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Abstract: The degradation of methylene blue (MB) using an upgraded dielectric barrier discharge
(DBD) plasma reactor was investigated in this paper. Air plasma was generated in the glass bead
packed bed in the reactor, which was propagated into MB solution through a microporous diffuser
plate. Microdischarge phenomenon can be observed on the interface of MB solution and the
diffuser plate, where plasma active species were generated. The effects of air flow rate, initial solution
concentration, initial solution pH, and initial solution conductivity on MB degradation were examined.
Experimental results indicated that the proposed plasma reactor was effective for MB degradation.
No obvious change in MB degradation efficiency was obtained for solution with various initial pH
and conductivities, which suggested the potential of the reactor in actual wastewater treatment. The
possible mechanism of the generation of plasma active species for MB degradation was proposed.
In addition, the total organic carbon removal and chemical oxidation demand removal after 30 min
treatment were 38.5% and 48.3%, which was higher than that obtained by ozone. The energy yield for
MB degradation reached up to 9.3 g/kWh. Finally, a possible degradation pathway of MB solution
was proposed.

Keywords: wastewater treatment; advanced oxidation process; dielectric barrier discharge; methylene
blue; mineralization; plasma

1. Introduction

Nowadays, the wastewater generated in the dyeing industry contains considerable amounts
of organic pollutants and causes severe environmental and health problems [1]. It is estimated
that over 7 × 105 tons of dyes are produced annually [2]. Dye molecules have complex and stable
structures due to the existence of auxochromes (water soluble bonding compound) and chromophores
(color giving compound) [3], which are toxic, recalcitrant, and difficult to be degraded by traditional
physical, chemical, and biological treatment [4]. Advanced oxidation processes (AOPs) based on
hydroxyl radicals generated in situ has attracted much attention [5,6]. The standard oxidation potential
of hydroxyl radicals is as high as 2.80 V, only next to fluorine (E0: 3.06 V). Numerous hazardous
compounds can be non-selectively oxidized and decomposed to CO2, H2O, and inorganic ions by
hydroxyl radicals. Typical AOPs include photocatalysis, Fenton process, ozone, hydrogen peroxide,
cavitation, and plasma technology. These processes can convert refractory organics into smaller
molecules, which can be adopted for the pretreatment of wastewater [5].

Compared to other AOPs, the plasma-based oxidation methods can simultaneously generate
diverse physical and chemical effects, such as electric field, UV light, shockwave, and reactive species
including •OH, •O, O3, H2O2, etc. [7]. All of these can be generated without additional chemical
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agents. As a promising plasma discharge mode, non-thermal plasma (NTP) technique can be utilized
to degrade pollutants in wastewater at atmospheric pressure and room temperature with lower input
energy than thermal plasma [8]. The typical NTP discharge in, and in contact with, liquids can be
divided into three parts, namely, direct discharge in liquids, discharge in gas phase over a liquid, and
discharge in multiphase environment such as bubbles or foams inside liquids [7].

For discharge in gas phase over a liquid, the gas breakdown occurs in the gap between liquid
and high voltage plate. Thus, plasma active species and high energy electrons are generated and then
transferred into liquids to react with organic compound [9,10]. The efficiency of NTP reactors is mainly
relevant to the efficiency of mass transfer between gas and liquid phases. A packed water jet bed
plasma reactor was put forward by Foster et al. [11] to maximize the plasma contact area with the water.
The parallel operation of multiple plasma jets or packed bed arrays of water streams are potential
solutions to the scale-up problem. Tichonovas et al. [4] and Li et al. [12] proposed a dielectric barrier
discharge (DBD) reactor and a gas–liquid plasma reactor, respectively. In their reactors, the gas was
sent into the discharge zone, with plasma generated and dispersed into liquid phase by porous ceramic
diffusers. This process can increase the efficiency of mass transfer of active species into liquid, resulting
in enhanced degradation efficiency. However, the active species diffused into liquid are mostly ozone
since the other active radicals dissipate during diffusion process due to their short lifetime [13]. Thus,
the mineralization of contaminants in wastewater is difficult to achieve. Therefore, it is necessary to
design an effective discharge reactor which can generate plasma species in situ for decomposition and
mineralization of wastewater.

