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Abstract: Dongting Lake is located at the downstream of Three Gorges Dam (TGD) and the
hydrological drought is intensified after the impoundment of TGD as the dry period has been
extended from 123 days/year before the operation of TGD (1981–2002) to 141 days/year (2003–2016)
on average. Particularly, the Dongting Lake’s water shortage becomes very severe. To solve the
problem caused by upstream dams, an innovative flood control scheme (IFCS) was introduced, and its
feasibility of application in Dongting Lake is studied using the hydrodynamic module of Mike 21.
The results show the IFCS can effectively convert the peak discharge of floodwater in wet seasons
into water resources in dry seasons as the IFCS could significantly increase the usable water storage
of the lake. For example, the usable water storage could increase to 2.85 billion m3 and 1.81 billion
m3 in the extreme drought year of 2006 and 2011, respectively. The average increment of the water
level would be about 0.4 m, 0.6 m, and 0.5 m in the West Dongting Lake (WDL), South Dongting
Lake (SDL), and the East Dongting Lake (EDL), respectively, if the water stored in the inner lake was
discharged uniformly in 30 days (27 November to 27 December 2006) with the application of IFCS.
This study may provide an innovative method to alleviate the water shortage problem in Dongting
Lake and other similar lakes.
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1. Introduction

Lakes play an important role in the water supply for agricultural, industrial, commercial,
and residential use. However, the extreme hydrological drought event happens more frequently in the
lake area due to climate change and human activities in recent years [1]. The hydrological drought has
attracted increasing worldwide attention for the ever-increasing demand on freshwater sources due to
population growth, urbanization and industrialization. Climate change often results in effects such as
higher evaporation, lower precipitation, and higher temperature, which would exacerbate the drought
severity [2,3]. Meanwhile, numerous studies have shown that human activities (e.g., dam construction,
river dredging, and sand mining, etc.) would decrease the inflow to the lake directly or accelerate the
water flow out of the lake [4–8]. For example, the impoundment of the upstream dam leads to an overall
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reduction of the downstream water level, especially during the dry season; thus, the hydrological
drought in the downstream-linked lakes is intensified [5,9,10].

Dongting Lake, the second-largest freshwater lake in China, is located in the middle reach of
Yangtze River. Its hydrological cycle has been changed significantly by the Three Gorges Dam [1,5,11–13]
as its inflow to the lake has been reduced in dry periods, especially from September–December in the
recent decades. Consequently, its water level and water surface areas have been reduced significantly,
which is caused by the TGD after 2003 [12]. More specifically, the statistics show that, when compared
with the pre-TGD period, the starting date of the dry season occurs earlier and the duration of the
dry season lasts longer after TGD’s operation in 2003 [8,14–16]. For example, Dongting Lake has
experienced extreme drought events in 2006 and 2011 with the water surface area of about 350 km2

(i.e., 1/8 of the surface area of Dongting Lake in the wet season) in the dry season [17]. Moreover, in 2011,
extremely low water level period lasted 80 days in the Dongting Lake area and hundreds of thousands
of residents suffered the water shortage problem [17].

Previous studies mainly focus on the identification and characteristics of the hydrological drought
as well as the factors that induce the extreme drought event in the Dongting Lake area [1,8,9,14–16].
Few studies investigate how to enhance the water supply of Dongting Lake [18,19]. Actually, apart from
the environmental change (e.g., climate change and human activities), one of the main reasons for the
water shortage problem in the Dongting Lake area is that the lake cannot contain its floodwater till the
dry period since it is connected with Yangtze River directly, as shown in Figure 1. Therefore, to solve
its water shortage problem, one has to convert its floodwater into water resources in the dry period.
Yang et al. [20] and Liu et al. [21] proposed an innovative flood control scheme (IFCS) as shown in
Figure 1. Together with the existing dike surrounding the lake, they suggest building an inner dike
with several gates to form an inner lake for mitigation of flood disaster in wet seasons. At the beginning
of wet seasons, the lake water is lowered to its dead water level. During the flood period, the peak
floodwater could be diverted into the inner lake for storage by opening the gates, thus the inner lake
functions as a giant flood-detention pond. More details could be found in the previous study [21].
The stored water will be released when the gates are open to regulate the outflow in the dry seasons.
Therefore, a huge amount of floodwater stored in the inner lake can be converted to water resources in
dry seasons.
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Figure 1. The schematic of the IFCS in Dongting Lake.

