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Abstract: This study evaluates the hydrologic response of restoration of a montane meadow by
removal of encroached Pinus contorta and thinning of the adjacent forest. It is now a follow-up with
four years of post-restoration data, on a previous analysis of a hydrologic response of the same
meadow one year following restoration. A hydrologic change was evaluated through a statistical
comparison of soil moisture and depth to groundwater between the restored Marian Meadow and a
Control Meadow. Meadow water budgets and durations of water table depths during the growing
season were evaluated. The four years following restoration of Marian Meadow had an increase in
volumetric soil moisture during the wet season, but decreased soil moisture during the dry season.
An average decrease in depth to groundwater of 0.15 m was found, which is consistent with the
first-year post-restoration. The water budget confirms the first-year results that the hydrologic
change following removal of encroached conifers was primarily due to a reduction of vegetation
interception capture. There was no measurable difference in depth to groundwater or soil moisture
following the upslope forest thinning likely due to the low level of forest removal with 2.8 m2/hectare
reduction of the forest basal area. The cost of restoration to water gained was $0.69 USD/1000 L
($2.62 USD/1000 gal.).

Keywords: conifer encroachment; meadow restoration; meadow hydrology; electrical resistivity;
water yield; meadow evapotranspiration

1. Introduction

Montane meadows provide an important ecosystem and economic services and are considered
areas with high conservation value. Meadows provide a critical habitat for many species of plants and
animals [1–3]. Meadows also provide important water storage for flood protection and water quality [4].
Montane meadows throughout North America and Europe have reduced in size and number due to
conifer encroachment [5–7]. Conifer encroachment is an invasion of conifers into a meadow ecosystem,
which promotes xeric conditions, caused by changes in climate, cessation of grazing, and long-term
fire exclusions [8]. Conifer encroachment is a natural successional process with accelerated declines
in the montane meadow habitat. Conifer removal efforts are recognized as essential to successful
meadow conservation efforts [9]. A review of other studies of conifer encroachment of montane
meadows is provided in Surfleet et al. [10]. Of these studies, few individuals attempt to quantify
the hydrologic change from conifer removal within or adjacent to meadows. It is crucial to quantify
the hydrologic response associated with conifer removal in encroached meadows to understand the
efficacy of restoration strategies.
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This article examines the hydrologic response of Marian Meadow before and four years after
restoration by removal of encroached Pinus contorta (lodgepole Pine). This article is a follow-up to the
analysis of the meadow one year following restoration by removal of encroached conifers published in
Water [10]. We include three additional years of post-restoration results and further evaluate if forest
thinning adjacent to the meadow influenced meadow hydrologic conditions.

2. Materials and Methods

A before-after-control-intervention (BACI) study design was used [10–13] to evaluate the
hydrologic response of meadow restoration to remove encroached conifers and upslope forest
thinning. Linear regression was used to develop pre-restoration and post-restoration relationships
between Marian Meadow, the intervention, or treated site, and a Control Meadow (Figure 1).
Statistical comparisons of the intercepts and slopes of the pre-regression and post-regression
relationships were used to attempt to detect a change in the hydrologic response. Changes to
intercepts or slopes of the relationships can reflect a change to the magnitude and/or timing of
hydrologic responses to restoration. A simple water budget approach using soil moisture, depth to
groundwater, and climate data was used to attempt to validate the statistical analysis and identify
processes that influenced the hydrologic response [10,14]. Number of days of specific shallow depths to
groundwater during the growing season was used to indicate efficacy of the restoration treatment [15].

Soil moisture, shallow groundwater depth, and climate data was collected at Marian Meadow and
a Control Meadow from September 2013 to September 2019 (Figure 1). A pre-restoration “before” time
period was almost two years in length. Removal of encroached conifers within Marian Meadow study
area occurred in July 2015. The upslope harvest around the meadow occurred from the summer of 2016
through the fall of 2017. A more detailed description of the study meadows and measurements are
available in Surfleet et al. [10]. In this article, we only summarize the methods already described [10],
which adds detail when new approaches were utilized.

2.1. Study Areas

The two study meadows were located approximately 16 km from Chester, California, USA on
private forestland owned by Collins Pine Company (Table 1, Figure 1). Marian Meadow is approximately
18.2 hectares in the area at an elevation of 1370 m. The watershed area contributing to Marian Meadow
is 1785 ha. Marian Meadow was encroached primarily by Pinus contorta (lodgepole pine) with a
basal area of 25.04 m2/hectare prior to restoration. The restoration of Marian Meadow involved
removing all lodgepole pine from the meadow during summer 2015. The forest surrounding Marian
Meadow was composed of mixed conifer species. The mixed conifer species include Pinus ponderosa,
Pinus jefferyi, Pinus monticola, Pinus contorta, Psuedotsuga mensiezii, Calecedrus decurrens, and Quercus
velutina. The basal area of the forest surrounding Marian Meadow was 33.1 m2/hectare. Following
the forest thinning, the basal area was 30.3 m2/hectare with a 2.8 m2/hectare or 9% reduction in stand
density adjacent to Marian Meadow. The area of the forest thinning within the Marian Meadow
watershed was 584 ha and 33% of the watershed area. The Control Meadow was 8.1 hectares in area
and an elevation of 1460 m, which is a restored meadow. Encroached conifers were removed in 2010.
Although recently restored, herbaceous meadow vegetation had filled in the three years prior to our
study (Table 1, Figure 1).
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Figure 1. Marian Meadow and Control Meadow study areas. Soil moisture, groundwater depth, and 
electrical resistivity tomography (ERT) measurements shown. (A) Control Meadow. (B) Marian 
Meadow. (C) Marian Meadow watershed and area of forest thinning. (D) Study sites in relation to 
California, USA. Satellite imagery and base maps from the Earth System Research Institute (ESRI). 
Figure adapted from Surfleet et al. [10]. 

