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Abstract: The intensification of the hydrological cycle because of global warming raises concerns
about future floods and their impact on large cities where exposure to these events has also increased.
The development of adequate adaptation solutions such as early warning systems is crucial. Here,
we used deep learning (DL) for weather-runoff forecasting in región Metropolitana of Chile, a large
urban area in a valley at the foot of the Andes Mountains, with more than 7 million inhabitants.
The final goal of this research is to develop an effective forecasting system to provide timely
information and support in real-time decision making. For this purpose, we implemented a coupled
model of a near-future global meteorological forecast with a short-range runoff forecasting system.
Starting from a traditional hydrological conceptual model, we defined the hydro-meteorological
and geomorphological variables that were used in the data-driven weather-runoff forecast models.
The meteorological variables were obtained through statistical scaling of the Global Forecast System
(GFS), thus enabling near-future prediction, and two data-driven approaches were implemented for
predicting the entire hourly flow time-series in the near future (3 days), a simple Artificial Neural
Networks (ANN) and a Deep Learning (DL) approach based on Long-Short Term Memory (LSTM)
cells. We show that the coupling between meteorological forecasts and data-driven weather-runoff

forecast models are able to satisfy two basic requirements that any early warning system should
have: The forecast should be given in advance, and it should be accurate and reliable. In this context,
DL significantly improves runoff forecast when compared with a traditional data-driven approach
such as ANN, being accurate in predicting time-evolution of output variables, with an error of
5% for DL, measured in terms of the root mean square error (RMSE) for predicting the peak flow,
compared to 15.5% error for ANN, which is adequate to warn communities at risk and initiate disaster
response operations.

Keywords: deep learning; weather-runoff forecasting model; hydrological extremes; water
adaptation systems

1. Introduction

In the last decade, a series of unprecedented extreme hydrological events have occurred, some
of which have been attributed to climate change [1]. In fact, global projections indicate a positive
correlation between global warming and the risk of extreme rainfall and floods [2]. This intensification
of the hydrological cycle raises growing concerns about future floods and their impact on large cities
where exposure has also increased [3]. Adequate adaptation solutions are required to increase resilience
and reduce vulnerability of large urban centers. In this sense, the development of early warning
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technologies is crucial because it allows the localization of resources, the warning of communities at
risk, and the initiation of disaster response operations [4].

The great difficulty in developing forecasting tools and early warning systems in the field of
hydrology is that the physical mechanisms involved in the runoff processes are non-linear and extremely
difficult to model, so that runoff forecasting models have a high uncertainty [5]. Furthermore, an early
warning system should be able to give accurate warning for extreme events, but also should be able
to give accurate forecasts for small flows to avoid false positive warnings that eventually reduce
the reliability of the system [6]. Given that the early warning systems give more importance to the
simplicity and robustness of the forecasting model rather than an accurate description of the various
internal sub-processes, it is certainly worth considering hybrid models that combine physical-based
models with data-driven approaches for improving real-time runoff forecasts [7–10]. Another difficulty
in predicting hydrological extremes is that to get ahead of an extreme event requires the implementation
of weather forecasting models coupled to hydrological models. The development of this type of
coupled systems has not had much development, mainly because the global climate models (GCMs)
have had very coarse spatial resolution; so that, they did not have the ability to forecast extreme events
with the degree of precision that is required in the scale of hydrological systems [11]. However, today
there are high resolution global weather forecast models, which in conjunction with novel downscaling
techniques, allows the development of model-generated weather input data for hydrological forecasting
models [12,13].

The development of Machine Learning (ML) and Deep Learning (DL) techniques, on the other
hand, have recently boosted the use of data-driven approaches as a complement to traditional methods
for the prediction and forecasting of hydrological variables, in which Artificial Neural Networks (ANN)
are the most commonly used technique for this task [8,14–17]. Furthermore, an improvement of this
approach has been achieved with neuro-fuzzy systems, which combines the human-like reasoning of a
fuzzy system with the learning capability of neural networks [18]. This hybrid scheme has shown
good results for rainfall-runoff modeling when comparing with the ANN approach alone [19,20].
Nevertheless, approaches such as ANN are not exactly adequate for the analysis of sequential data.
To address this challenge, various methods have been developed to keep a certain memory of the
previous state of the system, thus allowing the prediction to use not only the present information but
also the previous state. One of the most successful techniques is the Long-Short Term Memory (LSTM)
cells, which are based on Recurrent Neural Networks (RNN). This type of model has been widely used
to achieve state-of-the-art results on sequence modeling tasks such as handwriting recognition [21,22],
speech recognition [23], time series prediction [24–26] and robot control [27], among others. In this sense,
the new learning algorithms and architectures that are currently being developed for neural networks
allow the acceleration of the development of hydrological forecasting and early warning tools [28].

