UFk
k = n + 1− k

(k = 1, 2, . . . , n) (14)

By combining the UFk and UBk, groundwater level trends, and breakpoints can be clearly identified.
If UFk > 0, it means an upward trend, if UFk < 0, it means a downward trend. When the value exceeds
a critical straight line (+1.96, −1.96), it indicates a clear upward or downward trend. If the UFk and
UBk curves have an intersection and were within the 95% confidence interval, this indicated that the
groundwater level trend has mutated at this point.
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2.3.4. Pearson Correlation Analysis

The dynamic change of groundwater is a complex natural process, human activities and climate
change have a huge impact on them. The Pearson correlation analysis [32] is usually used to analyze the
degree of correlation between the two random variables by calculating the correlation coefficient. In this
study, factors considered to have an impact on groundwater levels are the upstream runoff, irrigation
water, NDVI, evapotranspiration, and the Large Aral Sea level. Pearson’s correlation coefficient is
calculated as follows:

r =
N

∑
xiyi −

∑
xi

∑
yi√

N
∑

x2
i − (

∑
xi)

2
√

N
∑

y2
i − (

∑
yi)

2
(15)

The r is Pearson’s correlation coefficient, the xi and yi are the values of two factors. The value of
the correlation coefficient is between −1 and +1. The positive values indicate a positive correlation,
while negative values indicate a negative correlation. The closer the absolute value of the correlation
coefficient to 1, the stronger the correlation is. The closer the absolute value of the correlation coefficient
to 0, the weaker the correlation is [33]. The Pearson correlation analysis is performed with SPSS
Statistics (version 24.0; SPSS Inc., Chicago, IL, USA).

2.3.5. Principal Component Analysis

PCA is a bilinear model based on constructing common variables, which are linear combinations
of the original variables [41]. These factors are called principal components (PCs) and are used to
extract hidden structures from the raw data. PCs interpret the direction of the maximum variance
under the constraint of orthogonality. PCA can analyze a large number of samples characterized by
multiple variables simultaneously, so it is often used to extract variables in hydrological studies [42].
Variable extraction is done by compressing multi-dimensional variables into a low-dimensional form
of new unrelated variables, explaining the largest variance of all original variables [43]. In this study,
PCA was implemented in the factor analysis, and the factor is an upstream runoff, irrigation water,
NDVI, evapotranspiration, and water level of the Large Aral Sea. The PCA analysis is performed with
SPSS Statistics.

3. Results

3.1. Spatial-Temporal Variation of Groundwater Level

To understand the spatial-temporal variation characteristics of the groundwater level in the Amu
Darya Delta, the regional mean of the groundwater level from 1999 to 2017 was adopted in this study.
The slope calculated by the trend analysis was used to indicate the direction of change and further
calculate the F test’s confidence level. It shows that most regional groundwater levels increased
with fluctuation, except three districts, which showed a decreasing trend (Figure 5). As can be seen,
Karakalpakstan shows a significant increasing trend (p < 0.01), and the rate of increase is 24.83 mm/year.
The district with the fastest groundwater level increase is Karauzyak, where it reaches 58.36 mm/year
(p < 0.01). However, the significant decreasing trend (p < 0.01) was shown in three other districts,
separately Muynak, Beruniy, and Amudarya, with a decreasing rate of 30.27 mm/year, 10.41 mm/year,
and 5.52 mm/year, respectively. From 1999 to 2002, groundwater in Amu Darya Delta dropped rapidly.
Among the districts, the Muynak dropped from −239 cm to −643 cm, and the Karauzyak dropped
from −67 cm to −352 cm. From 2002 to 2004, groundwater in most areas recovered to 1999 levels,
but Muynak only recovered to −421 cm. In contrast, Karauzyak recovered to −92 cm. The groundwater
experienced another sharp decline from 2007 to 2009, while from 2009 to 2010 it bounced back to the
level of 2007. The fluctuation range is smaller than that from 1999 to 2004, while Muynak did not
return to its original level after these two fluctuations.