  

Figure 1. Marian Meadow and Control Meadow study areas. Soil moisture, groundwater depth,
and electrical resistivity tomography (ERT) measurements shown. (A) Control Meadow. (B) Marian
Meadow. (C) Marian Meadow watershed and area of forest thinning. (D) Study sites in relation to
California, USA. Satellite imagery and base maps from the Earth System Research Institute (ESRI).
Figure adapted from Surfleet et al. [10].
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Table 1. Attributes of Marian Meadow and Control Meadow (adapted from Surfleet et al. [10]).

Meadow Attributes Marian Meadow Control Meadow

Coordinates (decimal degrees, latitude,
and longitude) 40.2636 N 121.3157 W 40.2639 N 121.3945 W

Area of meadow (ha) 18.2 8.1
Area of contributing watershed (ha) 1785 -

Elevation (m) 1370 1460
Surface soil texture

(%sand-%silt-%clay) Clay (32-26-42) Clay Loam (47-16-37)

Soil porosity at 30 cm depth 47% 42%
Bulk density at 30 cm depth 1.40 g/cm3 1.53 g/cm3

Hydraulic conductivity (2 m) 60 m/day 35 m/day
Depth to a partially confining layer 12–30 m 15−>69 m

The average annual precipitation recorded at Chester was 860 mm [16]. Precipitation is a mix of
rain and snow. The average annual air temperature of nearby Chester, California (elevation 1372 m)
from 1948 to 2005 was 8.7 ◦C.

The meadows are located in a transitional zone between the Cascade and Sierra Nevada Mountains,
USA. Soils have primarily volcanic parent material [17]. The top horizon at Marian Meadow has a
clay texture (Table 1). The Control Meadow consists of a clay loam from poorly consolidated alluvial
materials with high sand content [18,19]. Soil bulk density and porosity were determined from
samples taken at 30 cm. Hydraulic conductivity was determined at 2 m using the Kozeny-Carmen
equation [20] based on a particle size distribution analysis [21] (Table 1). Both meadows are classified
as dry meadows [22,23].

Electrical resistivity tomography (ERT) surveys were performed across the length of both meadows
(Figure 1) to determine the depth to confining layers. ERT was also used in evaluating depth to
groundwater when groundwater was below the depth of shallow wells, which is described later.
The ERT surveys to determine depth to a confining layer were performed with a SuperSting-R8
electrical resistivity meter operated with Schlumberger Array geometry (Advanced Geosciences
Incorporated, Austin, TX, USA), inverted with EarthImager-2D software (Advanced Geosciences
Incorporated, Austin, TX, USA), and contoured in Matlab R2016a (MathWorks, Natick, MA, USA).
The ERT profile across both meadows employed 112 electrodes at a spacing of three meters in the
Control Meadow and four meters in Marian Meadow (Figure 1). Near-surface soil along both profiles
was very dry at the survey time (July 2018), but the inverted resistivity models match the field data
well with root-mean-square (RMS) errors of 8.3% and 6.3% in the Control Meadow and Marian
Meadow, respectively.

The depth of the confining layers differs in the two meadows. The confining layer in Marian
Meadow is laterally continuous across the profile (Figure 2) and is interpreted to be composed of
moderately fractured extrusive igneous rock with resistivity values >300 Ω ·m. Confining layer depth
is 12 m on the SE end of the profile and steadily deepens to approximately 30 m on the NW end of
the profile. High resistivity features seen in the first few meters below the profile indicate dry soil
conditions. The darkest blue contours (<25 Ω ·m) are interpreted as regions with enhanced clay content
derived from weathering of the volcanic rocks of the region. The confining layer resistivity decreases
to the NW, which indicates that the confining layer may become more fractured in this direction.

