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Abstract: This study investigated different approaches to optimize flows in misaligned culverts.
Structures aligned with the natural stream are always preferred, as misalignments cause a change
of direction at the culvert inlet associated with lower performance and sedimentation and erosion
problems. This optimal positioning can cause high financial costs and a flow optimization minimizing
the associated problems could be a viable alternative. In this study, we used computational fluid
dynamics analysis to evaluate the flow in 44 different scenarios with misalignment angles ranging
from 0◦ to 90◦. It was found that smooth transitions towards the narrowest point in the stream (culvert)
were possible for any degree of misalignment resulting in improved, uniform velocity distributions
and less turbulence. An experimental setup was able to confirm the possible flow improvements.
The proposed approach of flow redirection can lower construction costs and gives planners and
designers more flexibility as tailored reinforcement and redesign of the stream embankment can be
used as an alternative to costly creek alignments.
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1. Introduction

Perpendicular crossings between transport infrastructure and natural streams are favored when
installing new culverts, but this is not always possible as natural creeks meander through the landscape.
Maintaining a perpendicular intersection and not aligning the culvert with the main flow direction
leads to reduced flows, higher blockage risks [1–3], and sedimentation and erosion [4–6]. Today,
three different methods are used to approach this problem; skewed barrels, upstream realignments,
or misaligned structures.

Culvert pipes not perpendicular to the transport infrastructure are called skewed barrels.
They allow an alignment of the culvert with the stream, but these designs exceed the minimum
length necessary as they do not cross in the shortest possible way. This causes higher costs and often
makes different inlet designs necessary as well. In some cases, culvert headwalls are adjusted to the
embankment rather than normal to the pipe.

These designs are described as skewed inlets. This method makes the use of pre-cast designs
difficult due to the great variety.

The second alternative, a creek or stream realignment, is potentially more expensive than the first
solution and requires careful consideration of the surrounding landscape and enough available space.

Directing the stream into the culvert with the help of wingwalls is the third alternative.
A commonly used culvert design guideline by Schall et al. [7] does not suggest this solution as
they advise against the design of misaligned structures, but the Urban Drainage and Flood Control
District (UDFCD) guideline [8] proposes it briefly without detailed instructions. The authors from
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the UDFCD [8] recommend adjusting the wingwall angles according to the flow direction. This is
supposed to direct the flow into the culvert. A major problem caused by misaligned culverts is the
higher risk of sedimentation and erosion around the inlet area. The sudden change of direction
causes higher velocities on the outside corner and corresponding lower ones on the inside of the
inlet, which leads to erosion of the embankment on one side and sediment buildup on the other [7].
Accumulating sediments restrict the discharge capacities of culverts and it remains questionable if
the wingwall adjustment approach from the UDFCD guideline [8] can prevent the issues caused
by irregular velocities. In summary, it can be stated that the available information for planners and
engineers is very limited when it comes to situations where a misalignment between culvert and stream
can not be avoided. The effectiveness of the wingwall method proposed by the UDFCD guideline [8] is
unclear, as well as the exact implementation. With basic information missing in this area, the aim of this
study is to investigate velocity distributions and turbulence for different misalignment angles and to
find ways to optimize the flow path so that negative effects are limited. Computational fluid dynamics
(CFD) was used to simulate four different inlet setups at different angles between the stream bed and
the culvert. CFD numerically solves the nonlinear partial differential Navier–Stokes equations to model
fluid problems. Due to the complexity of the equations, few exact solutions exist today and calculating
turbulence correctly is still considered unreasonable [9]. Instead, Reynolds-averaged Navier–Stokes
(RANS) equations with turbulence models are used, as this approach allows an approximation to
the exact solution averaged over time. The conducted simulations were able to visualize flow paths
and boundary layer separation from the culvert walls. Keeping the flow attached to the surrounding
structure is an effective way of minimizing headwater loss, as any boundary layer separation causes
turbulence and vortex formation downstream [9]. Turbulence is caused by friction and fluid shear
and then transferred from large motion scales to continuously smaller ones, eventually dissipated by
viscosity [10,11]. This results in lower fluid velocities as the turbulent kinetic energy (TKE, the amount
of kinetic energy stored in eddies) is dispersed into heat. The results from the CFD simulations were
analyzed for velocity distributions and TKE and compared with a flume setup, where a tracer fluid
was used to visualize flow paths. This allowed an investigation of the effectiveness of the proposed
solutions over a broad range of misalignment angles.