There are not many applications of DL in the field of hydrology [29], among which DL is included
for daily flows in a seasonal time-frame only based on flow observations [30], and rainfall-runoff

models that predict hourly flow only based on observed precipitation [25]. Furthermore, a comparison
between a physical-based model with four recurrent neural networks is presented in [31], showing
that data-driven models perform better. For the case of hydrological extremes, LSTM networks have
been used in rainfall-runoff models to predict daily flow in several basins in the USA [32], showing
an improvement in predictions with LSTM networks compared to a traditional hydrological model;
however, other studies argued that these results could have been improved by using the specific
hydro-meteorological and geomorphological variables of each basin [33]. Furthermore, hydrological
applications of DL have been usually developed based on real time field observations of rainfall and
flow (see [33] and references therein), thus limiting the runoff forecast to the timescale defined by the
catchment concentration time (e.g., [6]). One alternative to increase the runoff forecast timescale is to
link the runoff forecasts with near-future global meteorological forecasts that are capable of predicting
rainfall, air temperature, and other input variables in a longer timescale. To our understanding, this
link has not been previously explored.
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In this article, we used deep learning (DL) for weather-runoff forecasting in región Metropolitana
of Chile, a large urban area in a valley at the foot of the Andes Mountains, with more than seven
million inhabitants. The final goal of this research is to develop an effective forecasting system to
provide timely information and support in real-time decision making, as an adaptation to hydrological
extremes in a warming climate. For this purpose, we implemented a coupled model of near-future
global meteorological forecast with short-range runoff forecasting systems based on DL. Starting from
a traditional hydrological model, we defined the conceptual model and the hydro-meteorological
variables that were used in the training of the data-driven models. The meteorological variables were
obtained through statistical scaling of the Global Forecast System (GFS). Two data-driven models were
implemented for runoff forecasts, a simple Artificial Neural Networks (ANN) and a Deep Learning
(DL) approach based on Long-Short Term Memory (LSTM) cells. With these two approaches, we
predicted at once the entire hourly flow time-series for 1 day in the past and 3 days in the future with
no need for the entire record of past flow measurements, just the flow at t = 0. This was a constraint
required to be considered because of it is not possible to rely on always having a continuum time series
of real-time observations, so we decided to minimize the real-time information needed for forecasting
the flow. Finally, the same data was used in both data-driven techniques, in which the data were
separated into training, validating and testing data sets, and the model skills were compared through
different metrics.

As far as we know, the novelties of this contribution that have not been previously published are:
(i) We present an approach based on a DL model that is coupled a near-future global meteorological
forecast with a short-range runoff forecasting system. (ii) We use the complete set of hydro-meteorological
and geomorphological variables of a complex hydrological model for training the data-driven models.
(iii) Our approach is capable of predicting an output time-series with a finer temporal resolution than
the input time-series. This temporal downscaling allows us to precisely locate the time at which the
peak flow will occur. (iv) Finally, our approach predicts at once the entire hourly flow time-series for
1 day in the past and 3 days in the future with no need of the entire record of past flow measurements,
just the flow at t = 0.

This paper is organized as follows: In the next section we describe the two algorithms used
in this article (ANN and DL), present the study site composed of nine flow stations, and detail the
methodology that couples meteorological forecast with data-driven weather-runoff forecast models.
Two alternatives for the data-driven weather-forecast model are described that aim to predict the
detailed hourly flow time-series for the following three days—ANN and DL approaches. In the results
section we present the results in terms of the model’s performance in predicting the flow conditions
for the following 3 days, in which we compare the performance of the two data-driven approaches.
Finally, in the discussion and conclusion sections, we highlight and summarize the key features and
limitations of the proposed methodology.