To further analyze the spatial variation of groundwater level variations in the Amu Darya Delta,
Figure 6 shows the spatial distribution of the slope rate. As can be seen, the groundwater in the
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irrigation area basically follows an increasing trend, except Muynak, which shows a declining trend.
Moreover, the groundwater level of the two non-irrigation areas where the Amu Darya River flows
through shows a declining trend. Besides, in the center of the irrigation area, the groundwater keeps
stable, and in the bilateral, the groundwater variates more quickly. It can be concluded that the
variation of groundwater level is closely related to the distribution of irrigation areas.

To understand the variation characteristics of groundwater levels on a monthly scale, the box plot
was adopted to show the variation range in each month in the past 19 years. As shown in Figure 7,
the data distribution in Nukus is different from other districts. Both its upper and lower limits of
June, July, and August are higher than in other months, while the interquartile range is also broader.
In general, the distance from the lower limit to the median is much greater than the distance from the
upper limit to the median.Water 2020, 12, x FOR PEER REVIEW 10 of 20 
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3.2. Periodic Analysis of Groundwater Level

To further identify the periodic components of the Amu Darya Delta hydrological sequence
and its distribution in the time domain, Morlet wavelets function with the good locality in the time
domain and frequency domain are selected in this study for periodic analysis of the monthly mean
groundwater level sequence. The periodic oscillation characteristics of the groundwater level in the
Amu Darya Delta on different time scales from 1999 to 2017 are shown in Figure 8. The groundwater
level in the study area generally exhibits a small-scale nesting under a large-scale feature. Combining
the contour plot of the real part of the wavelet coefficient and the plot of the variance of the wavelet,
it can be seen that there is a large period of 64 months and a small period of 18 months in the four
study areas, as well as the entire Amu Darya Delta. The 18 months period is most apparent in the
Nukus (Figure 8), while the 64 months can be well captured in all. However, the conclusion on the
64 months period could be less solid as 18 months, as the whole study period (228 months) is less than
fourfold of it. By the end of 2017, under the above-mentioned time scale, the contours of groundwater
level rise were not closed, indicating that the average monthly groundwater level in the study area will
continue to decline.

To further analyze the relationship between the groundwater level and the influencing factors
on the period, this study also performed wavelet analysis on runoff and irrigation water (Figure 9).
The data from Samanbay station show that the runoff of the Amu Darya river mainly has a large period
of 45 months and a small period of 18 months. By the end of 2017, under the above-mentioned time
scale, the contours of runoff decline were not closed, indicating that the average monthly runoff in
the Amu Darya river will continue to reduce. The data from Kattargar, Suenli, Kuanish irrigation
area shows that the irrigation water has a large period of 47 months, a medium period of 29 months,
and two small periods of 18 and 8 months. Among them, the 18 months had the largest amplitude and
could be considered as the main period.
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3.3. Mutation Analysis

The breakpoints of the groundwater level sequence in the Amu Darya Delta is tested by the
M–K test. As this method does not require the samples to confirm a statistical distribution function,
it has been widely used in hydrological variation test [44–46]. As shown in Figure 5, Karakalpakstan’s
groundwater level continued to decline in 1999–2004, gradually rose in 2004–2017. Correspondingly,
Figure 10 shows that the annual groundwater level appeared to mutate in 2006, 2016 (within the 95%
confidence interval). At the same time, the M–K test was also applied to four typical districts in the
study area. The groundwater level in Muynak district shows a continuous decline during 1999–2017
and appeared to mutate in 2000 and 2006. The groundwater level of Nukus fell in 1999–2003, rose in
2003–2017, and appeared to mutate in 2003, 2007, and 2016. The groundwater level of Kungrad fell in
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1999–2004, 2007–2013, rose in 2004–2007, 2013–2017, and appeared to mutate in 2011. The groundwater
level of Karauzyak fell in 1999–2004, continued rising in 2004–2017, and appeared to mutate in 2006
and 2013. All the above-mentioned points were within the 95% confidence interval.

