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Abstract: While rapid urbanization promotes social and economic development, it poses a serious
threat to the health of rivers, especially the small and medium-scale rivers. Flood control for small
and medium-scale rivers in highly urbanized areas is particularly important. The purpose of this
study is to explore the most effective flood control strategy for small and medium-scale rivers in
highly urbanized areas. MIKE 11 and MIKE 21 were coupled with MIKE FLOOD model to simulate
flooding with the flood control standard, after which the best flooding control scheme was determined
from a whole region perspective (both the mainstream and tributary conditions were considered).
The SheGong River basin located near the Guangzhou Baiyun international airport in Guangzhou
city over south China was selected for the case study. The results showed that the flooding area in the
basin of interest accounts for 42% of the total, with maximum inundation depth up to 0.93 m under the
20-year return period of the designed flood. The flood-prone areas are the midstream and downstream
where urbanization is high; however the downstream of the adjacent TieShan River is still able to
bear more flooding. Therefore, the probable cost-effective flood control scheme is to construct two
new tributaries transferring floodwater in the mid- and downstream of the SheGong River into the
downstream of the TieShan River. This infers that flood control for small and medium-scale rivers in
highly urbanized areas should not simply consider tributary flood regimes but, rather, involve both
tributary and mainstream flood characters from a whole region perspective.

Keywords: small and medium-scale rivers; highly urbanized area; flood control; whole region
perspective; coupled models

1. Introduction

It is undisputed that frequent rainstorms driven by climate change and land-use change caused
by high urbanization have resulted in urban flooding in many countries and regions [1–18]. As one of
the most serious natural hazards, urban flooding, especially in highly urbanized areas, threatens lives
and hinders society’s sustainable development nowadays [19–24]. See, for example, the major flooding
that occurred throughout most of the Brisbane River’s catchment in January 2011, with more than 20
deaths and an economic loss of $2.55 billion [25]. During the 2011 rainy season, Thailand encountered
a large flood of a 50-year return period and a total of 65 provinces were flooded; more than 700 people
died and the economic loss reached up to $41.2 billion [26]. In China, an extreme storm attacked
Beijing on 21 July 2012 and a flash flood was triggered in the urban area, causing 79 deaths and a direct
economic loss of $1.86 billion, damaging infrastructure like roads with trapped cars and buses, bridges,
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and collapsed buildings [27–29]. Therefore, urban flooding is a hot topic in the field of disaster research
at present and has attracted much attention in both developed and developing countries [30–37].

The middle and lower reaches of a river are usually more prosperous than the upper reach,
and consequently, flooding problems are more serious. Therefore, more effective measures of flooding
should be carried out to deal with increasing flooding risk with high urbanization [38]. In general,
there are two ways of flood control: engineering and non-engineering measures. Engineering measures
include building reservoirs, dikes, detention basins, pumping stations, and spillways. Non-engineering
measures usually include flood forecasting or simulation, land-use management, land acquisition and
relocation plans, flood emergency planning and response, and post-flood recovery [39]. Among these,
flood forecasting or simulation analysis is essential for flood control. The state-of-the-art method
for flood simulation includes a one-dimensional river flow model coupled with a two-dimensional
surface flow model [40]. For example, Yazdi et al. coupled MIKE 11 with the NSGA-II model for a
small watershed in the central part of Iran, showing that optimal designs of multi-reservoir systems
can efficiently reduce construction costs, flood peaks and their corresponding damage costs at the
downstream reaches of the basin [41]. For flood control measures, there are usually scientific urban
plans, sufficient funds, effective laws and regulations in developed countries to put the flood control
system on the right track, while the blind and disordered development in developing or undeveloped
countries usually cause river flooding problems [42–44]. Rapid urban growth in developing countries
usually results in the proliferation of informal settlements. The housing within informal settlements
is virtually always built without the consent of the official planning authorities and rarely conforms
to official planning guidelines, building regulations, and construction standards [45]. In most cases,
there are many buildings along rivers in highly urbanized areas and there is not enough space for the
construction of flood control. Meanwhile, the height of river levees differ from one place to another.
To solve the problem of river flooding, many developing countries have paid much attention to
flooding control measures. Ali Reza Shokoohi has studied the effect of constructing feasible detention
dams in urban areas and found that they had good operational effects [46]. Marcelo et al. (2009)
focused upon the use of a wide range of different flood control measures in the Joana River watershed,
located at the northern region of Rio de Janeiro City, Brazil, and pointed out that distributed detention
reservoirs in upstream reaches, parks, public squares, or at urban sites, are very important flood control
alternatives [47]. In Turkey, to cope with floods and decrease any further damage, local authorities
have designed a set of measures aiming to improve stream conveyance capacity by straightening
reaches, lining channels, and building hydraulic structures such as new dams [48]. While in Vietnam,
the Red River Delta, the central part of the country, and the Mekong Delta all have completed master
plans for flood defenses including upgrading dikes [49]. However, these conventional flood control
measures such as widening rivers and increasing embankment height are usually not the best flood
control measure for small and medium-scale rivers in highly urbanized areas, nor do they control
floods in such a way that other rivers within the same region are considered and fully used to reduce
the flood hazards of the target river [50]. When widening the river, due to a large number of residential
buildings around rivers, the surrounding residents need to be compensated with land compensation,
resettlement compensation and compensation for attachments and young crops, which is a huge
financial burden for the government. In the process of land acquisition and compensation allocation,
there are often some distribution disputes. If the levee is raised, it will also not be coordinate with the
surrounding buildings. Accordingly, the traditional measures are time-consuming and expensive due
to the large population and dense buildings, making it very difficult to build a flood control system
for small and medium-scale rivers in highly urbanized areas. Unlike large rivers, it is impossible
to carry out unified planning for small rivers. Decision making and optimization should be carried
out according to the local and actual situation. From a whole region perspective, river networks in
the same region are usually connected to each other, and some might suffer floods while the others
may not during a storm event; it is possible to utilize the rivers having enough flood bearing capacity
to reduce flood hazards of the flooded rivers. However, such idea is seldom proposed in either the
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research community or the engineering field; how to achieve this idea remains unsolved at present and
requires further study.