2. Materials and Methods

2.1. Data-Driven Techniques

We used Artificial Neural Networks (ANN) [34] and a Deep Learning (DL) approach based on
Long-Short Term Memory (LSTM) cells [35], which are described next.

2.1.1. Artificial Neural Networks

As illustrated in Figure 1, an ANN, also known as a multilayer perceptron, consists of an arrangement
of input neurons known as the input layer, an arrangement of output neurons known as the output
layer and a number of hidden layers. Each neuron receives a weighted sum from the neurons in the
previous layer and gives an input to every neuron of the next layer. The activation of each neuron is
governed by a function known as the transfer function.
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Figure 1. Scheme of an Artificial Neural Network.

These networks, are also known as feedforward neural networks because the information is
transmitted in only one direction, forward from the input layer to the output layer. Therefore, there are
no backward connections between layers (cycles or loops).

As an example, the outputs of a three-layer ANN are given by

yi = f

∑
j

wi j f

∑
k

v jkxk + bvk

+ bwi

 (1)

where x = {x1, x2, . . . , xn} and y =
{
y1, y2, . . . , ym

}
are the input and output vectors, w and v are the

interconnection weights, b represents the bias (or threshold) terms and f (·) is the transfer function,
usually a sigmoid function. The training problem consists of finding the weights and biases that will
minimize the mean square error between the network prediction and the output targets.

2.1.2. Deep Learning Based on LSTM Neural Networks

Recurrent Neural Networks (RNNs) are one of the most powerful type of Neural Networks,
capable of processing sequences of arbitrary input patterns [36]. RNNs, however, suffer from the
vanishing gradient problem, which makes it difficult to perform backpropagation efficiently during
training, causing great computational effort. To overcome this, alternative structures have been
proposed, such as Gated Recurrent Units and the LSTM cells.

Figure 2 illustrates the flow of a time series x1, x2, . . . , xn through an unrolled LSTM layer. In this
diagram, xi corresponds to a vector of input features, hi denote the output vectors and ci denote the
cell states, all of them evaluated at the i-th time step.

The classical LSTM block structure shown in Figure 2b consists of different processes called
gates [37]. These gates compute the desired output from a new input data at a time t, along with
elements obtained from the previous time step t− 1.

Equations (2)–(7) describe the processes in an LSTM block. Equations (2)–(4) represent the input,
output and forget gate. These gates compute a linear combination of the new input data xt with the
output of the previous time step ht−1, which are evaluated using a sigmoid activation function. On the
other hand, gate gt generates candidates that will become part of the new cell state. Equation (6)
corresponds to the cell state ct, which represents a memory capsule containing information of all
previous states. Finally, the output ht is computed by the element wise multiplication of the output
gate with the activation of the cell state (Equation (7)). It should be noted that gates it, ot, ft and gt
represent independent neural networks, which possess their own weights and biases.
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it = σ(Wi xt + Ui ht−1 + bi) (2)

ot = σ(Wo xt + Uo ht−1 + b0) (3)

ft = σ
(
W f xt + U f ht−1 + b f

)
(4)

gt = tanh(Wc xt + Uc ht−1 + bc) (5)

ct = ft × ct−1 + it × gt (6)

ht = ot × tanh(ct) (7)
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2.2. Hydrological Description of the Study Area

Región Metropolitana (33.5◦ S, 70.8◦ W, 500 m a.s.l.) is located in central Chile, in the Maipo river
watershed, at the foot of the Andes Mountain that have an average height of 3000 m above sea level
(m a.s.l.) and maximum height of 6500 m a.s.l. Two rivers coming from the Andes Mountains pass
across region Metropolitana: Maipo river in the south, and Mapocho river in the north (Figure 3). These
rivers come from the high mountains range, above 3500 m a.s.l, in an area covered by discontinuous
permafrost, snow and glaciers. In this area, glaciers occupy near 8% of the total surface (Table 1),
and it was estimated that nearly 10% of the rest of the detrital surface is occupied by debris-covered
glaciers [38].