In the Control Meadow, a partially confining layer is detected at a depth of approximately 15 m
at the NW end of the profile but disappears to the SE (Figure 2). The confining layer on the NW
side of the profile is characterized by resistivity values of >300 Ω ·m, interpreted to be composed
of moderately fractured extrusive igneous rock. Very high resistivity features are observed near the
surface, which indicates extremely dry near-surface soil conditions. Resistivity values of 100 Ω ·m
less typically indicate saturated soil or alluvium. However, regions contoured with the darkest blue
colors (<30 Ω ·m) are potentially clay deposits related to the weathering of the volcanic rock of the
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region. The base of the aquifer in the Control Meadow is, therefore, generally greater than the 69-meter
imaging depth of the ERT profile, and significantly deeper than in Marian Meadow.Water 2019, 11, x FOR PEER REVIEW 5 of 16 

 

 
Figure 2. Inverted electrical resistivity models. From left-to-right, both profiles traverse an SE to NW 
trend (Figure 1A,B). Top: Control Meadow. Bottom: Marian Meadow. Color bars on each panel cover 
different ranges of resistivity. The Control Meadow image is 333 m long with an image depth of 69 
m. The Marian Meadow image is 444 m long with an image depth of 92 m. 

2.3. Water Table Depth  

Water level loggers (Odyssey Dataflow Systems Pty., Christchurch, New Zealand) were 
installed within 1.5 m wells. There were seven shallow groundwater wells on Marian Meadow, and 
five shallow groundwater wells on the Control Meadow (Figure 1). Water level was recorded at 2-
hour intervals. In August 2018, two 3-m wells were installed at Marian and Control Meadows 
instrumented with Onset U20L water level recorders. Electrical resistivity tomography (ERT) surveys 
were used approximately once per year to define the groundwater level when below the depth of the 
1.5-m wells. These electrical resistivity data were collected using an automated Wenner Array with a 
Syscal Kid Switch 24 electrical resistivity meter (IRIS Instruments, Orleans, France). Data inversion 
was performed with RES2DINV software version 3.71 (Geotomo Software, Penang, Malaysia). 
Inverted data were exported for contouring and plotting in Matlab R2016a (MathWorks, Natick, MA, 
USA). Additionally, the number of days the water table depths were within 0.3 m and 0.7 m of the 
ground surface were compared to published durations for obligate wetland and facultative wetland 
plant species [15]. 

2.4. Statistical Analysis for Change Detection 

A least squares regression model using analysis of covariance [10,25] was used to detect changes 
in the slopes and intercepts of the pre-restoration and post-restoration relationships in volumetric 
soil moisture content and depth to groundwater (m below ground) following restoration. Weekly 
average soil moistures and depth to groundwater values were compiled for each meadow. A three-
week interval between weekly average measurements was required to avoid serial auto-correlation 
[12]. The pre-restoration period included 13 September 2013 through 30 September 2015. The post-
restoration period assessed in this analysis was between 1 October 2014 and 1 September 2019. Data 
was separated by the water year (WY) based on a start of October the year prior to, ending in 
September of the WY.  

Figure 2. Inverted electrical resistivity models. From left-to-right, both profiles traverse an SE to NW
trend (Figure 1A,B). Top: Control Meadow. Bottom: Marian Meadow. Color bars on each panel cover
different ranges of resistivity. The Control Meadow image is 333 m long with an image depth of 69 m.
The Marian Meadow image is 444 m long with an image depth of 92 m.

2.2. Volumetric Soil Moisture

Soil moisture was measured at 0.3 m (2014–2019 WY) and 0.9 m depths (2015–2019 WY) using
Odyssey soil moisture sensors (Dataflow Systems Pty Limited, Christchurch, New Zealand) and time
domain reflectometry (TDR) soil moisture sensors (Onset Computer Corp., Bourne, MA, USA). Initially,
Odyssey soil moisture sensors were used. Over time, Onset TDR soil moisture sensors were added to
increase the distribution of measurements. Both instruments were calibrated prior to use. Ten soil
moisture sensors per meadow made measurements at two-hour intervals (Figure 1). Gravimetric to
volumetric soil moisture conversion used the core method [24].

2.3. Water Table Depth

Water level loggers (Odyssey Dataflow Systems Pty., Christchurch, New Zealand) were installed
within 1.5 m wells. There were seven shallow groundwater wells on Marian Meadow, and five
shallow groundwater wells on the Control Meadow (Figure 1). Water level was recorded at 2-h
intervals. In August 2018, two 3-m wells were installed at Marian and Control Meadows instrumented
with Onset U20L water level recorders. Electrical resistivity tomography (ERT) surveys were used
approximately once per year to define the groundwater level when below the depth of the 1.5-m wells.
These electrical resistivity data were collected using an automated Wenner Array with a Syscal Kid
Switch 24 electrical resistivity meter (IRIS Instruments, Orleans, France). Data inversion was performed
with RES2DINV software version 3.71 (Geotomo Software, Penang, Malaysia). Inverted data were
exported for contouring and plotting in Matlab R2016a (MathWorks, Natick, MA, USA). Additionally,
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the number of days the water table depths were within 0.3 m and 0.7 m of the ground surface were
compared to published durations for obligate wetland and facultative wetland plant species [15].

2.4. Statistical Analysis for Change Detection

A least squares regression model using analysis of covariance [10,25] was used to detect changes
in the slopes and intercepts of the pre-restoration and post-restoration relationships in volumetric soil
moisture content and depth to groundwater (m below ground) following restoration. Weekly average
soil moistures and depth to groundwater values were compiled for each meadow. A three-week
interval between weekly average measurements was required to avoid serial auto-correlation [12].
The pre-restoration period included 13 September 2013 through 30 September 2015. The post-restoration
period assessed in this analysis was between 1 October 2014 and 1 September 2019. Data was separated
by the water year (WY) based on a start of October the year prior to, ending in September of the WY.