Therefore, this paper aims to explore a new flood control measure by fully considering the flood
bearing capacities of all rivers within the same region. We specifically looked to use the surplus
flood bearing capacities of the rivers free from flooding to reduce flood hazards of the flooded rivers.
To demonstrate such an idea, we chose a tributary of TieShan River, i.e., the SheGong River located in
the comprehensive development zone of Guangzhou Baiyun international airport in China as the case
study, and integrated MIKE 11 with MIKE 21 and MIKE FLOOD [47] to simulate flooding situations of
all the rivers in the case region. We expect to provide a new idea of flood control for highly urbanized
areas around the world.

2. Study Area and Data

2.1. Study Area

In this study, we chose the river SheGong River located in GuangZhou BaiYun airport development
zone in China as the study case. It is a tributary of the TieShan River originated from TieShan New
Village in Huashan Town, flowing into the Tieshan River from north to south. The total length of the
SheGong River is 7.98 km with a drainage area of 9.58 km2, and the average slope of the river is 3.4%.
The Tieshan River Basin covers an area of 58.3 km2, and the topographic map of the basin is shown
in Figure 1. The SheGong River, located in the central part of Huashan Town, constitutes the main
channel for irrigation and flood channel. Many small reservoirs were built along the river channel and
these reservoirs could store massive amounts of water. With the rapid development and utilization
of land in the river basin, the irrigation function has been gradually weakened, and the request for
ecological landscape water use is prevailing. At present, although the TieShan River has been regulated
based on the standard of 20-year return period, the SheGong River is basically in a natural state.
The twisted, narrow, and seriously silted channel and the reservoirs frequently lead to flooding after
rainstorms; the accumulation of water in the plains of the two sides has caused serious impacts on
local production and life. The map of land-use type of the study area in the year 2000 and 2019 are
showed in Figure 2.
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According to the topographical conditions and possible submergence range, we finally determined
the boundary of the study area: the north boundary reaches the Sanjia sluice of the TieShan River and
the source of SheGong River and the south boundary reaches the SheGong River estuary, forming a
relatively complete river basin (Figure 3). In the study area, the section of the SheGong River is
determined as 7.94 km long and that of the TieShan River is 13.4 km.
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2.2. Data

The land-use type of the study area was obtained from satellite remote sensing image maps in the
years 2000 and 2019. The data was acquired by combining and correcting the remote sensing data of
the study area, and by comprehensive classification methods such as supervised classification and
decision tree classification.
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The water system planning of Huadu District in Guangzhou indicates that the flood control
standard of the SheGong River is a 20-year return period in the near future and a 50-year return
period in the long term. Therefore, according to the flood control standard of China (GB50201-2014),
the flood control (tide) standard of Guangdong Province (Trial), and the Huadu District water system
planning of Guangzhou, the flood standard of this project is a 20-year return period, with the protection
level of 4 in both levee and the main building, and level 5 in both the secondary building and the
temporary building.