Packed bed dielectric barrier discharge plasma reactors have attracted increasing attention due to
their high energy efficiency in air pollutant treatment [14]. The existence of the packing beads in the
discharge zone changes the electric field discharge distribution. Thus, enhanced electric field can be
produced at the contact points between beads, which can promote the generation of plasma active
species [15]. In addition, microdischarges in micropores were used to generate high energy electrons
and plasma active species with high density, without consuming high energy [16,17]. Hensel et al. [18]
studied the ozone generation by capillary microplasmas. Gary Eden et al. [19] invented microchannel
reactor devices for ozone generation using microdischarges. However, few studies on wastewater
treatment using microdischarges were reported. In this paper, an upgraded dielectric barrier discharge
(DBD) plasma reactor, combining a bead packed bed and porous diffuser plate, was put forward for the
treatment of dyeing wastewater. The bead packed bed was used to improve discharge homogenization
and enhance energy efficiency. The microporous diffuser plate was used as a gas diffuser to generate
bubbles in water to improve the mass transfer between the plasma active species and water sample.
More importantly, microdischarges can be generated in micropores in the porous diffuser plate, which
would result in more formation of plasma active species.

In this study, the performance of the present reactor in degradation of dyeing wastewater was
evaluated with methylene blue (MB) solution as the model wastewater. The effects of air flow rate, initial
solution concentration, initial solution pH, and initial solution conductivity on the MB degradation
efficiency were examined. Furthermore, comparison experiments of wastewater treatment by the
present reactor and ozone alone were conducted. The addition of t-butanol as the radical scavenger
was used to further verify the in-situ generation of plasma active species. Moreover, chemical oxygen
demand (COD) and total organic carbon (TOC) were determined to investigate the mineralization of
MB solution. Finally, the possible degradation pathway was put forward.

2. Materials and Methods

2.1. Materials

Methylene blue (98 wt %), potassium iodide (KI, 99 wt %), potassium chloride (KCl, 99.5 wt %),
sodium thiosulfate (Na2S2O3, 99 wt %), sodium hydroxide (NaOH, 96 wt %), sulfuric acid (H2SO4,
95–98 wt %), hydrochloric acid (HCl, 36–38 wt %), and t-Butanol (99%) were purchased from the related
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companies. The purity of methanol and dichloromethane used for liquid chromatography was HPLC
grade (99.9 wt %). Deionized water was used for solution preparation.

2.2. Experimental Setup

Figure 1 shows the DBD plasma reactor comprising a glass tank (inner diameter: 60 mm; height:
100 mm), SiO2 based porous diffuser plate (average pore size: 15–30 µm; diameter: 45 mm; thickness:
5 mm), and stainless steel plates (diameter: 30 mm; height: 3 mm) as ground and high voltage
electrodes. High frequency power (CTP-2000K, Nanjing Suman Electronics Co., Ltd., Nanjing, China)
was used to supply high voltage to the DBD plasma reactor. The output frequency of the power
generator can be adjusted from 1 to 100 kHz. The output voltage can be adjusted up to 30 kV using
alternating voltage. The typical frequency, voltage, and current applied to the plasma reactor were
9.7 kHz, 6–8 kV, and about 30–50 mA, respectively. The high voltage electrode was surrounded by
45 glass beads (diameter: 4 mm) and placed below the porous diffuser plate. The ground electrode
was immersed in liquid. The distance from high voltage electrode to porous diffuser plate was 4 mm.
The indoor air was fed to the DBD plasma reactor from the bottom by an air pump, and ozone formed
in the bead packed bed region was dispersed into wastewater through the microporous diffuser plate.
In addition, the plasma active species were generated by microdischarges in micropores on the porous
diffuser plate and directly reacted with contaminants in wastewater.
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Figure 1. Diagram of the experimental apparatus.