2.5. Meadows’ Water Budgets

An annual water budget was created for Marian and Control meadows using methods developed
by Rahgozar et al. [14]. Greater detail for procedures for each water budget value is available [10].
The general form of the water budget was shown in Equation (1).

P +/− Error = QSEOF + ET +/− ∆S (1)

where P is precipitation (mm) from the Chester rain gauge. QSEOF was saturated with excess overland
flow or surface ponding (mm) assumed to be P when the groundwater was fully saturated. ET was
the sum of evapotranspiration from the soil (ETS) and evaporation from interception capture (IC)
(mm). IC was estimated by selecting isolated precipitation events with intensity less than the hydraulic
conductivity of the surface soil layers, which occurs after medium to dry antecedent conditions.
The intercept of the best fit line on the precipitation to infiltration relationship yields the estimate of
the interception capture. Interception capture (Ic) was assumed to represent either evaporation or
sublimation of incoming precipitation [10].

ETS was determined by the difference in the diurnal fluctuations of soil moisture. ∆S (mm),
which is the change in storage of water, was the sum of infiltration to groundwater (IWT) and soil
moisture (IS) minus ETS (Equation (2)). Error is defined as the sum of the water balance components
subtracted from the annual precipitation. If the water balance was precise, the error would be zero.

∆S = (IWT + IS) − ETS (2)

3. Results

3.1. Hydrologic Change Detection for Encroached Conifer Removal and Upslope Forest Thinning

3.1.1. Soil Moisture

The hydrograph of weekly average soil moisture for 2014–2019 WY for Control and Marian
Meadows is shown (Figure 3). There was a statistically significant relationship between the
week-averaged Control Meadow soil moisture and Marian Meadow soil moisture pre-restoration,
as shown in analysis of the first-year post-restoration results [10] (Table 2). The analysis of covariance
of the intercepts of linear relationships for the four post-restoration water years were not statistically
significant from zero, p value = 0.93. However, the pre-restoration intercept was statistically significant
for its linear relationship. The resulting pre-restoration regression equation had an intercept of
12.21 percent soil moisture (p-value < 0.001) while the post-restoration regression equations had
intercepts of zero. This demonstrates a difference in the linear intercept between the pre-restoration and
post-restoration relationships. The slopes of the four post-restoration years were statistically different
compared to pre-restoration; p-value < 0.001 (Tables 2 and 3, Figure 4). This difference in slopes, but
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not the intercepts for the post-restoration years, suggest both positive and negative differences in soil
moisture depending on the magnitude of the soil moisture. At lower soil moistures, post-restoration
Marian Meadow soil moisture percentages decreased while, at higher soil moisture percentages,
Marian Meadow soil moisture increased when compared to the Control Meadow (Figure 4). There was
not a statistically significant difference between the post-restoration soil moisture (2016 WY) and the
post-forest thinning (2018–2019 WY) soil moisture in Marian Meadow when compared to the Control
Meadow, p-value = 0.93.

Figure 3. Week-averaged volumetric soil moisture (%) and precipitation (mm) for Control Meadow 
and Marian Meadow, 2013–2019. 

Table 2. Regression coefficients and statistics for soil moisture models.

Term Estimate Std Error P-Value
Pre-restoration intercept 12.21 2.12 <0.001 

Pre-restoration slope 0.63 0.09 <0.001 
Year 1 post-restoration slope 1.09 0.39 0.007 
Year 2 post-restoration slope 1.67 0.71 0.02 
Year 3 post-restoration slope 1.04 0.40 0.01 
Year 4 post-restoration slope 1.19 0.52 0.02 

Table 3. Regression equations for soil moisture percent between Marian Meadow and Control 
Meadow for pre-restoration (2014–2015 water year (WY)) and each year after restoration (2016–2019 
WY). 

Pre-Restoration Marian Meadow Soil Moisture (%) = 12.39 + 0.63 × Control Meadow Soil Moisture (%) 
First year post-restoration Marian Meadow soil moisture (%) = 1.09 × Control Meadow soil moisture (%) 

Second year post-restoration Marian Meadow soil moisture (%) = 1.67 × Control Meadow soil moisture (%) 
Third year post-restoration Marian Meadow soil moisture (%) = 1.04 × Control Meadow soil moisture (%) 

Fourth year post-restoration Marian Meadow soil moisture (%) = 1.19 × Control Meadow soil moisture (%) 
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Figure 3. Week-averaged volumetric soil moisture (%) and precipitation (mm) for Control Meadow
and Marian Meadow, 2013–2019.

Table 2. Regression coefficients and statistics for soil moisture models.

Term Estimate Std Error P-Value

Pre-restoration intercept 12.21 2.12 <0.001

Pre-restoration slope 0.63 0.09 <0.001

Year 1 post-restoration slope 1.09 0.39 0.007

Year 2 post-restoration slope 1.67 0.71 0.02

Year 3 post-restoration slope 1.04 0.40 0.01

Year 4 post-restoration slope 1.19 0.52 0.02

Table 3. Regression equations for soil moisture percent between Marian Meadow and Control Meadow
for pre-restoration (2014–2015 water year (WY)) and each year after restoration (2016–2019 WY).