In this paper, the effect of TGD on the hydrological drought was analyzed using 35 years (1981–2016)
of hydrological data observed at Chenglingji station, which is the typical station to represent the water
level in Dongting Lake [8]. The feasibility of applying the IFCS to increase the usable water storage of
Dongting Lake was examined using the hydrodynamic module of Mike 21. The main objectives of this
paper were to: (1) analyze the effect of the TGD on the hydrological drought in the Dongting Lake area;
(2) examine the usable water storage of Dongting Lake after applying the IFCS; (3) study its feasibility
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for enhancing the water supply in the Dongting Lake area. This study may provide an innovative
method to alleviate the water shortage problem in Dongting Lake and other similar lakes.

2. Materials and Methods

2.1. Study Area

Dongting Lake (28◦20′–30◦20′ N, 111◦30′–113◦15′ E) is the second-largest freshwater lake in China,
which provides water for millions of people who live in the surrounding area and downstream of the
lake. The lake is located at approximately 400 km downstream away from Three Gorges Dam (TGD,
see Figure 2) and thereby is considerably affected by TGD. Dongting Lake exhibits seasonal variability
of the water surface area from about 2670 km2 in the wet season to approximately 710 km2 in the
annual dry season. The variation of the annual water level is 12.7 ± 1.8 m based on the daily measured
water level from 1961–2014 at Chenglingji station, which is considered as the typical hydro-station of
Donging Lake [22]. The mean annual precipitation and evaporation in the Dongting Lake area are
about 1363 mm/year and 729 mm/year, respectively [23].
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Figure 2. The location of Dongting Lake. The lake collects water from the Yangtze River through
‘three channels’ (Songzi, Hudu, and Ouchi) and ‘four rivers’ (Xiangjiang, Zishui, Yuanshui, and Lishui)
and discharges to the Yangtze River at Chenglingji. (a) The location of Dongting Lake catchment;
(b) Dongting lake and its main tributaries.
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The whole lake is divided into three sub-lakes (i.e., West Dongting Lake, WDL; South Dongting
Lake, SDL; and East Dongting Lake, EDL, see Figure 2b). It receives inflow mainly from the “four
rivers” (Xiangjiang, Zishui, Yuanshui, and Lishui) and Yangtze River through the “three channels”
(Songzi, Hudu and Ouchi). Other inflows sources include local rainfall and small streams around lake
shoreline. The lake discharges to the Yangtze River through Chenglingji station.

2.2. Method

2.2.1. M-K Method

The Mann-Kendall (M-K) test [24,25] is a non-parametric test to identify the long-term trend of the
duration of the dry period in this study. It is widely used in the analysis of hydrological time series [26].
Given a time series of {xi, i = 1, 2, 3, . . . . . . , n} for each variable, the M-K statistic (dk) is defined as:

dk =
k∑

t=1

mi k = 2, 3, 4, . . . . . . , n (1)

where mi =

{
+1 xi > x j
0 xi ≤ x j

j = 1, 2, . . . . . . , i

The mean and variance of dk were:

E(dk) =
k(k− 1)

4
(2)

D(dk) =
k(k− 1)(2k + 5)

72
1 < k ≤ n (3)

The statistic value UF(dk) is calculated by:

UF(dk) =
dk − E(dk)√

D(dk)
(4)

The backward sequence (UB) is calculated using the same method that applied to the inverted
series of xi. A positive UF(dk) indicates an increasing trend, while a negative value represents a
declining trend. A change-point occurs at the intersection of UF and UB within the confidence interval.

2.2.2. Hydrodynamic Model

A previously calibrated 2D depth-averaged hydrodynamic model (Mike 21 FM) was used in
this study since it could simulate the hydrodynamic process well in Dongting Lake [21]. The model
covers the whole area of Dongting Lake, “three channels”, “four rivers” and a part of the middle
reach of Yangtze River. It was constructed by 210,341 triangular elements to capture the complex
lake bathymetry (see Figure 3). The element size varies from 30 m in narrow channels to 700 m
in the lake area by trial and error. The upstream boundary conditions were specified as the daily
inflow records of Yangtze River (i.e., Zhicheng station) and the four rivers (Xiangtan station, Taojiang
station, Taoyuan station and Jinshi station). The downstream boundary condition used the rating curve
observed at Luoshan station on Yangtze River [21]. The wetting and drying process function [27] was
used as the water surface varies significantly in the lake area [28]. Previously calibrated parameters
such as Manning roughness number (from 32 m1/3/s to 60 m1/3/s) of the lake and the minimum time step
(i.e., 2s) were used in the current module. More details of the model could be found in the previous
study [21], thus a brief description of the model is given here.
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Figure 3. The unstructured grid for the Mike 21 model.