Batch experiments were carried out to explore the influence of different factors (air flow rate,
initial solution concentration, initial solution pH, and initial solution conductivity) on the efficiency
of MB degradation using plasma reactor. Initial solution pH was modified by sodium hydroxide
and hydrochloric acid. Initial solution conductivity was adjusted by potassium chloride. For each
batch experiment, the total volume of the system was 100 mL. In addition, MB degradation by plasma
treatment was compared with that by ozone treatment. Ozone was supplied by an ozone generator,
with the concentration consistent with that under the plasma treatment condition. In addition, to
verify the generation of hydroxyl radical, t-butanol as the radical scavenger was introduced into the
MB wastewater followed by plasma or ozone treatment.
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Furthermore, MB solution was treated by plasma for 10 min, followed by being extracted with
10 mL dichloromethane for degradation products analysis. The mixture was ultrasonically treated for
30 min, and the organic layer was then analyzed.

2.3. Analysis Methods

Samples were taken during the same intervals. The MB concentration was measured using
Agilent Cary 60 UV-Visible spectrophotometer (Santa Clara, CA, USA). The characteristic absorption
wavelength of MB at 664 nm was adopted. The MB degradation efficiency η is defined as follows:

η(%) =
C0 −Ct

C0
× 100, (1)

where C0 is the initial MB concentration, and Ct is the concentration at t time. The pH of the solution
was measured by a pH meter (PHS-3E, INESA Scientific Instrument Co., Ltd., Shanghai, China). The
conductivity of the solution was measured by a conductivity meter (DDS-307A, INESA Scientific
Instrument Co., Ltd., Shanghai, China).

The concentration of outlet ozone was determined by iodometric method. Ozone was continuously
generated in the plasma reactor and introduced into aqueous solution. After enough treatment time,
the concentration of dissolved ozone in liquid phase can reach equilibrium with that in gas phase. Thus,
the accumulation of dissolved ozone in aqueous solution was negligible and hence the generation rate
of ozone was considered to be equal with that measured at the outlet [4].

COD was analyzed by 5B-6C (V8) multi-parameter water quality analyzer (Lianhua Technology
Co., Ltd., Beijing, China). TOC was measured by TOC-VCPN analyzer (Shimadzu, Kyoto, Japan).

A high voltage probe (P6015A) and a current probe (TCP-0030A, Tektronix, Shanghai, China)
were used to measure the voltage (U) and the current (I) applied to the DBD reactor, respectively. The
time response and bandwidth of the current probe and voltage probe were 7 ns, 120 MHz and 4 ns,
75 MHz, respectively. A digital oscilloscope (DPO 3052, Tektronix, Shanghai, China) was used to
record the signal detected by the two probes. The discharge power for the reactor was calculated by
the following equation:

P = f×

T∫
0

U(t)·I(t)dt. (2)

The energy yield for MB degradation can be calculated by the following equation:

Y(g/kWh) =
C(g/L) ×V(L) × 1

100 × η(%)

P(kW) × t(h)
, (3)

where C and V represent initial concentration and volume of MB solution (100 mL), respectively. η is
the degradation efficiency at t time, and P is input power.

Liquid chromatography-mass spectrometry (LC-MS) (Waters 2695-ThermoFisher LCQTM Deca
XP plus, Waltham, MA, USA) was used to analyze the degradation products with plasma treatment.
The positive ion mode was adopted. The mobile phase was mixture of methanol and ultrapure water
(9:1) at a flow rate of 0.5 mL/min. Degradation products with volume of 20 µL was injected to system
with ESI source. The change in the bond structure of MB was determined on a Bruker Tensor II Fourier
Transform infrared spectroscopy (FT-IR), with a resolution of 4 cm−1 and scanning time of 64. Each
experiment was repeated at least three times.
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3. Results and Discussion