In this study, the breakpoint of the groundwater level was indicated by the M–K test as 2007, 2013,
and 2016. However, many factors cause various changes in the groundwater level, this study will
explore the response of groundwater level to various influencing factors.
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Figure 10. Groundwater level variation trends of the M–K test from 1999 to 2017 in Karakalpakstan (a),
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3.4. Pearson Correlation Analysis of Groundwater

To further analyze the impact of climate change and human activities on groundwater levels in
different regions, the Pearson Correlation Coefficient method is selected to quantify the correlation of
groundwater level on various factors. The analysis factors are the environmental characteristics of
different regions, selected upstream runoff, irrigation water, NDVI, evapotranspiration, Large Aral
Sea level. It can be seen in Table 1, Nukus is an irrigation area, where the groundwater level is highly
correlated with upstream runoff (−0.406 *), irrigation water (−0.583 *), and NDVI (−0.581 *). Part of the
Karauzyak is also in the irrigation area, and the groundwater level has a relatively weak correlation
with irrigation water (−0.303 *). Due to Muynak is close to the Large Aral Sea, the groundwater level
shows a relatively strong correlation with the Large Aral Sea level (0.355 *). Kungrad is located in
bare lands, where the groundwater level shows a weak correlation with irrigation water (−0.222 *)
and NDVI (−0.195 *). However, its correlation coefficient between the groundwater level (0.026) and
evapotranspiration (0.221) does not pass the significance test.

Table 1. The correlation coefficient between the monthly average groundwater level and upstream
runoff, irrigation water, NDVI, evapotranspiration, and Aral Sea level in the Amu Darya Delta.

Factor Nukus Muynak Kungrad Karauzyak

Upstream runoff −0.406 * 0.064 −0.176 * −0.236 *
Irrigation water −0.583 * −0.047 −0.222 * −0.303 *

NDVI −0.581 * −0.09 −0.195 * −0.223 *
Evapotranspiration −0.196 0.382 0.221 0.11

Aral Sea level 0.105 0.355 * 0.026 0.173 *

p-value < 0.001 (*).
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3.5. Principal Component Analysis

To identify the main influencing factors of groundwater in the study area, we used the method of
Principal Component Analysis. Eigenvalues indicate the degree of variation of the data in the principal
components. The first three principal components of each area were 87.76%, 88.67%, 86.84%, and 87.18%.
Therefore, other principal components can be omitted to reduce the dimension of the variable.

The new variables X1, X2, X3, X4, and X5 are derived from the influencing factors and component
coefficients. The expressions of the common factor for each area are as follows:

FNukus = 0.63X1 − 0.656X2 + 0.908X3 + 0.813X4 + 0.234X5 (16)

FMuynak = −0.537X1 − 0.772X2 + 0.745X3 + 0.814X4 + 0.625X5 (17)

FKungrad = 0.715X1 + 0.764X2 − 0.701X3 + 0.407X4 − 0.663X5 (18)

FKarauzyak = −0.066X1 − 0.750X2 + 0.805X3 + 0.748X4 + 0.417X5 (19)

In the formula: X1 is evapotranspiration; X2 is Amu Darya river runoff; X3 is irrigation water;
X4 is NDVI; X5 is the Large Aral Sea water level. Because the explanations of PC2 and PC3 cannot be
established logically, this article only lists PC1 as a representative.