Pre-Restoration Marian Meadow Soil Moisture (%) = 12.39 + 0.63 × Control Meadow Soil Moisture (%)

First year post-restoration Marian Meadow soil moisture (%) = 1.09 × Control Meadow soil moisture (%)

Second year post-restoration Marian Meadow soil moisture (%) = 1.67 × Control Meadow soil moisture (%)

Third year post-restoration Marian Meadow soil moisture (%) = 1.04 × Control Meadow soil moisture (%)

Fourth year post-restoration Marian Meadow soil moisture (%) = 1.19 × Control Meadow soil moisture (%)



Water 2020, 12, 293 8 of 16
Water 2019, 11, x FOR PEER REVIEW 8 of 16 

 

 

Figure 4. Pre-restoration and post-restoration scatter plots and regression lines between Marian 
Meadow and Control Meadow soil moisture (%). Solid line indicates pre-restoration relationship 
while the dashed lines indicate post-restoration relationships. 

3.1.2. Water Table Depth 

The analysis of covariance of the slopes for the pre-restoration and post-restoration week- 
averaged depth to groundwater regression lines were not statistically significant with a p-value = 
0.93. The regression line slopes were significantly different from zero with a p-value < 0.001 (Table 4). 
The intercepts of the four post-restoration years were statistically different compared to pre-
restoration, p-value < 0.001, with the exception of the third year post-restoration (Table 4). The 
difference in intercepts, but not slope, suggest that changes in depth to groundwater for the post-
restoration years were consistent for the range of depths measured (Tables 4 and 5, Figures 5 and 6). 
There was not a statistically significant difference between the post-restoration (2016 WY) depth to 
groundwater and the post-forest thinning (2018–2019 WY) in Marian Meadow compared to the 
Control Meadow (p-value = 0.20). 

Table 4. Regression coefficients and statistics for depth to groundwater regression models for pre-
restoration (2014–2015 WY) and each year after restoration (2016–2019 WY). 

Term Estimate Std Error p-Value 
Slope 0.713 0.032 <0.001 

Pre-restoration intercept  0.26 0.023 <0.001 
Year 1 post-restoration intercept 0.06 0.033 0.03 
Year 2 post-restoration intercept 0.03 0.026 <0.001 
Year 3 post-restoration intercept 0.18 0.029 0.13 
Year 4 post-restoration intercept 0.14 0.032 <0.001 

  

0

10

20

30

40

50

60

0 10 20 30 40 50 60

M
ar

ia
n 

M
ea

do
w

 V
ol

um
et

ric
 S

oi
l M

oi
st

ur
e 

(%
)

Control Meadow Volumetric Soil Moisture (%)

Pre-Restoration

1 year Post-Restoration

2 year Post-Restoration

3 year Post-Restoration

4 year Post-Restoration

Figure 4. Pre-restoration and post-restoration scatter plots and regression lines between Marian
Meadow and Control Meadow soil moisture (%). Solid line indicates pre-restoration relationship while
the dashed lines indicate post-restoration relationships.

3.1.2. Water Table Depth

The analysis of covariance of the slopes for the pre-restoration and post-restoration week-
averaged depth to groundwater regression lines were not statistically significant with a p-value =

0.93. The regression line slopes were significantly different from zero with a p-value < 0.001 (Table 4).
The intercepts of the four post-restoration years were statistically different compared to pre-restoration,
p-value < 0.001, with the exception of the third year post-restoration (Table 4). The difference in
intercepts, but not slope, suggest that changes in depth to groundwater for the post-restoration years
were consistent for the range of depths measured (Tables 4 and 5, Figures 5 and 6). There was not
a statistically significant difference between the post-restoration (2016 WY) depth to groundwater
and the post-forest thinning (2018–2019 WY) in Marian Meadow compared to the Control Meadow
(p-value = 0.20).

Table 4. Regression coefficients and statistics for depth to groundwater regression models for
pre-restoration (2014–2015 WY) and each year after restoration (2016–2019 WY).

Term Estimate Std Error p-Value

Slope 0.713 0.032 <0.001

Pre-restoration intercept 0.26 0.023 <0.001

Year 1 post-restoration intercept 0.06 0.033 0.03

Year 2 post-restoration intercept 0.03 0.026 <0.001

Year 3 post-restoration intercept 0.18 0.029 0.13

Year 4 post-restoration intercept 0.14 0.032 <0.001
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Table 5. Regression equations for depth to groundwater between Marian Meadow and Control Meadow
for pre-restoration (2014–2015 WY) and each year after restoration (2016–2019 WY).