According to the requirements of the code for design of levee engineering of China (GB50286-98),
the safety heightening value of level 4 in the levee engineering is as follows: 0.6 m for the levee
engineering that is not allowed to cross the waves, and 0.3 m for the levee engineering that is allowed
to cross the waves. The elevation of dike top of this project is designed according to the principle that
no overtopping is allowed; in this case, the safe heightening is set to 0.6 m. The calculation height
induced by run-up wave is 0.2 m and the super elevation of the dike top is 0.8 m. Therefore, the design
flood level plus 0.8 m super elevation of the dike top is the elevation value of the dike top.

The design river bottom elevation at 0 + 000 section at the beginning of the regulation in the
SheGong River is 22.2 m, and that of the 5 + 600 section at the key point of regulation is 9.1 m.
According to the measured data in 2015, the current river bottom elevation of the 0 + 000 section is
22.54 m, and that of the 5 + 600 section is 9.38 m.

A hydrological atlas of Guangdong Province published by Guangdong Hydrological Bureau was
used in the study. The lower boundary condition in the simulation model, i.e., river stages, came from
the Comprehensive Planning Report of River Basin in Huadu District of Guangzhou City provided by
the Guangzhou Water Conservancy Bureau. The topographic map of the Huadu District was provided
by the Guangzhou Surveying and Mapping Institute, while that of SheGong River with a measuring
scale of 1:2000 and the cross- and vertical section of the river were given by a commissioned surveying
and mapping company.

3. Methodology

3.1. Design Flood Calculation

According to the manual regarding the use of rainfall-runoff curves in Guangdong Province
and the standard of design flood calculation for water conservancy and hydropower engineering
(SL44-2006), the design peak flow of small watershed is as follows [48,49]:

Qm =
0.278ψSp

τn F (1)

τ =
0.278L

mJ
1
3 Q

1
4

(2)

where Qm is design peak flow (m3/s); ψ is runoff coefficient of flood peak ; Sp is design rainfall intensity;
F is catchment area of the basin (km2); τ is routing duration; m is routing parameter, L is river length
(km); J is average slope of the river basin. These parameters are further given as

ψ = 1−
µ

Sp
τn(tc ≥ τ) (3)

ψ = n
( tc

τ

)1−n
(4)

µ = RS(rl)p (5)

Sp = H24ptn−1 (6)
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tc =

[
(1− n)Sp

µ

] 1
n

(7)

where µ is the soil infiltration rate; R is the loss coefficient; rl is the loss index (for the calculation of
rainstorm peak in a small watershed); H24p is the maximum 24-h rainfall; n is the rainstorm decay
index (by referring to the Hydrographic Atlas of Guangdong Province).

The cross-section inputs are set up according to the observed data in the SheGong River and the
calculated data in the TieShan River channel. The cross sections are set at an average spatial distance of
50 m, and there are 427 sections in total. Since there are no smaller sub-basins in the river channel and
the river channel is long enough, the inflow between two sections is regarded as uniform. The results
of design peak flow for each section are shown in Table 1.

Table 1. Discharge of each calculated section of river.

Section Station Number Discharge
Number

Discharge for Different Return
Period (m3/s)

2a 5a 10a 20a

Sanjia sluice TieShan River
TSH13 + 404 Q1 108.5 156.3 188.1 281.0

7#weir TieShan River
TSH3 + 600 Q2 149.6 218.8 259.6 348.7

The source of
SheGong River

SheGong River
SG0 + 000 Q3 11.9 18.0 22.4 26.5

SheGong sluice SheGong River
SG5 + 600 Q4 26.7 40.5 50.4 59.2

TieShan River
estuary

TieShan River
TSH0 + 000 Q5 201.2 297.1 354.7 453.9

3.2. Flood Simulation Model

MIKE FLOOD is used to couple the one-dimensional MIKE 11 model and the two-dimensional
MIKE 21 model, for simulating the flood prone area with different return periods.