4. Discussion

4.1. Spatial-Temporal Characteristics of Groundwater Level in the Amu Darya Delta

The amount of groundwater resources in the aquifer is closely related to the change of groundwater
level in spatial-temporal dimensions. The increase and decrease of the groundwater level reflect
the relationship between groundwater recharge and discharge. According to the analysis results,
the groundwater level in most areas of the Amu Darya Delta increased in fluctuation from 1999 to
2017, except three districts decreased (Table 2). The districts in the table can be divided into three
categories by the rate, which are: (i) the districts where the groundwater level rises fast, (ii) the districts
with slower increase rates, and (iii) the districts that fall. The districts where the groundwater levels
increasing rapidly are Karauzyak, Kanlykul, Shamanbay, and Takhtakupyr, which are located on the
two wings of the irrigation area (Figure 11). Because of the substantial decline of the groundwater
level in 1999–2002 and restore to the original groundwater level after irrigation supply, the fluctuation
rates in these areas were relatively large. The districts where the groundwater levels rose slowly
are Nukus, Ellikkala, Turtkul, Kungrad, Chimbay, and Kegeyli. As the Amu Darya river passes
through these areas, and some of them continued receiving the irrigation water, the groundwater level
fluctuations were relatively stable. The districts where the groundwater levels dropped are Muynak,
Berunity, and Amudarya, which are not in the main irrigation area while the Amu Darya River passed
through. Besides, Muynak is close to the Large Aral Sea. The main reason for their decrease of the
groundwater table is short of continuous replenishment from irrigation water, while the runoff of
the Amu Darya River continued to decrease, and the Large Aral Sea kept shrinking. On a monthly
scale, the impact of agricultural irrigation on groundwater levels is dominant. Increased precipitation
in mountainous areas and reduced water balance deficits during the 1990s resulted in a slower Aral
Sea recession. A severe drought occurred between 2000 and 2001, with an average river inflow was
only about 2 km3/year. Between 2002 to 2010, lower inflows resulted in the water balance were
significantly reduced. According to the results of the mutation detection, the groundwater level data
in most areas appeared to mutate in 2006. The reason is most likely attributed to a 13-km dam built by
Kazakhstan in August 2005, which completely isolated the hydraulic connection between the Large
Aral Sea and the Small Aral Sea. It is the most crucial manual intervention in the last two decades [3].
Nukus is an important cotton-growing area. During the irrigation period (from June to August),
the area’s groundwater level accordingly peaked. It can be concluded that the spatial dynamics of
groundwater levels are closely related to land cover types. By comparing the results of wavelet analysis,
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the groundwater level of Nukus, runoff of the Amu Darya river, and irrigation water shared a period
of 18 months. A plausible interpretation could be based on the irrigation schedule. In this area, there is
irrigation in December to restrain salt content, in March for the spring planting, and in July during
the summer. It might form an oscillation period of 0.5, 1, and 1.5 years. Furthermore, the irrigation
quantity is dominated by the crop kind and climate condition, which might even combine the small
periodical event forming a longer oscillation period. The 18 months is 1.5 times that of 12 months,
which could be the abovementioned result. However, the fluctuation mechanism of the groundwater
level is very complicated, which is the result of the combined action of many factors.

Although the groundwater level has increased in recent years, it is found that the Aral Sea Basin
suffered from a consistent drying trend and experienced more drought events [8]. During drought
periods, the Amu Darya river discharges less water into the Large Aral Sea and more water is extracted
for irrigation. These activities will seriously affect the local ecological environment.

Table 2. Groundwater level variation rate from 1999–2017.

District Nukus Muynak Kungrad Karauzyak Chimbay Ellikkala Turtkul Kanlykul Shamanbay Takhtakupyr Khojeili Beruniy Amudarya Kegeyli

Rate
(mm/year) 17.16 −30.27 34.19 58.36 32.95 14.88 17.15 51.13 46.08 48.59 5.87 −10.41 −5.52 12.88
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4.2. Attribution Analysis of Groundwater Spatial-Temporal Changes