The 2D hydrodynamic model was validated using the measured water level at the stations in the
lake (i.e., Nanzui, Yintan, Lujiao and Chenglji stations, see Figure 2) during the dry season of 2006.
Figure 4 shows the comparison of the measured and simulated water level process at the selected
stations in Dongting Lake. The results show that the model can simulate the water level fluctuation in
the lake successfully since the simulated results agree well with the measured data. The uncertainty of
the model was estimated by the Nash-Sutcliffe efficiency coefficients (NSE), determination coefficient
(R2), the difference of the maximum water level, and the root-mean-square error (RMSE) (see Table 1).
The result shows that the NSE value in ranges of 0.887 to 0.981, the R2 values are greater than 0.96,
the RMSE values are less than 0.2 m and the average water level differences are within 0.15 m,
which indicates that the hydrodynamic model could represent the flow process of the lake during the
dry season.
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Table 1. The Nash–Sutcliffe efficiency coefficients (NSE), R2 and the root mean square error (RMSE)
calculated at the main hydrological stations in Dongting Lake.

Stations NSE R2 RMSE Average
Difference (m)

Xiaohezui 0.887 0.962 0.086 0.07
Yingtian 0.979 0.990 0.124 0.10
Lujiao 0.932 0.992 0.195 0.12

Chenglingji 0.981 0.994 0.10 0.08

2.3. The Preliminary Design of IFCS in Dongting Lake

The inner dikes with sluice gates of the IFCS were proposed in Figure 5, where the gates are
represented by the void red circle with a cross inside and the inner dikes are marked by the solid yellow
line. The inner dikes are built along the mainstream in the Dongting Lake, thus the safe floodwater
could be discharged to the downstream smoothly through the mainstream [21]. The area of the inner
lake of WDL, SDL, and EDL is 190 km2, 560 km2, and 969 km2, respectively. The water level should be
lowered to its dead water level (i.e., 29.0 m in WDL, 27.5 m in SDL, and 26 m in EDL) in the inner lake
at the end of the dry season [21] and thereby there is enough flood control capacity to mitigate the
flood disaster. During the flood season, the excess floodwater could be discharged into the inner lake
by opening the sluice gate when the peak flood wave arrives [20] and the safe floodwater would flow
to the downstream through the mainstream by closing the sluice gates. Therefore, a huge amount of
floodwater is stored in the inner lake after the flooding period, which could be used to alleviate the
water shortage crisis during the dry season. More details could be found in the previous study [21].
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3. Results

3.1. Water Level in the Dry Season

To analyze the long term change of the water level in the dry season of Dongting Lake, the period
of 1981–2016 was divided into two typical periods, i.e., 1981–2002 (pre-TGD) and 2003–2016 (post-TGD),
according to the operation year (i.e., 2003) of TGD [8,9]. Normally, the dry season starts from November
to March (next year) in the Dongting Lake area. The water impoundment period is usually from
the late September to December while the discharge period is from January to May, but it would
be adjusted depending on the inflow from the upstream of TGD [29]. Figure 6 shows the monthly
average water level during the two periods. The water level increases from January to March due
to the discharge of TGD, while it decreased considerably from September to December due to the
impoundment of TGD. Therefore, the drought severity could be alleviated from January to March
(i.e., the average monthly water level increased by about 0.6 m), while it would be exacerbated from
November (i.e., the mean monthly water level decreased by 0.88 m) and December (i.e., the average
monthly water level decreased by 0.35 m) under the effect of TGD.
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The dry spell of Dongting Lake can be defined as a period when the water level declines to
23 m at Chenglingji station. Figure 7a shows the duration of the dry period from 1981 to 2016.
The result shows that the average duration is about 123 days/year during 1981–2002, while it increases
to 141 days/year after the operation of TGD (2003–2016). The duration of the dry period increased by
18 days compared to the period of 1981–2002. Moreover, there is only one year that the duration is
longer than 150 days during 1981–2002. However, 4 years that the duration is longer than 150 days
occurred during 2003–2016. It indicates that a long duration of the dry period becomes more frequent
after the operation of TGD. Meanwhile, the longest duration (i.e., 207 days) of the dry season in the past
4 decades occurred in 2011. Figure 7b shows the MK test of the duration of the dry season from 1981 to
2016. There is a sudden change in 2003, which is consistent with the operation of TGD. It could also be
found that there is an increasing trend of the duration after the year 2003 as the UF value is positive.
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3.2. Application of IFSC to Dongting Lake