3.2.1. MIKE 11

MIKE 11 is an implicit finite difference model for one dimensional unsteady flow computation,
the basic equations of which are Saint–Venant equations that are solved by the Abbott–Ionescu six-point
implicit difference method and are used to simulate flood processes in a river channel [50]. The general
steps of model setup include river network generalization, river section setting, boundary conditions
setting, and determination of hydraulic parameters (Figure 4). In this study, we generalized the river
network based on geographic data of the study area (Figure 3). Based on observed data, a total of
427 river sections were set up, and for boundary conditions, the upstream boundary was selected
as the flow boundary, whilst the downstream boundary was selected as the water level boundary;
through analysis and demonstration, we selected the design flood level with a 5-year return period as
the boundary water level. The setting of hydraulic parameters mainly included the determination of a
river roughness coefficient based on the current status of the river and the related data.

3.2.2. MIKE 21

MIKE 21 belongs to the free two-dimensional surface flow model, and uses the finite volume
method to solve the planar two-dimensional shallow water equation. The general steps of model
setup include grid division, elevation interpolation, boundary conditions setting, and determination
of hydraulic parameters (Figure 4). In this study, the study area was divided into 28,800 grids with
grid size of 50 × 50 m. We also performed elevation interpolation based on the measured terrain
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data. For the boundaries connected to rivers in MIKE 21, we set them as open boundaries, and other
boundaries were set as closed boundaries. The setting of hydraulic parameters was to determine the
surface roughness coefficient based on the type of land-use [51].
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3.2.3. MIKE FLOOD

MIKE FLOOD is used to couple the one-dimensional MIKE 11 model and the two-dimensional
MIKE 21 model. By simulating the momentum transfer between the 1D river network and the 2D
surface, the flood situation in the study area can be simulated. In this paper, a lateral coupling method
was adopted; water above the river bank is exchanged with the two-dimensional surface model along
the flow direction perpendicular to the river, and the exchange flow is approximately calculated by the
weir flow formula [52]:

q = WC(Hus −Hds)
k
[
1−

(Hds −Hw

Hus −Hw

)]0.385
(8)

where q is the exchange flow (m3/s); W is the width of the connection part (m); C is the coefficient of
weir flow taken as 1.838; k is the weir index; Hus and Hds are the water levels in the upstream and
downstream sections of weir (m), respectively; Hw is the elevation at the top of weir (m).

3.2.4. Model Verification

On 7 May 2017, a flood event with a 20-year return period occurred in TieShan River basin,
and was selected to verify the flooding simulation model.

(1) One-dimensional model verification
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Choosing the water level in the upstream section of overflow weirs 7#–15# in TieShan River to
compare with the observed water level, it is found that the differences between simulated and observed
values are between 0.01 and 0.18 m (Table 2). Therefore, the one-dimensional model can be considered
as accurate enough for flood simulation.

Table 2. Comparison of simulated and observed water levels.

Position Station Number Observed Values/m Simulated Values/m Bias/m

7#weir TSH3 + 720 13.02 13.03 −0.01
8#weir TSH5 + 640 16.77 16.95 −0.18
9#weir TSH6 + 570 19.31 19.26 0.05
10#weir TSH7 + 200 21.21 21.27 −0.06
11#weir TSH8 + 180 23.6 23.69 −0.09
12#weir TSH8 + 700 26.16 26.34 −0.18
13#weir TSH9 + 640 28.81 28.69 0.12
14#weir TSH11 + 210 31.69 31.74 −0.05
15#weir TSH11 + 800 33.68 33.72 −0.04

(2) Two-dimensional model verification
The survey result shows that the culvert of SheGong River and the urban area in the south are the

main flooding areas; meanwhile, the TieShan River is in a safe state. Comparing the actual flooding
area and depth with the simulated ones, we found that the simulation results are basically consistent
with the actual situation. Therefore, it can be concluded that the parameters in the 2D model are
reasonable, and the model can be used to reflect the actual flooding situations in the study area [53].