2. Methods

There is a wide range of possible forms for misaligned culverts with angles varying between 0o to
90o. The natural or a reinforced embankment can end directly next to the culvert inlet or there can be a
gap between the opening and the embankment that would be bridged, for example, by a headwall.
This research focuses on exploring the flows in a layout where the culvert inlet sits centered in the
natural stream bed and the culvert width is a third of the streams width.

2.1. Geometry Setup

The developed setup covers a wide range of the most common possibilities of misaligned
culverts while keeping important lengths and ratios of the model the same throughout the different
angles, so that the results can be compared between the different setups and misalignments. The four
configurations of culverts included: (1) straight headwall, (2) wingwalls adjusted to the flow direction,
(3) round crossovers from the inlet to the streambed, and a (4) smooth transition between the opening
and the embankment with a spline.

The geometry in Figure 1 (construction described in Table 1) shows the model used in this study.
For the CFD simulations, angles from 0◦ (Figure 1b) to 90◦ (Figure 1c) were tested with a 10◦ step size.
In addition to these ten angles, a 45◦ misalignment was tested as well. All these angles were each
tested with the following four setups at the inlet, resulting in 44 different CFD simulations.

The standard (straight) version was the first configuration tested. It had rectangular corners at the
inlet and a headwall perpendicular to the pipe.
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The second version tested was named chamfer. Two straight lines connected the inlet corners with
the sides of the upstream channel, resembling wingwalls. The angle for these wingwalls depended on
the degree of misalignment and is described in Table 1, Step 8 and 9. The points Pi created through the
intersection between the wingwall and the sidewalls of the channel, were used as reference points for
the following two configurations.
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Figure 1. Geometry explanation used for all computational fluid dynamics (CFD) simulations.
C1C2O2O1 outlines the culvert, B1B2 I2 I1S outlines the upstream water body (a) example geometry
with α = 30◦, (b) no misalignment with α = 0◦, (c) greatest misalignment with α = 90◦ (dotted lines in
(b,c) indicate the chamfer-configuration).

Table 1. Geometry construction for CAD and flume model.

Step Geometry Method

1 O1O2 Outlet, l = 1.5 m
2 CiOi Culvert walls, l =10 m, ⊥O1O2
3 BiCi Headwalls, l = 1.5 m, ⊥CiOi
4 B2I2 Sidewall (headwater body), l = 10 m, 6 C2B2 I2 = 90◦ + α

5 I1I2 Inlet, l = 4.5 m, ⊥B2I2
6 6 C1B1S ⊥
7 6 I2 I1S ⊥
8 6 B1C1P1 45◦ + α
9 6 B2C2P2 45◦ − 0.5× α

The construction of the third, round version was more complex than the chamfer one: Both arcs
connected tangential to CiOi to ensure a smooth transition into the culvert. The arc from C2 to P2

was always centered at B2, the radius was constant with r = 1.5 m. The second arc from C1 to P1

continuously changed its radius. The direction of the bend changed from a convex arc for angles
smaller than 45◦ to a concave arc for angles greater than 45◦. The radius changed continuously, starting
with r = 1.5 m at 0◦ increasing towards 45◦ and then declining down to r = 4.5 m at 90◦. As the curve
switched its direction at 45◦, the radius at this angle is r = ∞, a straight line. As a result, the round,
45◦ setup differs from the other angles as it consists of only one arc instead of two.

The fourth setup (tangent) was created with a spline connecting Ci and Pi. Both ends of the
spline were set to be tangential to the lines they were connecting to (PiIi and CiOi), creating a smooth
transition between the culvert and the embankment. The spline connecting C2 and P2 always changes
the sign of the curvature, while the other spline between C1 and P1 only changes it up to ≈65◦.
Greater angles form a convex curve between the two points.
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This geometry setup was used for both, the CFD-simulations and the experiments. While the full
range of misalignments was modeled in the CFD-analysis, the flume experiments only tested the 45◦

setup to compare the results with the ones from the simulation.