As discussed in Section 3.1, the monthly average water level decreases significantly in November
and December, and the duration of the dry period become longer after the operation of TGD. Therefore,
the water shortage crisis becomes more and more serious in the Dongting Lake area. There is an urgent
need to enhance the water level in November and December in the Dongting Lake area. The IFSC,
as described in Section 2.3 and the previous study [21], could mitigate the flood by storing peak
floodwater into the inner lake and this amount of floodwater could be used to alleviate the drought
severity in the dry season. It might be a solution for the water shortage crisis in Dongting Lake area as
it has a huge potential water storage capacity.

3.2.1. The Usable Water Storage of Dongting Lake

The usable water storage in each year can be estimated by the following equation:

V = S× ∆h =

{
S× (hmax − he) hmax < hd
S× (hd − he) hmax ≥ hd

(5)

where V is the usable water storage, S is the surface area of inner lake; hmax is the maximum water
level of each element in Dongting Lake; he is the dead water level (i.e., 29.0 m in WDL, 27.5 m in SDL,
and 26 m in EDL); hd is the designed water level of the embankment of each sub-lakes (i.e., 34.0 m in
WDL, 33.1 m in SDL and 32.6 m in EDL). If the maximum water level is over the designed water level,
we use the designed level to estimate the usable water storage.

Figure 8 shows the usable water storage of Dongting Lake from 1996 to 2016. According to
Equation (5), the usable water storage reaches up to 2.85 billion m3 and 1.81 billion m3 even in the
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extreme drought year of 2006 and 2011, respectively, while the total water storage content was less
than 1 billion m3 during these two extreme drought years in the current condition [30].
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3.2.2. The Effect of the IFSC on the Water Supply

From the abovementioned analysis, there is still a great potential water storage capacity in
Dongting Lake even in the extreme drought years such as 2006 and 2011. In this section, the dry
period (from 27 November to 27 December) of extreme drought year 2006 was taken as an example to
estimate the effectiveness of the water supplement of the IFCS. Four gates (i.e., #1, #3, #5 and #8, see
Figure 5) were used to regulate the water from the inner lake to the canal to increase the water supply.
The usable water storage of WDL, SDL and EDL was calculated by Equation (5) (i.e., 0.17 billion m3 in
WDL, 0.84 billion m3 in SDL and 1.84 billion m3 in EDL). We assumed the water stored in the inner
lake would be discharged in 30 days (from 27 November to 27 December 2006) uniformly, and the flow
rate at each gate was shown in Table 2.

Table 2. The flow rate at each gate.

Location Gate V (Billion m3) Discharge (m3/s)

WDL
#1

0.17
32

#3 32

SDL #5 0.84 324

EDL #8 1.84 710

The water level change response to the operation of the IFCS in Dongting Lake under one of
the extreme drought years, i.e., 2006, was simulated based on the hydrodynamic model (Mike 21).
Figure 9a shows the variation of water level in the BPC of West Dongting Lake (WDL, Nanzui station),
South Dongting Lake (SDL, Yingtian station), and East Dongting Lake (EDL, Chenglingji station) after
the application of IFCS. The results show that the water level increases significantly in Dongting Lake
with the IFCS. Figure 9b presents the water level difference at all selected hydro-stations in Dongting
Lake with the application of IFCS. The result shows that the IFCS imposes more influence on the water
level in SDL than the other two sub-lakes (i.e., WDL and EDL). This is because the SDL receives water
from the inner lake of WDL and SDL and thereby the increment of the water level in SDL is greater
than that in SDL. For the EDL, the water level increases less than that in SDL because the EDL is
affected by Yangtze River since the EDL connected the Yangtze River directly, although the discharge
is the largest in EDL. The average increments of the water level were about 0.4 m, 0.6 m, and 0.5 m in
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WDL, SDL and EDL, respectively, while the largest increments of the water level were 0.5 m, 0.81 m,
and 0.7 m, respectively. This indicates that the IFCS increases the water level significantly in Donging
Lake, and thus it could alleviate the water shortage in the Dongting Lake area.
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4. Discussions

Human activities such as dam construction, river channelization, land reclamation, etc. have
significant impacts on the hydrological cycle [4–8,31]. Dam construction is considered to be one of the
main factors that contribute to the low water level during the dry season in the Dongting Lake area [8].
For example, the discharge was reduced by 64% after the impoundment of TGD in 2006 compared
with the annual average discharge in the pre-TGD period, which results in an obvious reduction of
the water level at the downstream of TGD [19]. It also could be found that the water level decreases
significantly after September (see Figure 6) due to the impoundment period of TGD, and the dry period
starts earlier and lasts a long duration (i.e., the duration is 18 days longer than that in the pre-TGD
period of 1981–2002).