4. Results

4.1. Flooding Analysis

We applied the flooding simulation model to simulate the situation of the current river
channel when it encounters floods with different return periods. For a 2-year return period,
the maximum flooding depth increases during the time interval of 2–6 h, and decreases from 6
to 17 h, reaching maximum value of 0.32 m at the time of 6 h; the flooding depth tends to be relatively
stable after 17 h. In correspondence, the maximum flooding area increases from 2 to 9 h and decreases
during 9–11 h, reaching the maximum value of 0.93 km2 at 9 h, and remains unchanged after 11 h.
For a 5-year return period, the maximum flooding depth increases from 2 to 5 h and decreases after
that, with the maximum value of 0.59 m at 5 h; the maximum flooding area increases before 7 h and
decreases from 7 to 14 h, with the maximum value of 2.32 km2; the flooding area remains almost
unchanged after 14 h. When meeting the 10-year return period, the maximum flooding depth increases
from 2 to 5 h, and decreases during 5–10 h, reaching the maximum value of 0.73 m; the maximum
flooding area increases from 2 to 8 h, decreasing from 8 to 15 h, with the maximum value of 3.14 km2 at
8 h. As for the 20-year return period, the maximum flooding depth increases over time before 8 h,
but gradually decreases from after that, with the maximum value of 0.91 m and the flooding depth is
relatively stable after 14 h; the maximum flooding area also increases over time before 7 h, decreasing
from 7 to 16 h, reaching the maximum value of 4.03 km2 and remaining unchanged after 16 h (Figure 5).

The spatial flooding situations for different return periods are shown in Figure 6. In combination
of the results from Figure 5, it can be found that the current flood bear capacity of SheGong River
does not reach the standard with a 20-year return period; the flooding area increases from 0.93 km2 to
4.03 km2 with the return periods of 2, 5, 10, and 20 years, and the maximum flooding depths increases
from 0.32 to 0.91 m. The inundated area is gradually increasing from midstream to downstream of
SheGong River with the return periods of 2, 5, 10, and 20 years, respectively (Figure 6). When under the
10-year and 20-year return period scenarios, the flooding depth of the downstream of SheGong River
is higher than 0.4 m. However, the TieShan River can bear flooding with a 20-year return period safely,
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and the downstream flood discharge capacity is still at a surplus. It can also be seen from Figure 6
that because the section width of culvert is too narrow, flood overflowed from river channel at this
location, while the TieShan River can bear the flooding with a 20-year return period safely, and the
flood discharge capacity of downstream is still at a surplus. Therefore, under this condition, how to
solve the problem of insufficient flood control capacity in the section of the culvert should be the focus
of regulation schemes.Water 2020, 12, x FOR PEER REVIEW 9 of 17 
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4.2. River Regulation Schemes

4.2.1. Formulation of River Regulation Schemes

According to the results of flooding analysis and survey results in the TieShan River basin,
the main problems are as follows:

A. The banks at the south of the SG5 + 600 pile are seriously invaded, resulting in the flood control
capacity below the standard with a 5-year return period; developed urban areas in the vicinity
are affected by flood seriously;

B. At the north of the SG3 + 750 pile in SheGong River, there is a culvert with narrow section and
shallow depth, which results in not enough flood discharge capacity of the river channel for
flooding with a 2-year return period. Moreover, both sides of this culvert are construction lands;
it is difficult to widen the culvert by land acquisition and demolition.

In order to solve these problems, the following three regulation schemes are proposed:

(1) Scheme 1: Widening the downstream width and heightening dikes on both sides of the TieShan
River to improve flood control capacity to reach the standard of a 20-year return period.
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(2) Scheme 2: Set a sluice at the SG5 + 600 section in the downstream of SheGong River, and open up
the tributary-1 in front of the sluice, transferring flood water from the upstream of SheGong River
to the downstream of TieShan River; meanwhile, widen the culvert at the north of the SG3 + 750
pile in the SheGong River.

(3) Scheme 3: As in Scheme 2, i.e., set up sluice and open up tributary-1 in SheGong River; for the
culvert, widen it slightly, and open up tributary-2 in front of the culvert, which leads part of the
water flow into TieShan River before entering the culvert.
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4.2.2. Comparison and Selection of Three Schemes

For Scheme 1, considering the difficulty and high cost in land acquisition and demolition,
the general practice is to build dikes on both sides of the SheGong River, maintaining the existing
river width. However, according to the results of the water surface calculated by the simulation
model (Figure 7), if we only build dikes to improve the flood control capacity to reach the standard
of a 20-year return period, the elevation at the top of dikes must be 1.5 m above the ground at least
(the safe height above the water surface is taken as 0.6 m), which is probably not allowed for the
surrounding environment. Therefore, Scheme 1 that only adopts general engineering measures is not
recommended here.
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If analyzing from the whole region perspective, it can be found that the surplus of flood discharge
capacity in TieShan River is the key of the solution. In Schemes 2 and 3, the construction of tributary-1
is to take advantage of this convenience, and it can play a role in alleviating the flood pressure of
SheGong River and avoid the construction of dikes. At the same time, taking the construction cost
of engineering projects into account, it is still more reasonable to open up the tributary than to build
dikes. Therefore, the next content is mainly to compare Scheme 2 and Scheme 3 (Figure 8).
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Through simulation, it can be determined that after the adoption of Scheme 2 or Scheme 3, there is
no flooding with the 20-year return period. The difference between Scheme 2 and Scheme 3 is the
treatment of the culvert. In Scheme 2, the culvert is to be widened; in Scheme 3, a part of water flows
that should have passed through the culvert is transferred to the TieShan River through tributary-3.
Considering the land acquisition and demolition, the costs of Schemes 2 and 3 are shown in Table 3.
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Table 3. Cost of land acquisition and house demolition for Scheme 2 and Scheme 3.