The impact of human activities on the environment of the Amu Darya Delta is thought to be
profound. Irrigation water is the main method of water resource utilization in the Amu Darya Delta.
The irrigation water takes up about 90% of the total water consumption [47]. Many scientists, scholars,
government officials, and residents believe that the transition to the utilization of water resources is
the number one reason for the shrinking of the Aral Sea. The researchers analyzed the irrigated area
of the Amu Darya Delta and the reservoir capacity of the Amu Darya from 1960 to 2015. The result
shows: the Aral Sea has a significant negative correlation with the irrigated area and reservoir capacity
in the Amu Darya Delta, especially the correlation with the irrigated area in the Amu Darya Delta
is the largest. It can be seen that the amount of irrigation water in the basin is an important factor
affecting the surface area change of the Aral Sea [1]. In this paper, based on the results of correlation
analysis and PCA, it can be concluded that the irrigation water is closely related to groundwater level,
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especially in irrigation areas. The middle and upper reaches of the Amu Darya flow through important
agricultural areas and core cities with huge water consumption [48]. Nukus, as the capital, is also an
important agricultural area. The Nukus’s groundwater level is closely related to runoff, irrigation water,
and NDVI. Part of Karauzyak is also the agricultural area, however, with less irrigation area than Nukus,
the correlation is slightly weaker. Karakalpakstan is mostly bare land, and the evapotranspiration
is low. However, in Kungrad and Muynak the correlation between the groundwater level and the
evapotranspiration didn’t pass the significant test. For Muyak which is mainly bareland and close to
the Aral Sea, the Amu Darya River runoff has been largely consumed in the upper and middle reaches,
therefore, the groundwater level is only closely connected to the Aral Sea level. Kungrad is mostly
bare land and only a small part is the irrigation area, therefore only irrigation water is related to the
groundwater level. In general, it can be seen from the result that because the data used in this paper is
the regional average, the spatial resolution is low and the regional division is not accurate enough.
Limited by the short available time series data, the groundwater changes were not fully revealed in the
Amu Darya Delta.

5. Conclusions

Understanding the spatiotemporal characteristics of groundwater levels is essential for water
resource management and restoration of the Aral Sea. A relatively comprehensive analysis of the
spatiotemporal characteristics of groundwater dynamic and the influencing factors was achieved based
on long-term groundwater level data, climate change data, and human activities data. Trend analysis
is used to observe the trend of groundwater levels at different scales; Wavelet analysis is used to
analyze the periodicity of groundwater level changes. The breaking points are detected by the M–K
test. Finally, Correlation analysis and PCA analysis were used to determine the key factors affecting
groundwater levels in areas with different land cover types.

This investigation covers four representative regions in the Amu Darya Delta, which showed
various features in groundwater level dynamics and land cover types. In the catchment level,
the investigation time frame (19 years) covered a period of a sharp drop in groundwater level
(from 1999 to 2002) and the following slow recovery process (from 2002 to 2010). It could be attributed
to the firstly continued shrinking of the Aral Sea and the higher runoff from 2002 to 2010. To zoom into
the different districts within the catchment, the groundwater dynamic is also controlled by different
factors. In the irrigation area, the groundwater level, in general, showed an increasing trend. However,
for Muynak, which is close to the Large Aral Sea, a declining trend was observed. The Box plot
result in Nukus indicated a higher groundwater level period overlapping the irrigation time frame.
For the groundwater dynamic periodicity, a shared period of 18 months was found in irrigation
water. The further Pearson Correlation analysis showed that the groundwater level dynamic was
related to different factors, which are separate, the irrigation water and NDVI in the irrigated area,
evapotranspiration in the bare land. For Muynak, which is the nearest district to the Large Aral Sea,
the groundwater level is mainly related to the water level of the Large Aral Sea. From the above
conclusions, it can be concluded that the temporal and spatial changes of groundwater levels are mainly
affected by agricultural irrigation, human activities have severely affected hydrological characteristics
in the Amu Darya Delta.

The results of this paper fill the gaps in quantitative research on the groundwater in the Aral Sea and
confirms the huge impact of human activities on local water resources. The results of this research can
serve as a scientific basis for policy design. It provides some suggestions for the rational management
of water resources and agricultural development planning, to reduce the excessive damage caused
by social development to the ecological environment. In this paper, we conducted a comprehensive
statistical analysis with available data, provides new insights for future research on groundwater
in the Amu Darya Delta. Due to the lack of measured data and low spatial resolution in Central
Asia, the analysis results are relatively rough. However, the Aral Sea crisis is not over. Groundwater
resources play a more and more important role in social development. Therefore, increasing the
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sampling intensity both spatially and temporally would be of great benefit for future study. At the
same time, collecting data of the earlier period, extending the length of the available data set could
better estimate the trend of the change. In the future, a more accurate quantification on the volume of
groundwater recharge to the Large Aral Sea and its spatial-temporal dynamic should be studied.
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