During the colder months in the Austral winter, disturbances of the polar front, which usually affect
the southern part of Chile, move northwards and generate sporadic eruptions of precipitation systems
in central Chile. Consequently, rainfall is recorded occasionally and they show great irregularity, with
an annual average of 350 mm in the valley and increasing with height, and snow accumulation above
1500 m a.s.l in the winter months [39]. Nevertheless, convective rainfall in high altitude can also be
expected during summer time under warm conditions with elevated 0 ◦C isotherm. On the other hand,
the austral summer dominance of the subtropical anticyclone results in hot and dry summers, thus
resulting in a semi-arid climate [39].
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As a consequence, the Mapocho and Maipo rivers have a complex hydrological regime, which
can be classified as a pluvio-nival regime during the autumn–winter seasons and a nivo-glacial regime
during the spring–summer seasons. In this context, air temperature and humidity are as important as
precipitation to determine the river flows, as they define the contributing area and the rate at which
snow and glaciers melt.
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Table 1. Summary of morphological features and available information in the studied watershed.

River ID Flow Station Name Area
(km2)

Zmin
(m a.s.l)

Zmax
(m a.s.l)

Zavg
(m a.s.l)

Slope
(%)

Stream
Length (km)

Glacier
Area (km2)

% Glacier in
Watershed First Data

Maipo
River

1 Maipo en El Manzano 4839 882 6550 3180 63.8 118.7 370.7 7.7 March 2004
2 Río Volcan en Queltehues 523 1353 5967 3364 64.6 41.3 63.8 12.2 March 2014
3 Río Olivares antes Junta Río Colorado 783 1525 6500 3364 68.7 48.7 94.1 12.0 March 2013
4 Río Colorado antes Junta Río Olivares 543 2369 6047 3689 67.6 29.5 81.2 15.0 August 2008

Mapocho
River

5 Mapocho Los Almendros 637 968 5417 2778 56.8 39.5 20.1 3.2 April 2016
6 Estero Arrayán Montosa 217 1227 3829 2509 53.1 24.8 0.3 0.1 March 2004
7 Río Molina antes Junta San Francisco 300 1335 5417 2647 50.9 25.5 5.3 1.8 January 2012
8 Estero Yerba Loca antes Junta San Francisco’ 109 1630 5350 3416 68.2 18.1 8.9 8.1 January 2012
9 Río San Francisco antes Junta Estero Yerba Loca 136 1586 4853 3126 60.6 23.0 6.0 4.4 January 2012
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2.3. Coupled Model of a Meteorological Forecast with a Short-Range Runoff Forecast

We implemented a coupled model of a near-future global meteorological forecast with short-range
runoff forecasting systems that we call data-driven weather-runoff forecast models, which were
designed to forecast the flow in the nine different flow stations shown in Figure 3, for which we used as
an input data the Global Forecast System (GFS) provided by the National Centers for Environmental
Prediction (NCEP) for the following 3 days. The NCEP model was used because it has had a
meteorological analysis since March 2004, with a meteorological forecast that has been run under the
same mesh grid and with the same parametrizations, thus allowing the use of historical meteorological
forecasts for training, validating and testing data-driven runoff forecast models, as explained below.

The flowchart of the weather-runoff forecast models is shown in Figure 4, in which three different
groups of input data were identified to train the data-driven weather-runoff forecast models: watershed
morphology, meteorology, and initial condition. The data-driven runoff model was designed to predict
entire hourly flow time-series for the following 3 days, based on two different data-driven approaches:
ANN and DL models. Below is described the input data and the structure of the different runoff models.
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2.3.1. Input Data