3.1. MB Degradation Using the DBD Plasma Reactor

3.1.1. Effect of Air Flow Rate

The degradation process is largely influenced by the number of plasma active species. Since
ozone exhibits a more steady state and can survive for longer, it can be used as a reflection of the
number of plasma active species [10]. Hence, the effect of air flow rate on ozone generation rate was
explored. As shown in Figure 2, more ozone was detected with the increase in air flow rate, which
was because more high energy electrons were generated with increasing air flow rate and hence the
collision probability between electrons and gas molecules was promoted. However, no significant
change in ozone generation rate was found when the air flow rate was higher than 1.5 L/min. It was
probably due to the limited energy provided to the reactor for active species generation and more
ozone decomposition at higher concentration [20].
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The effect of air flow rate on MB degradation efficiency is shown in Figure 3. The MB degradation
was favored by higher air flow rate, which was mainly due to the increase in active species generation.
The production of plasma active species was almost unchanged at the air flow rate of higher than 1.5
L/min, resulting in nearly the same tendency of MB degradation efficiency. On the other hand, gas
bubbled into the liquid through the microporous diffuser plate. Thus, lower air flow rate resulted in
smaller bubble size and larger specific mass transfer area. However, the total mass transfer area was
still small due to a relatively small number of bubbles, leading to lower MB degradation efficiency.
The total mass transfer area was increased with the increase in flow rate, yet the residence time of
the bubbles in the liquid was reduced. Thus, the MB degradation efficiency firstly increased with
increasing air flow rate and then remained almost unchanged. Overall, the air flow rate of 1.5 L/min
was used in the following experiments.

3.1.2. Effect of Initial MB Concentration

The effect of initial MB concentration (50, 75, 100, 150, 200 ppm) on degradation efficiency is
displayed in Figure 4. The MB degradation efficiency at higher initial MB concentration was lower
than that at lower initial MB concentration for the first 15 min. The main reason lies in the fact that for
the constant energy input, the amount of plasma active species formed in the discharge process was
maintained at a specific concentration level. Thus, the degradation efficiency would be reduced at
higher pollutant concentration. It can be also noted that the MB degradation efficiency reached nearly
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100% for three initial MB concentrations (50, 75, and 100 ppm) during adequate treatment time. It
proved that the proposed plasma reactor is effective for MB degradation.
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3.1.3. Effect of Initial Solution pH

Since actual dyeing wastewater ranges from acidic to alkaline conditions [21], it is necessary to
investigate the effect of initial solution pH on MB degradation efficiency. Figure 5a shows the tendency
of pH variation under different initial solution pH. The pH values of all the MB solutions gradually
reached a certain level at the range of acidic condition. It was probably due to several special acidic
compounds such as nitrous acid and nitric acid, which were originated from nitrogen in air during
the discharge process as given in Equations (4)–(8) [10,22,23]. In addition, carboxylic intermediates
which were produced in the MB degradation process can also contribute to a certain pH variation
in solution. The reason was that more hydroxyl radicals were produced in acidic atmosphere and
enhanced decomposition of O3 into hydroxyl radicals in the presence of OH− [24]. However, the
ultimate efficiency reached up to about 100% for all solutions after 30 min treatment. It suggested
application potential of the reactor in the treatment of dyeing wastewater with various initial pH.
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O2 + e− → 2O·+ e−, (4)

N2 + e− → 2N·+ e−, (5)

N·+ O· → NO, (6)

NO + O· → NO2, (7)

NO2 + H2O→ NO−3 + 2H+. (8)

3.1.4. Effect of Initial Solution Conductivity

Figure 6 shows the change in conductivity during the MB degradation process and the MB
degradation efficiency under different initial solution conductivities. Continuous increase in solution
conductivity was observed, which was mainly due to the formation of acidic substances and degradation
intermediates by plasma. The conductivity variation within the 30 min discharge was increased
from 202 to 395.4 µS/cm with the decrease in initial solution conductivity from 1213 to 40.1 µS/cm.
It may be attributed to conversion of soluble substances to insoluble ones at higher initial solution
conductivity, which slightly reduced the conductivity of the solution [4]. However, almost complete
MB degradation was achieved after 30 min treatment for various initial solution conductivities. It
indicated that the proposed reactor has the potential for the treatment of dyeing wastewater with a
wide range of initial conductivities.
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efficiency (air flow rate = 1.5 L/min, MB concentration = 100 ppm, initial solution pH = 6.68, input
power = 8.6 W).
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3.2. Comparison of Ozone and Plasma on MB Degradation