Figure 10 shows the long-term change of the inflow from Yangtze River to Dongting Lake via the
“three channels” (see Figure 2). It can be found that the average discharge from the “three channels”
decreased from 135 m3/s to 113 m3/s, although the average discharge from the upstream of Yangtze
River has increased by 18% (from 5710 m3/s to 6747 m3/s) in the dry season after the operation of TGD.
This can be ascribed to the lower water level at the middle reach of Yangtze River, on average about
1.6 m lower in the same dry period after the running of TGD [32]. Now, it is more difficult for the
water flowing to the “three channels” from the Yangtze River by gravity. Similarly, the lower bed
scoured by clean water from the TGD can increase the outgoing discharge from the lake to the Yangtze
River. Consequently, less water can be stored in the lake in dry seasons. On the other hand, several
large dams have been built on the “four rivers” during 1995–2016, which leads to the reduction of the
inflow from “four rivers” with a decreasing rate of −14.3 m3 s−1/year (see Figure 11). Other reasons
like the climate change would also affect the low water level during the dry season as the net rainfall
decreased slightly in the post-TGD period [7,8,16] and thereby might intensify the water shortage
problem. But other studies show that the effect of future climate on discharge in the Yangtze River
Basin is still uncertain [33,34].
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Apart from the decreasing amount of inflow to Dongting Lake, the water storage capability of
the lake also plays an important role in water supply during the dry season. Figure 12 shows the
water surface area of Dongting Lake during the dry season in 2006, which looks like several rivers,
and the amount of the water storage content was only 0.6 billion m3 [30], about 1/10 of the annual
water storage in Dongting Lake. Liu et al. [18] studied a scheme called “central lake reservoir” into the
WDL, which could enhance the water supply during the dry season. However, it has limited effect on
the water level except in WDL (e.g., the water level only increase about 0.15 m in EDL with “central
lake reservoir”) due to the limited water storage of the reservoir. But the IFSC has huge potential
water storage (see Figure 8) in Dongting Lake, with which the water level would increase at least 0.4 m
even in the extreme drought year (i.e., 2006). Although the IFSC could efficiently mitigate the flood
disaster [21] and alleviate the water shortage crisis, the operation of the IFSC and its effect on the
environment needs further study.
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Figure 12. The water surface area of Dongting Lake in the dry season (2006).

5. Conclusions

Dam construction could alter streamflow significantly and thereby affects the hydrological drought
in its downstream area. Dongting Lake, which is located at 400 km downstream of Three Gorges
Dam (TGD), has been suffering a longer dry season due to the impoundment of TGD. Apart from
the decreased inflow, another reason for the water shortage problem in the Dongting Lake area is
that it lacks the water storage capability since it is connected with the Yangtze River directly. In this
study, a flood control scheme called IFCS, which could store a huge amount of water, was applied into
Dongting Lake to enhance the water supply during the dry season. The following conclusions can be
drawn from the current study:

(1) The TGD causes a water shortage crisis in the water-rich Dongting area and the drought
severity would be exacerbated, e.g., the average monthly water level decreased by 0.88 m and 0.35 m
in November and December, respectively. The duration of the dry period (2003–2016) is 18 days longer
than that in the period before the construction of TGD (1981–2002).

(2) The water crisis is solvable as Dongting Lake has a huge potential for water storage capability
with the application of IFCS. The usable water storage reaches up to 2.85 billion m3 and 1.81 billion m3

even in the extreme drought year of 2006 and 2011, respectively.
(3) The average increment of the water level was about 0.4 m, 0.6 m, and 0.5 m in WDL, SDL,

and EDL, respectively, if the water stored in the inner lake was discharged uniformly in 30 days.
It indicates that the water level could be increased significantly by the application of IFCS, and thus it
could alleviate the water shortage problem in the Dongting Lake area.
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