Pre-Restoration Marian Meadow (m) = 0.26 + 0.713 × Control Meadow (m)

First year post-restoration Marian Meadow (m) = 0.06 + 0.713 × Control Meadow (m)

Second year post-restoration Marian Meadow (m) = 0.03 + 0.713 × Control Meadow (m)

Third year post-restoration Marian Meadow (m) = 0.18 + 0.713 × Control Meadow (m)

Fourth year post-restoration Marian Meadow (m) = 0.14 + 0.713 × Control Meadow (m)
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Figure 7 shows an electrical resistivity profile in Marian Meadow before and after meadow
restoration, collected one year apart. The estimated groundwater level (approximately 2.5 m) is nearly
unchanged in the two surveys. Furthermore, the repeated survey indicates relatively uniform depth to
groundwater along the linear profiles. This validated that the point measurements from wells were
representative of the depth to groundwater across the space. Above the water table, a qualitative
interpretation of vadose zone soil moisture can be made. Prior to restoration (Figure 7A), electrical
resistivity values are generally greater than 450 Ω ·m and locally as high as 650 Ω ·m. After restoration
(Figure 7B), electrical resistivity values are less than 450 Ω ·m with some regions showing a decrease in
electrical resistivity by a factor of three. Only one location shows a region where electrical resistivity
increased. Qualitatively, then, the vadose zone has responded uniformly to meadow restoration with
lowered electrical resistivity values, which can be interpreted as an increase in soil moisture. In our
ongoing work of a hydrological response to meadow restoration, the relationship between electrical
resistivity and soil moisture in the vadose zone is being studied to form local quantitative relationships.
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3.2. Water Table Durations at Rooting Depths

In wetland environments, it is typical that depth to groundwater is the primary factor controlling
the distribution of herbaceous vegetation communities [15,26]. Plant community types are generally
distributed along a hydrologic gradient from xeric to mesic. The average growing-season water-table
depth is indicative of the plant community type and, therefore, meadow classification. The number of
days the water level is at or above, in average, is 0.7 m (2.3 ft), which represents the number of days the
meadow is within the root zone typical of facultative and facultative upland plant species. The number
of days the groundwater depth is at or below, on average, is 0.3 m (1 ft), which represents the number
of days the meadow is within the root zone typical of facultative wetland plant communities (Table 6).

Table 6. Annual precipitation, precipitation during the growing season (1 April through 31 August),
and number of days during the growing season with depth to groundwater <0.3 m and <0.7 m for
2014–2019 WY.

Water Year
Growing Season

2014 2015 2016 2017 2018 2019

Precipitation (mm/year) 489 636 931 1234 584 1003

Precipitation during May–August (mm) 45 67 79 21 30 79

Marian Meadow Days < 0.7 m 46 7 85 61 62 75

Marian Meadow Days < 0.3 m 4 0 50 22 16 36

Control Meadow Days < 0.7 m 53 24 71 67 53 81

Control Meadow Days < 0.3 m 25 0 50 43 28 57

In the pre-restoration years of 2014–2015, the Control Meadow had a higher number of days than
Marian Meadow at depths <0.3 and <0.7 m. The growing season days post-restoration (2016–2019)
with water table depths < 0.7 m and <0.3 m was higher or similar for Marian Meadow compared to
the Control Meadow and compared to pre-restoration (2014–2015). The number of days of depth to
groundwater <0.3 and <0.7 m is increased in the post-restoration period for Marian Meadow when the
late season precipitation is the highest (May–August).

3.3. Annual Water Budget

Annual water budget components for the Control Meadow with meadow vegetation (2014–2019),
Marian Meadow with encroached conifers (2014–2015), encroached conifers removed (2016–2019),
and Marian Meadow with forest thinning adjacent (2017–2019) are summarized (Table 7).

Annual precipitation (P) varied throughout the study. The annual precipitation was generally
higher in the post-restoration (2016–2019) period where only 2018 had lower annual precipitation than
a pre-restoration year. The years with higher precipitation had greater saturated excess overland flow
(QSEOF) due to longer periods of saturated soils. Generally, Marian Meadow had higher overland flow
than the Control Meadow in the post-restoration years. Other components of the water budget such as
evapotranspiration, infiltration, and budget error did not directly relate to higher or lower precipitation.

ET ranged from 335 to 428 mm/year for the Control Meadow with the highest amount
of evapotranspiration in 2017 WY from higher precipitation (Table 7). ET was 457 mm/year
and 482 mm/year in Marian Meadow during the pre-restoration period of 2014 and 2015 WY,
respectively. ET was slightly lower in Marian Meadow for the post-restoration period 2016–2019 WY,
399–425 mm/year. The soil evapotranspiration (ETS) estimates for Marian and Control Meadows were
relatively similar over the study at 234–318 mm/year. The interception capture (IC) estimates dropped
by almost half for Marian Meadow following conifer removal. No clear differences in ET or QSEOF can
be distinguished in the water budget during and following forest thinning (2017–2019) compared to
only conifer removal (2016) in the Marian Meadow.
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Table 7. Water budget for pre-restoration 2014–2015 water years (WY) and water years 2016–2019 after
restoration by encroached conifer removal and upslope forest thinning.