MB degradation by plasma treatment was compared with that by ozone treatment. Ozone was
supplied by an ozone generator, with the concentration consistent with that under plasma treatment
condition. As shown in Figure 7, the degradation efficiency under plasma treatment condition was
higher than that under ozone treatment condition for first 15 min treatment. It was mainly attributed
to the free radicals generated by discharge, such as •OH, •O, •N, and •H, which enhanced the MB
degradation. Since the lifetime of these free radicals is very short (1 ns–1 µs) [13], the radicals can only
be produced in situ through microdischarges in micropores. Nearly complete MB degradation was
also observed by ozone treatment after 30 min, which was mainly due to the excess ozone used. As
shown in Table 1, the energy efficiency was 9.3 g/kWh under plasma treatment, which was significantly
higher than that obtained by other researchers.

Water 2019, 11, x FOR PEER REVIEW 9 of 14 

 

0 5 10 15 20 25 30
0

20

40

60

80

100

 

 

M
B 

de
gr

ad
at

io
n 

ef
fic

ie
nc

y 
(%

)

t (min)

 Plasma 1.5 L/min
 Plasma 1.5 L/min + t-BuOH
 Ozone
 Ozone + t-BuOH
 Plasma 0.5 L/min
 Plasma 0.5 L/min + t-BuOH

 
Figure 7. Comparison of ozone and in-situ plasma on MB degradation and the effect of t-butanol (MB 
concentration = 100 ppm, initial solution pH = 6.68, initial solution conductivity = 40.1 μS/cm, input 
power = 8.6 W). 

Table 1. Comparison of dye degradation in different studies. 

Used Dye 
Type of 
Plasma 
Reactor 

Conditions 
Energy 
Yield 

(g/kWh) 

COD 
Removal 

(%) 

TOC 
Removal 

(%) 
Refs. 

Methylene 
blue 

DBD 
V0: 0.1 L, C0: 100 ppm,  

t: 30 min, V: 8 kV,  
F: 9.7 kHz, Air: 1.5 L/min 

9.3 48.3 38.5 
This 

study 

Methylene 
blue 

DBD 
V0: 0.05 L, C0: 100 ppm,  

t: 40 min, V: 6 kV, F: 50 Hz,  
O2: 0.06 L/min 

0.14 67.1 – [27] 

Methylene 
blue 

Pulsed 
corona 

discharge 

V0: 0.02 L, C0: 13.25 ppm,  
t: 20 min, V: 40 kV,  

F: 60 Hz, O2: 0.01 L/min 
0.341 – – [28] 

Methyl 
orange 

Non-
equilibrium 

plasma 

V0: 0.1 L, C0: 100 ppm,  
t: 15 min, V: 46 kV,  

F: 100 Hz, Air: 1.6 L/min 
3.6 45 – [29] 

V0: liquid volume; C0: initial concentration; t: treatment time; V: input voltage; F: input frequency. 

3.3. Possible Mechanism of Generation of Plasma Active Species  

Due to the short lifetime of free radicals, their in-situ generation is necessary to make full use of 
these radicals. The possible mechanism of generation of plasma active species for MB degradation 
was demonstrated in Figure 8. High energy electrons generated by discharge moved with high air 
flow to the gas–liquid interface through the micropores in the diffuser plate. At the interface, gas film 
would be formed as the air bubbled into liquid. Various plasma active species were produced on the 
gas film by the collision between high energy electrons and N2, O2, and H2O molecules. These active 
species reacted with and degraded MB molecules into smaller molecules. The continuous renewal of 
gas film would significantly enhance the generation of active species and hence greatly improve the 
MB degradation efficiency.  