2.2. Simulation Setup

The CAD software Inventor from Autodesk (Autodesk Inventor Professional 2018) was used
to build the computer models, Fluent from ANSYS (ANSYS 16.1) was used to perform the mesh
generation, calculate the solution and postprocess the generated data. Table 2 summarizes the
configuration details for the numerical simulations. After constructing the two-dimensional models
in accordance with Figure 1, they were loaded into ANSYS Meshing. I1S B1C1O1/I1P1C1O1 and
I2B2C2O2/I2P2C2O2 were defined as walls. The mesh was inflated from these walls with ten
layers, a smooth transition and a growth rate of 1.2. Together with a maximum face size of 60 mm,
these settings resulted in 22× 103 to 29× 103 hexahedra elements in the different scenarios. The mesh
quality was later checked in the solver and improved with a mesh refinement-method until a minimum
orthogonal quality >0.75 and a maximum orthogonal skew <0.25 was reached. The orthogonal quality
ensures perpendicular vectors within a cell and values close to 1 are considered good. The orthogonal
skew serves as a quality indicator for skewness in a mesh, values close to 0 are preferred [12]. Y+ values
were limited to <100. Minimum values were ignored, as the scalable wall functions ignore Y+ < 11.

Table 2. Simulation parameters for ANSYS Fluent modelling.

Parameter Configuration

Geometry Planar 2D
Inlet boundary condition Velocity inlet, 1 m·s−1

Outlet boundary condition Pressure outlet, 0 Pa
Turbulence model Realizable k− ε with scalable wall functions
Solver Pressure-based SIMPLE scheme
Time step size 0.1 s

Once the mesh was completed, boundary conditions (inlet velocity = 1 m·s−1, outlet
pressure = 0 Pa) were applied. This corresponded to a test condition flow rate of 5 L·s−1. The wall
material was defined as alloy to minimize turbulence creation from friction. For the turbulence
modeling, the realizable k− ε model was chosen with scalable wall functions. The basic k− ε-model
calculates the turbulence-viscosity transport with two equations, one for the turbulent kinetic energy k
and one for the isotropic dissipation rate ε. The further developed realizable k− ε-model was chosen
for the conducted simulations, as it offers higher accuracy in jet prediction and supposedly performs
better in flows involving separation, recirculation, and boundary layers under strong adverse pressure
gradients [12,13]. This is achieved through a new equation replacing the constant Cµ and a refined
definition of the dissipation rate ε [13].

Another simplification in many CFD models is the assumption of isotropic turbulence. There is a
notable reduction in complexity with little loss of accuracy, but as this assumption leads to incorrect
results in near wall regions, Launder and Spalding [14] introduced a set of wall functions to compensate
for these limitations. The scalable wall functions used in this study require a mesh where y∗ ≤ 100,
so that the viscous sublayer and the buffer layer can be modeled correctly according to the law of the
wall [15].

All simulations were solved in a planar 2D space, pressure based and with an absolute velocity
formulation. Transient calculations with a time step size of 0.1 s were performed until a stable result
was reached for TKE. To control this, the sum of TKE over the fluid body was calculated and monitored
over a minimum of 1000 timesteps for all different 90◦ misalignments. The 90◦ setups were chosen for
this observation as it was assumed that they would need the most time to converge. Figure A1 shows
the course of these sums. Following from this, all remaining chamfer, round and tangent scenarios ran
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for a total of 90 s while the straight scenarios ran for 150 s. The change in total TKE from 150 s to 300 s
was less than 0.5%. It was therefore decided that sufficient accuracy was achieved after 2.5 min.

The simulation results were examined for three different characteristics, (1) interfering flows
inside the culvert, (2) velocity distributions, and (3) TKE. Interfering flows inside the culvert are the
ones flowing in other directions than the main one. This causes turbulence downstream and energy
loss. To analyze these flows, velocity vectors were dissected into their x- and y- components so that the
parts interfering with the main flow (~y ) were isolated.