Meadow WY P (mm) QSEOF
(mm)

IS
(mm)

IWT
(mm)

ETS
(mm)

Ic
(mm)

ET
(mm)

Error
(mm)

Marian 2014 489 0 280 22 285 172 457 10

Control 2014 489 75 255 79 286 74 360 −25

Marian 2015 636 107 267 40 268 214 482 7

Control 2015 636 102 267 103 258 87 345 87

Marian 2016 * 931 433 308 90 318 107 425 −17

Control 2016 * 931 374 333 42 288 107 395 119

Marian 2017 ** 1234 876 263 33 276 124 401 −76

Control 2017 ** 1234 616 180 57 303 124 428 134

Marian 2018 *** 584 90 170 49 314 101 415 29

Control 2018 *** 584 58 309 32 234 101 335 158

Marian 2019 *** 1003 572 257 94 299 100 399 53

Control 2019 *** 1003 575 254 81 255 100 355 −7

* 2016 first year post-restoration by conifer removal alone. ** 2017–2019 post-restoration by conifer removal and
during forest thinning. *** 2018–2019 post-restoration by conifer removal following forest thinning.

4. Discussion

4.1. Effect of Encroached Conifer Removal and Forest Thinning on Meadow Hydrology

The statistical analysis of soil moisture showed Marian Meadow soil moisture consistently lower
than the pre-restoration relationship with the Control Meadow during periods with relatively low
soil moisture post-restoration. Marian Meadow had higher soil moisture relative to the Control
Meadow post-restoration when soil moisture levels were the highest. The difference in slopes of the
post-regression models demonstrate the change from lower soil moisture to higher soil moisture for
Marian meadow, which varied by year (Figure 4).

The decreased soil moisture levels in Marian Meadow post-restoration were conducted during
periods of extended dry weather between June and November each year. In the article on the first-year
post-restoration [10], the decrease was thought to be caused by a reduction of vegetation cover creating
higher soil temperatures and increasing soil water evaporation. Additionally, the restoration work
created considerable ground disturbance, speculated to increase soil evaporation losses [10]. However,
the lower soil moisture during the dry season in Marian Meadow has been consistent for the four years
since restoration, even after increased grass and forb regeneration in the meadow (Figures 3 and 4).
The grass and forb community either dies or goes dormant during the dry season, which is indicative
of a dry meadow at both Marian and Control Meadows. Marian Meadow ground cover still lacks
substantial litter for soil cover during plant dormancy or die off, which suggests low-to-moderate
cover to soil evaporation in the summer dry season.

The four years post-restoration, there was an average decrease of 0.15 m (range 0.08–0.23 m)
between the measured and predicted annual water table depths from the depth to groundwater
regression relationships. The water budget value of IWT also showed a change. The change was
predicted to be 0.06 m at an average of four years post-restoration (Table 7). This was consistent with
the decrease in depth to groundwater from the first-year study [10]. The lower predicted decrease
in depth to groundwater from the water budget approach reflects the uncertainty in the budget
estimates. The 2018 WY (year 3 post-restoration) depth to groundwater was not significantly different
from pre-restoration. This was a low precipitation year with several instrument failures leading to
uncertainty in values used in the statistics.
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There was no statistical difference in depth to groundwater following the upslope forest thinning.
The harvest basal area of the forest surrounding Marian Meadow was 33.1 m2/hectare. Following the
forest thinning in 2018-2019, the surrounding forest basal area was 30.3 m2/hectare. The area included
2.8 m2/hectare or a 9% reduction in stand density adjacent to the meadow. However, the forest thinning
only affected 33% of the contributing watershed area. The low level of forest thinning and contributing
area treated might explain the lack of response in meadow groundwater levels. A recent modelling
study of fuels treatment in the Sierra Nevada found a 3% increase in water yield in the mid-regions of
the Sierra Nevada associated with an 8% reduction in vegetation [27]. However, modelling studies
do not encounter the variability of field measurements. High variability in measured hydrologic
values makes small changes difficult to detect. Furthermore, the majority of the increases in water
yield occurred during the winter or spring snowmelt when saturated soil creates greater overland
flow [28]. The surface runoff in the water budget estimates (Table 7) increased in all post-restoration
years except for year 3, which had below-average annual precipitation. This indicates increased water
yield from the encroached conifer removal. However, there was not an additional increase in surface
runoff estimated in years following the upslope forest harvest.

4.2. Water Budget Changes due to Conifer Removal

The water budget for Marian Meadow showed a decrease in ET in the four years post-restoration
from decreased evaporation due to interception capture (IC) (Table 7). IC was estimated to be 172 and
214 mm/year in the two pre-restoration years, respectively. The four post-restoration years ranged
from 100–124 mm/year. This loss of interception capture created a decrease in ET in Marian Meadow
post-restoration. The soil evapotranspiration (ETS) estimates for Marian and Control Meadows were
relatively similar over the study with Marian Meadow and Control Meadow ranging from 268–318
and 234–303 mm/year. There were slight differences in ETS between the meadows. However, this is
likely an artifact of error in the ETS estimates. The Control Meadow could not close the water
budget without a significant error as high as 158 mm (27% of precipitation) in 2018 WY. The soil
moisture instruments provided reasonable diurnal fluctuations and values to predict ETS. However,
the manufacturer error was listed as +/−3% [29] that could compound over many measurements.
Additionally, depth to groundwater could drop as deep as 3 m, when only 0.3–0.9 m of the soil mantle
had soil moisture measurements. Errors aside, no noticeable change occurred in the ETS estimates
between pre-restoration and post-restoration for the meadows. During the four years conducting
the post-restoration study, we attributed the reduction of interception capture as the primary process
forcing a decrease in depth to groundwater and small soil moisture increases following conifer removal.