Figure 7. Comparison of ozone and in-situ plasma on MB degradation and the effect of t-butanol (MB
concentration = 100 ppm, initial solution pH = 6.68, initial solution conductivity = 40.1 µS/cm, input
power = 8.6 W).

t-Butanol, acting as a well-known radical scavenger, can react with a wide range of radicals,
especially hydroxyl radical. Meanwhile, its reaction with ozone can be neglected [25]. In order to
verify the in-situ generation of free radicals, the excess t-butanol (100 ppm) was injected to the MB
solution, which was then subjected to ozone and plasma treatment. As shown in Figure 7, the addition
of t-butanol largely reduced the MB degradation rate and efficiency under plasma treatment condition
at 1.5 L/min. However, no obvious change in MB degradation efficiency was observed at 0.5 L/min.
By contrast, the degradation efficiency after 30 min treatment slightly increased from 96.9% to 99.3%
under ozone condition. It was mainly because t-butanol reduced the surface tension and viscosity
of the aqueous solution, resulting in smaller gas bubbles. Thus, the mass transfer between ozone
and wastewater was enhanced, which increased the MB degradation efficiency [26]. Notably, the
degradation efficiency under plasma treatment condition with t-butanol addition was even lower
than that under ozone condition. It was probably because t-butanol reacted with free radicals, which
caused more energy to be distributed into the radical generation and hence less energy was converted
for the production of ozone. Most radicals were then eliminated by t-butanol and thus less ozone
resulted in lower MB degradation efficiency. The ozone generation rate with the presence of t-butanol
was measured to be 0.85 mg/min, which was indeed lower than that without t-butanol addition
(1.07 mg/min).
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Table 1. Comparison of dye degradation in different studies.

Used Dye Type of Plasma
Reactor Conditions Energy Yield

(g/kWh)

COD
Removal

(%)

TOC
Removal

(%)
Refs.

Methylene
blue DBD

V0: 0.1 L, C0: 100 ppm,
t: 30 min, V: 8 kV,

F: 9.7 kHz, Air: 1.5 L/min
9.3 48.3 38.5 This study

Methylene
blue DBD

V0: 0.05 L, C0: 100 ppm,
t: 40 min, V: 6 kV,

F: 50 Hz, O2: 0.06 L/min
0.14 67.1 – [27]

Methylene
blue

Pulsed corona
discharge

V0: 0.02 L, C0: 13.25 ppm,
t: 20 min, V: 40 kV,

F: 60 Hz, O2: 0.01 L/min
0.341 – – [28]

Methyl
orange

Non-equilibrium
plasma

V0: 0.1 L, C0: 100 ppm,
t: 15 min, V: 46 kV,

F: 100 Hz, Air: 1.6 L/min
3.6 45 – [29]

V0: liquid volume; C0: initial concentration; t: treatment time; V: input voltage; F: input frequency.

3.3. Possible Mechanism of Generation of Plasma Active Species

Due to the short lifetime of free radicals, their in-situ generation is necessary to make full use of
these radicals. The possible mechanism of generation of plasma active species for MB degradation
was demonstrated in Figure 8. High energy electrons generated by discharge moved with high air
flow to the gas–liquid interface through the micropores in the diffuser plate. At the interface, gas film
would be formed as the air bubbled into liquid. Various plasma active species were produced on the
gas film by the collision between high energy electrons and N2, O2, and H2O molecules. These active
species reacted with and degraded MB molecules into smaller molecules. The continuous renewal of
gas film would significantly enhance the generation of active species and hence greatly improve the
MB degradation efficiency.Water 2019, 11, x FOR PEER REVIEW 10 of 14 
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3.4. Mineralization of MB

The mineralization of MB refers to the complete degradation of MB molecules into CO2 and H2O,
with TOC as an index of mineralization degree. The TOC removal was 38.5% after 30 min plasma
treatment. The result was larger than that obtained by Reddy et al. [23] under similar conditions.
Meanwhile, the COD removal reached 48.3% after 30 min plasma treatment. By comparison, the TOC
and COD removal after 30 min ozone treatment were 26.6% and 34.2%, respectively. It indicated that
the proposed plasma reactor is promising in mineralization of pollutants.