Scheme

Area of Land Acquisition and
Demolition (m2) Unit Price ($/m2)

Total Cost ($)
Construction Land Farmland Construction Land Farmland

#2 11,861 64,989
24.31 4.29

558,702

#3 3385 83,915 439,869

The simulation results of water surface lines with Scheme 2 and Scheme 3 are shown in Figure 9.
It can be seen from Figure 9 that when flooding with a 20-year return period occurs, the water level
of the culvert is below safe altitude; the water level of the culvert in Scheme 2 is 0.4 m lower than
the water level in Scheme 3 on average, but in the downstream of SheGong River, the water level is
significantly higher than that in Scheme 3.
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In terms of the cost of land acquisition and house demolition, Scheme 3 is lower than Scheme 2.
When looking into the water level reduction effect, Scheme 2 has a better reduction effect at the culvert,
but Scheme 3 has a better reduction effect in the downstream area. Considering that the downstream
area has a higher grade in the development planning, the final regulation scheme is to adopt Scheme 3,
which is easier to implement in terms of economic cost and is more effective in reducing flood hazards
in the downstream area.

Through the comparison of Schemes 1 and 2, it can be found that a sluice in the downstream
of SheGong River can be set and a tributary in front of the sluice transferring floodwater from the
upstream of SheGong River to the downstream of TieShan River can be opened, avoiding the widening
of the downstream width and heightening dikes on both sides of the SheGong River. In Scheme 2,
the downstream of SheGong River could remain the original width but the culvert would need to be
widened, while in Scheme 3, the culvert needs to be slightly widened, or can even remain unchanged
after opening up a tributary in front of the culvert. Considering the land acquisition and demolition,
along with the simulation results of water surface lines, Scheme 3 is the optimal one.

5. Discussion

Due to high urbanization development, there is nearly no extra land around the downstream of
the SheGong River that is surrounded by various kinds of buildings. The mid- and the downstream of
the river are also the reaches with extremely serious flooding. Therefore, there is not enough space for
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flood control construction in the SheGong River. Large land occupation, high cost of land acquisition
and demolition, difficult demolition work, local resident disputes have increased the difficulty of
traditional river flood control measures. If one wants to reduce land acquisition and demolition and
keep the original river width, then the embankment height should be at least 1.5 m above the ground,
which is disharmonious to the surrounding environment. However, if one makes full use of the flood
bearing capacity of the downstream of the Tieshan River and develops new tributaries, it would be an
efficient and economical solution. The scope of land acquisition, which is mainly farmland, will be
minimized, and the cost of compensation for land acquisition and demolition will be at its lowest.
The reduction of land acquisition, demolition and compensation disputes, and the avoidance of raising
river embankment make the flood control measures of the river simpler and reduce flooding risk.
According to the flood simulation analysis, the flood bearing capacity of the TieShan River is still at
a surplus. Flood water in the SheGong River can be transferred into the TieShan River so that the
buildings around the SheGong River can remain and the work is greatly simplified, whilst the flood
pressure in the mid- and downstream of the SheGong River is effectively reduced. This is from a whole
region perspective, given that flood control of the SheGong River is not conducted independently in
the SheGong River.