The velocity distributions were used to analyze how much available culvert width was utilized
for discharge. The uniform distribution throughout the barrel allows a greater overall flow rate and
reduces problems associated with erosion and sedimentation. The overall TKE in any model was used
as a third performance indicator. The absolute values allowed a direct comparison between different
scenarios and lower TKE values indicated a greater discharge capacity.

These three analyses were employed to reveal the advantages and disadvantages of the proposed
misalignment treatments. To verify the results of the conducted simulations, the 45◦ misalignment
studies were compared to flows in an experimental setup.

2.3. Experimental Setup

A CNC-router was used to build perspex models based on the numerical simulations with 45◦

misalignment. These models were placed in a 2.5 m wide and 8 m long channel (Figure 2). Water was
stored in an underground tank and pumped from there into the channel. The inflow was designed as a
weir overflow across the whole channel width and the water was permitted to discharge freely off the
other end. The flow rate was controlled via a variable speed drive and measured with a magnetic flow
meter (WaterMaster - FEX100, ABB Australia, Brisbane). For all experiments presented in this paper,
the flow rate was set to 5 L·s−1. Diluted rhodamine was used as tracer, which was dropped into the
flowing water with a multichannel pipette along I1I2. The created streak lines were used to compare
the experiments with the simulations.

perspex model

table sidewalls (not to scale)

inflow

outflow

45◦

632 mm

120 mm

1000 mm

200 mm

200 mm

8 m

2.
5

m

Figure 2. Experimental layout (not to scale).

3. Results and Discussion

The following section summarizes the results and findings from the simulations and experiments.
Figure 3 contains the results of all simulations, and only limited CFD-visualizations are contained in
this section (Figure 4). A detailed flow presentation of all simulated misalignment angles can be found
in the Appendix A, Figures A2–A5.
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Figure 3. Maximum and minimum velocities in ~y-direction sampled from C1C2 for all culvert angles.

3.1. Simulation Results

Figure 3 shows velocities in the y-direction sampled along C1C2. These velocities perpendicular
to the main flow direction (~x) cause turbulence downstream. In an aligned setup (0◦), the maximum
and minimum velocities have the same magnitude but different signs. The wingwalls (chamfer-option)
are able to reduce the amount and size of those shear velocities by more than 50% compared to a setup
with a straight headwall. But this changes for misaligned structures. While the maximum ~y-velocities
from the straight setup only increase by about 50%, they quintuple in the chamfer setup. Velocities in
~y-direction continuously increase in the chamfer setup and beyond 60◦ those perpendicular velocities
exceed the ones from the straight setup.

The round configuration maintains the lowest shear velocities out of all cases and for every
angle. It maintains smaller (between 25%–60%) velocities than the tangent option, but both of these
configurations have significantly lower ~y-velocities than the straight and chamfer ones.

The second part in analyzing the modeling results was a visualization of the velocity distributions
in the culvert. Figure 4 uses velocity contours to visualize the impact of different inlet treatments.
Three different cases are presented, 0◦, 45◦ and 90◦, and the velocities are differentiated with different
shades of blue. Figure 4a has a higher velocity jet in the culvert than Figure 4b–d as there is a sudden
change in width that causes a constriction downstream. The chamfer setup creates a homogenous
velocity distribution in an aligned culvert but it fails to improve the flow within the culvert when
the misalignment angles increase (Figure 4f,j). Here, the lower wingwall constricts the flow in the
upstream water body more and more, leading to a bottleneck that is narrower than the actual culvert.
All round and tangent setups (Figure 4c,d,g,h,k,l) form smooth velocity fields in the culvert. Even at
large angles they only develop small, similar sized areas of high velocities along the upper inlet
(Figure 4k,l).
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(a) 0◦ straight (b) 0◦ chamfer

(c) 0◦ round (d) 0◦ tangent

(e) 45◦ straight (f) 45◦ chamfer

(g) 45◦ round (h) 45◦ tangent

(i) 90◦ straight (j) 90◦ chamfer

(k) 90◦ round (l) 90◦ tangent

Velocity [m s−1]0 2 4 6

Figure 4. Comparison of different velocity contours.