4.3. Depth to Water Table Promoting Meadow Vegetation

Both Marian and Control Meadows experienced periods of groundwater depths during the
growing season deeper than 1 meter, which is indicative of a dry meadow as classified by Weixelman
et al. [23]. Following restoration, Marian Meadow had growing season water table depths similar to
meadows dominated by Poa pratensis and Bromus japonicas, which are facultative and facultative upland
species common in dry meadows [10,15]. Obligate and facultative wetland species have been shown
to prefer depth to groundwater less than or equal to 0.7 m for approximately 65 days, and within 0.3 m
from the surface for 42–47 days [15]. In this study, the post-restoration depth to groundwater was below
these thresholds for 2016 and 2019 WY (Table 6). The high number of days with shallow groundwater
depths in these two post-restoration years appear to be related to higher precipitation in late spring
and early summer for Marian Meadow. The majority of snowmelt and surface runoff (QSEOF) occurs
through April in response to saturated soil conditions. Greater precipitation after this time appears to
maintain the wetter soil conditions into the growing season for Marian Meadow. The climate at Marian
Meadow is unlikely to produce conditions conducive for wetland obligate species. The increase in
days with groundwater close to the surface indicates hydrologic conditions post-restoration conducive
to promoting facultative meadow vegetation.
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4.4. Restoration Cost per Water Increase

There is little documentation of the cost benefit of meadow restoration from removal of encroached
conifer. Most of the cost benefit for meadow restoration has been documented by pond and plug
methods, where a degraded stream channel in a meadow is plugged to increase streambed elevation
resulting in groundwater storage increases [7]. Cost information for 18 meadow restoration projects
using pond and plug was compiled for the Sierra Nevada [30] and reported in cost per 1000 liters and
1000 gallons of water (Table 8).

Table 8. Cost in US dollars for Plug and Pond Method meadow restoration per 1000 liter (1000 gallons).
Adapted from American Rivers, 2012 [30].

25 Percentile Cost/75 Percentile Increase in Storage $1.32/1000 L ($5/1000 gal.)

Median cost/median increase in storage $2.64/1000 L ($10/1000 gal.)

75 percentile cost/25 percentile increase in storage $5.55/1000 L ($21/1000 gal.)

Using the residuals of the pre-restoration regression relationship for the four years post-restoration,
the increase in groundwater storage in Marian Meadow is 113,710 m3 (92.193 ac ft). The direct cost
of conifer removal was $78,750 United States dollars (USD). This equates to $0.69 USD/1000 L or
$2.62/1000 gal. This suggests the cost per increased water for Marian Meadow encroached conifer
removal was at the low range of cost per water gained by Plug and Pond Methods. However, the cost
of gaining permits and planning of the restoration was not included since the restoration was part
of a larger timber harvest plan. Additionally, the landowner has invested a few days each year
in removing lodgepole pine seedlings to maintain the restored meadow. Therefore, the cost of the
increased groundwater storage is likely higher than our estimated $0.69 USD/1000 L. These additional
costs should be considered in future restoration planning. Yet, even if the cost was double our estimate
due to permitting, planning, and maintenance, this restoration effort was still at the low range of cost
than the Plug and Pond Method.

5. Conclusions

Statistical analysis indicates that, during the four years following restoration from removal of
encroached conifer on Marian Meadow, the slope and intercept of the regression relationship between
soil moisture for Marian Meadow and the Control Meadow were statistically different. The change
in slope of the post-restoration relationship indicated lower soil moisture during the dry period and
higher soil moisture in the wet period of the year. An average decrease in depth to groundwater of
0.15 m for the four years post-restoration was statistically significant with the exception of year 3,
which was a low precipitation year. There was no influence of the upslope harvest on the groundwater
and soil moisture at Marian Meadow. We attribute this to the low level of thinning, 9% reduction of
the basal area, adjacent to Marian Meadow.

The water budget for Marian and Control Meadows indicated the reduction of interception capture
was the primary process forcing a decrease in depth to groundwater and increases in soil moisture
during the wet season following restoration. The increase in groundwater storage was estimated to be
11.371 ha m (92.193 ac ft) for the four years post-restoration. This equated to a cost of $0.69 USD/1000 L
($2.62 USD/1000 gal.) shown to be at the low end of the cost range for meadow restoration by Plug and
Pond Methods. There was an increase in growing season days with depth to groundwater of <0.3 m
and <0.7 m, which are indicators of wetland vegetation, following restoration. The increase in days
with groundwater close to the surface indicates hydrologic conditions post-restoration conducive to
promoting, at a minimum, dry meadow conditions.
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