The sample was pre-filtered prior to TOC analysis. It is interesting to find that the TOC removal
after 10 and 20 min plasma treatment was 61.2% and 50.2%, respectively. The reason can be attributed
to the redissolution of insoluble degradation solids in suspension. The sample solutions at 10 and
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20 min contained some insoluble solids which settled from the liquid. These insoluble solids were
mainly composed of intermediates formed in MB degradation. Thus, the TOC of supernatant liquid
was reduced. In addition, the solids were gradually degraded into small soluble compounds which
contributed to the increase in TOC of supernatant liquid. The redissolution of insoluble degradation
solids increased with treatment time, resulting in decreasing TOC removal. It suggested that the
solids can be separated from the solution before their further degradation, which would increase the
treatment efficiency and save time and energy.

3.5. Degradation Process

Figure 9 shows the visible absorption spectra of MB solution during the plasma treatment process.
The absorption peak at 664 nm obviously decreased with increasing exposure time, indicating the dye
molecules were degraded by plasma treatment. Almost all the MB molecules were decomposed after
30 min of treatment.
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The vibrational spectra of MB molecules at several stages during the process of degradation were
investigated by FT-IR. As shown in Figure 10, the bands at c.a. 3423 cm−1 were assigned to stretching
vibrations of OH group included in a hydrogen bond, while 1608 cm−1, 1383 cm−1, and 1127 cm−1

corresponded to the C=C, NO3
−, and C–O group, respectively [10,30]. The existence of NO3

− in treated
solution was attributed to nitric acid and nitrous acid formed from nitrogen in air during the discharge
process. In addition, intermediates containing C–O were generated after plasma treatment, which was
mainly due to reactive oxygen species attack.

Furthermore, LC-MS was used to explore the degradation intermediates. High energy electron,
ozone and hydroxyl radical were the main species for the intermediate generation. Similar results
were found by Wang et al. [27]. A possible pathway was put forward, as displayed in Figure 11.
The peak at m/z of 284 confirmed the existence of MB molecules. With the presence of high-energy
electrons, MB molecules were converted into fragments with peaks at m/z of 270, 256, 228, which
was attributed to demethylation. In addition, hydroxyl radicals were widely acknowledged as the
main species to degrade MB molecules. The organics with m/z of 292 and 343 were determined by
LCMS, which was due to hydroxylation reaction [31]. In addition, the bond dissociation energy of
CH3–N(CH3)C6H5 and C6H5–S–C6H5 was calculated as only 70.8 and 76 kcal/mol, respectively, which
caused the corresponding bonds to be broken more easily [10]. Thus, the compounds with peaks at m/z
of 273, 262, and 247 were observed. Possible ring breaking reactions with hydroxyl radicals and ozone
were proposed, which could lead to the formation of compounds with peaks at m/z of 170, 135, and 125.
Finally, the intermediates would be decomposed and mineralized into CO2, H2O, SO4

2– and NO3
–.
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4. Conclusions

An upgraded DBD plasma reactor was reported for the treatment of dyeing wastewater with
methylene blue as the model compound. The reactor combined with the bead packed bed and
microporous diffuser plate can enhance MB degradation efficiency and mineralization. The degradation
efficiency, TOC removal, and COD removal after 30 min treatment of 100 ppm MB solution in 1.5 L/min
air flow were 97.5%, 38.5%, and 48.3%, respectively. The energy yield for MB degradation by plasma
reached up to 9.3 g/kWh. The comparison experiments indicated the plasma treatment was preferable
to ozone treatment. In addition, the initial solution pH and conductivity had little effect on MB
degradation, which suggested the application potential of the proposed reactor in treatment of various
dyeing wastewater. The degradation mechanism of MB showed that the generation of intermediates
was attributed to high energy electron, ozone, and hydroxyl radical.
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