Figure 5 shows the sum of TKE over the total area in all tested scenarios. Although the total
area of the model varies with every case, its influence on the sum of TKE is rather small. Most of
the TKE occurs in the culverts, which all had the same size. There is a linear trend for the straight
configuration, with R2 = 0.964. Out of all four configurations, this one has the second highest rise in
TKE with increasing misalignment: from 0◦ to 90◦ TKE increases by 22.75% (236 m·s−2). For aligned
culverts, the chamfers or wingwalls reduce turbulence by about a factor of five in comparison to the
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straight setup, however, the proposed scheme does not perform well for other angles, especially steeper
ones. The TKE increases exponentially (R2 = 0.995) more than ten times from aligned to perpendicular
flows. This is due to the fact that the bottom wingwall narrows down the flowpath in the upstream
water body at greater angles, therefore creating a bottleneck. In its most extreme case, the 90◦ scenario,
this leads to a high velocity jet formation before the culvert with velocity vectors at least 45◦ off the
culvert flow direction. This leads to a highly irregular flow pattern in the culvert with a large amount
of turbulence. Different wingwall schemes that do not create such a constriction would most likely
perform better. Extending the lower culvert sidewall and thereby dissolving the bottleneck could be
one solution, trialling different angles another one. It is questionable whether a straight wingwall
setup could perform continuously as well as the round or tangent version. Both of these latter setups
start off with low losses and maintain these as the angles get bigger. Between 0◦ to 90◦ TKE increases
just by 20% from approximately 100 m to 120 m·s−2 in the round and tangent setup (quadratic increase;
round: R2 = 0.992; tangent: R2 = 0.974). The greatest deviation between the round and tangent
version is 3.1%.

0 10 20 30 40 50 60 70 80 90
0

600

1,200

1,800

2,400

3,000

Angle [◦]

TK
E

[m
s−

2 ]

fitted equations
straight
chamfer
round
tangent

Figure 5. TKE sums for every case. All relations between energy loss and angle of alignment were
significant (p < 0.001).

Until today, guidelines advise against any misalignment between the stream and the culvert
and there is little information on what to do when a misalignment cannot be avoided. The Urban
Drainage and Flood Control District in the US recommends the use of wingwalls in cases the culvert is
skewed to the normal channel flow [8]. Our experiments showed that rounded or tangent transitions
would in all cases exceed the performance of the suggested wingwall modifications. The round
and tangent modifications reduced turbulence during the flow direction change and a more even
velocity distribution was achieved. This reduces sedimentation and erosion problems and is therefore
a preferable solution over the wingwalls.

3.2. Experimental Results

Streaklines in the four different setups were visualized with diluted Rhodamine as a tracer.
This helped to identify smooth flows as well as areas of very high and low flow velocities.

In the straight configuration (Figure 6 sl and sr) we were able to monitor a long residue time in
both corners next to the inlet. This longer retention time was also seen in the left corners of the chamfer
and tangent setup (Figure 6 cl and tl). The round setup (Figure 6 rl and rr) did not accumulate tracer
at any point and had the smoothest flowpath out of all the setups. The round setup offers a steady
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change in direction combined with a consistent narrowing of the flow path. This is presumed to be the
reason for its superior performance over the other setups. While the tangent version had no sudden
changes in direction either, the upstream channel width changes much quicker than in the round setup.
This creates the mentioned low velocity area in front of the culvert where sediments can accumulate.

sl sr cl cr

rl rr tl tr

Figure 6. Results from the inlet experiments; pictures show a long exposure of the tracer at 5 L·s−2

(t = 3 s); s = straight, c = chamfer, r = round, t = tangent; l = left, r = right.

Headwater heights (h) were measured upstream of the inlet with a thin metal ruler.
The water levels in the round (h = 85 mm) and tangent (h =87 mm) setup were lower than the
chamfer (h = 90 mm) and straight (h = 93 mm) one, supporting the simulation results.