In this study, three possible flood control schemes are proposed. Scheme 1 is to simulate the
design flood condition of the SheGong River without changing the existing river width. However,
the bank elevation of the whole river in the scheme is lower than the design flood level; consequently
the river channel will seriously flood. Due to the lack of flood bearing capacity in the middle and
lower reaches of the SheGong River, the downstream of the SheGong River will suffer from flooding.
A tributary can be opened in the downstream. There is a culvert in the midstream, which can be
uncovered and widened or a tributary can be opened in front of the culvert. In Scheme 2, a flood
gate will be built at the downstream of the SheGong River, and a tributary will be built in front of the
gate to transfer floodwater to the downstream of the TieShan River. Meanwhile, the culvert at the
midstream will be uncovered and widened. Scheme 3 is to open the tributary at the downstream of the
SheGong River with the culvert at the midstream unchanged and build the second tributary in front
of the culvert. Compared with Scheme 1, Scheme 2 effectively reduces flooding in the downstream
of the SheGong River. Comparing Scheme 2 with Scheme 3, the design flood level of the original
culvert in Scheme 2 is 0.4 m lower than that in Scheme 3 on average, and the design flood level of the
downstream section is higher due to large flows, while tributary 2 in Scheme 3 can effectively reduce
flooding pressure of the downstream of the SheGong River. Scheme 3 needs to build a new tributary
because water flows in the bottom of the river in Scheme 2 are relatively large and the river needs to be
widened. In terms of the cost of land acquisition and house demolition, Scheme 3 is lower than Scheme
2; for a water level reduction effect, Scheme 2 has a better reduction effect at the culvert, but Scheme 3
has a better reduction effect in the downstream. Considering that the downstream area has a higher
grade in the development planning and that the cost of land acquisition and demolition cannot be
neglected, Scheme 3 is preferable. This scheme makes full use of the surplus flood discharge capacity
of the TieShan River from a whole basin perspective. Transferring river floodwater not only avoids a
lot of land acquisition and demolition but also solves flooding in the SheGong River economically
and effectively. With the rapid development of high urbanization in developing countries around the
world, the problem of flood control and drainage in small and medium-scale river basins has become
increasingly prominent. Therefore, this study can provide a feasible flood control measure for small
and medium-scale rivers in other developing countries.

While this study provides a new idea of flood control, there are some caveats when the idea is
applied in other regions. For one, MIKE 21 has high requirements for data; for tributaries and rivers,
when simulating small-scale areas using the model, it needs a precise spatial resolution, whilst it
is unable to predict elevation differences in floodplain modeling, which has its own significance in
accurate results [54,55]. Second, there are some differences between the data obtained in the research
area and the requirements of the model, and considering errors such as the generalization of the
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river network and grids as well as the changes in working conditions in the model, the verification
of the one-dimensional model and the two-dimensional model is seemingly simple. Third, we only
tested three schemes in the study which are seemingly inadequate given that flood conditions across
different regions are rather complicated, and therefore a variety of schemes should be tested, if allowed,
for other regions. Last but not least, the development of tributaries will somewhat impact the ecological
environment, which needs further study.

6. Conclusions

To explore the most effective flood control strategy for small and medium-scale rivers in highly
urbanized areas, this study took the SheGong River (the tributary of the TieShan River) basin as the
case to demonstrate how flooding across small and medium-scale river basins can be controlled from
a whole region perspective. The MIKE FLOOD model was coupled with MIKE 11 and MIKE 21 to
simulate flooding in the basin for different return periods, and the results showed that the mid- and
downstream areas of the basin suffer from serious flooding with a 20-year return period, yet the
downstream of the mainstream, i.e., TieShan River, can still sufficiently bear more flooding. Therefore,
it is possible to deal with flooding over the SheGong River basin by consideration of the flood bearing
capacity of the mainstream TieShan River from a whole region perspective. Further, three possible
flood control schemes were compared to determine the most cost-effective one. It showed that the
construction of two new tributaries transferring floodwater in the mid- and downstream of the SheGong
River into the downstream of the TieShan River is the best way to reduce flooding pressure in the
SheGong River basin. The scheme of opening up new tributaries to replace the reconstruction of the
original river channel can reduce a large number of land acquisition and demolition projects and in
turn, reduces the compensation cost of land acquisition and demolition. In highly urbanized areas,
the rivers with abundant flood bearing capacity can be fully utilized to control floods. When the
flood bearing capacity of small and medium-scale rivers is inadequate, floods in the middle and lower
reaches of the river can be transferred to the river with abundant flood-carrying capacity. The new idea
of dealing with flooding from a whole region perspective can consider and make full use of the flood
bearing capacities of both the mainstream and tributaries. This can not only avoid a large number
of land acquisitions, demolitions and compensation fees in highly urbanized areas but also reduce
the risk of river flood control, which is particularly useful for highly urbanized areas in developing
countries around the world.
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