Presenting these results in terms of dimensionless depth, h/D and dimensionless flow rate
Q∗ permits a comparison of these scaled results to full-scale culvert experiments through Froude
similitude [16]. Dimensionless flow rate is defined as Q∗ = Q/

√
(gD5) where g is the acceleration

due to gravity. The dimensionless water depths for the four cases were 0.71 (round), 0.73 (tangent),
0.75 (chamfer), and 0.78 (straight). Dimensionless flow rate was 0.32 for all experimental results.
The experimental results were used as a tool for qualitative validation of the numerical simulations.
In general, the experimental results agreed with the trends found in the simulations, showing relative
improvements in the smooth transition cases (round and tangent) when compared to the sharper
geometries (tangent and straight). In modern culvert design there is often a gap between the wingwalls
and the inlet. This could have been another alternative in the simulations, but was not chosen as it is
known to be a less effective training method than a flush wingwall connection to the inlet [7]. Different
sized inlet configurations will perform differently as well, but a size comparison was beyond the scope
of this study.
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4. Conclusions

The simulations and experiments have shown that misaligned culverts can maintain a uniform
velocity distribution and high discharge capacity when flow is smoothly directed into the structure.
Rounded and tangential transitions between the upper water body and the culvert had the biggest
positive impact on the flows for any degree of misalignment. These methods increase the flow capacity
while also decreasing the likelihood of blockage and reducing sedimentation and erosion processes
due to less vorticity upstream and a more uniform velocity distribution [2].

This has potential benefits for future culvert constructions, as well as existing structures.
Cost savings are possible as shorter barrels perpendicular to the embankment can be used and
creek realignments could potentially become unnecessary. Smooth transitions of flow directions work
better than sharp bends or corners and a steady reduction of the channel width down to the culvert
width will ensure a uniform flow pattern. The chamfer configuration resembling wing walls improves
the flow while the alignment deviations are small, but the method fails for greater misalignments.
The authors advise against this method as the presented round and tangent alternatives continuously
perform better.

This research did not examine three-dimensional structures or transitions and more information
is needed in this area. As all sudden changes in direction should be avoided, smooth transitions from
a u-shaped channel to a rectangular box culvert or a round pipe are necessary. Further research in
this area should ensure even velocity distributions as far as possible so as to avoid the formation
of erosion or sedimentation zones. Last but not least, it should be mentioned that the influence
of the top edge on the discharge capacity is substantial [17,18]. Therefore, the top bevel should be
incorporated in any attempt to increase the flow capacity to ensure sufficient discharge in unsubmerged
and submerged conditions.
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Appendix A
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Figure A1. Convergence plot for Turbulence Kinetic Energy (TKE) in transient simulations with time
step size 0.1 s and 90◦ misalignment. These plots were used to determine the minimum time required
for the transient simulations.
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(a) 10◦ straight (b) 10◦ chamfer

(c) 10◦ round (d) 10◦ tangent

(e) 20◦ straight (f) 20◦ chamfer

(g) 20◦ round (h) 20◦ tangent

Velocity [m·s−1 ]0 2 4 6

Figure A2. Velocity Contours for 10◦ and 20◦ misalignments.
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(a) 30◦ straight (b) 30◦ chamfer

(c) 30◦ round (d) 30◦ tangent

(e) 40◦ straight (f) 40◦ chamfer

(g) 40◦ round (h) 40◦ tangent

Velocity [m·s−1]0 2 4 6

Figure A3. Velocity Contours for 30◦ and 40◦ misalignments.
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(a) 50◦ straight (b) 50◦ chamfer

(c) 50◦ round (d) 50◦ tangent

(e) 60◦ straight (f) 60◦ chamfer

(g) 60◦ round (h) 60◦ tangent

Velocity [m·s−1 ]0 2 4 6

Figure A4. Velocity Contours for 50◦ and 60◦ misalignments.
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(a) 70◦ straight (b) 70◦ chamfer

(c) 70◦ round (d) 70◦ tangent

(e) 80◦ straight (f) 80◦ chamfer

(g) 80◦ round (h) 80◦ tangent

Velocity [m·s−1]0 2 4 6

Figure A5. Velocity Contours for 70◦ and 80◦ misalignments.
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