In Section 2.2, the hydrological description of the study area has shown that the Mapocho and
Maipo rivers regime can be classified as a pluvio-nival regime during the autumn–winter seasons
and a nivo-glacial regime during the spring–summer seasons. As a consequence, the variables for
the weather-runoff model includes the standard variables in a rainfall-runoff model (precipitation,
catchment area, stream length, slope), as well as air temperature and humidity as they define the
contributing area and the rate at which snow and glaciers melt. Considering this, three different group
of input information were used (Figure 4):
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• Watershed geomorphology: The geomorphological characteristics were calculated from NASA
Shuttle Radar Topography Mission (SRTM) version 3.0 global 1 arc second. For this aim,
the watershed associated to each one of the flow stations was defined, and the information was
summarized in one single table that list as a function of the elevation, the following information:
Watershed area (km2); length of the mainstream (km); maximum, minimum and average elevation
of the watershed; and the average slope. This table is read at each time to create time series of the
geomorphological information as a function of the 0 ◦C isotherm elevation that splits the watershed
into solid and liquid precipitation areas. Besides the watershed area, the time-series of the length
of the mainstream, and the average slope and maximum elevation of the watershed were used as
inputs of the data-driven weather-runoff models, as they are associated with the computation of
the concentration time of the watershed [40]. The average elevation of the watershed was used to
vertically interpolate the precipitation time-series from the GFS-NCEP meteorological model.

• Meteorological forecast: The weather forecast was obtained from a statistical scaling of gridded
data of the GFS provided by NCEP, from which we obtained precipitation and air relative humidity
at the average elevation of the watershed below the 0 ◦C isotherm, and air temperature at 2 m
above the terrain in 3500 m a.s.l, and this reference terrain elevation was the same for all of the
nine catchments. This last variable was chosen based on preliminary trial and error tests that
showed that it gave better results in the representation of diurnal flow pulses during snow melt.
We tested for other constant reference elevations (2000 and 4000 m a.s.l), and the results were not
sensitive to this value. Furthermore, without good results, we also tested as reference temperature,
the temperature at the average elevation of the catchment below the 0 ◦C isotherm that varies
in time. We used the forecast datasets with a horizontal resolution of 0.5 × 0.5 degree, available
from 2004 to present, and with a horizontal resolution of 0.25 × 0.25 degree, available from
2007 to present. Vertical scaling of the GFS information was made by linearly interpolating the
meteorological variables as a function of the terrain elevation, using the GFS grid points located
in a 0.5 degree of radius, regardless of the horizontal resolution of the GFS model, following the
vertical scaling methodology described in [41]. Furthermore, each forecast starts with the weather
forecast and is updated every 6 h, at 0:00, 6:00, 12:00 and 18:00 h UTC-time.

• Initial condition: The present flow conditions of all nine flow stations were obtained from
real-time hour measurements of the General Direction of Water of the Chilean government; so that,
the observed flow was used as an initial condition (t = 0).

In summary, together with the flow observed at t = 0, weather-runoff forecast models receive
as input the time-series of seven variables that describes temporal changes (1 day in the past and
3 days in the future) of the watershed morphology and meteorological conditions. These variables are:
(i) Watershed area below the 0 ◦C isotherm; (ii) mainstream length below the 0 ◦C isotherm; (iii) average
slope of the watershed below the 0 ◦C isotherm; (iv) elevation of the 0 ◦C isotherm; (v) precipitation rate
and (vi) air relatively humidity, both vertically interpolated to the average elevation of the watershed;
and (vii) air temperature at 3500 m a.s.l.

2.3.2. Data-Driven Weather-Runoff Forecast Models

Two data-driven approaches were used for weather-runoff forecast models—the ANN and DL
techniques—both aiming in predicting the entire hourly time-series of the flow rate for the next three
days. Both forecasts used the observed flow in t = 0 plus the GFS weather information of the previous
24 h (4 observations at t = −24, −18, −12 and −6 h per each one of the input variables) and the following
3 days (12 observations at t = 0, 6, . . . , 66 h per each one of the input variables). We used Matlab©
(version R2018b, www.matworks.com, USA) for the computation, in which the ANN model consists of
a sequence of fully connected layers (FFNN), whereas the DL model combines LSTM layers followed
by a sequence of FFNN layers (see Figure 5). The transfer functions in the FFNN layers, the number
of FFNN and LSTM layers, and the number of hidden neurons in the LSTM and FFNN layers were
determined by looking at the minimum root mean square error of the validation data set.

www.matworks.com
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These forecast models aim to predict the flow time-series every hour based on the GFS weather
data and the observed flow at t = 0. For doing this, the ANN model receives one vector of 113 inputs,
corresponding to 112 GFS weather data (16 × 7) plus the observed flow at t = 0 (Figure 5a). The output
is the predicted flow at t = −24, −23, . . . , +71, +72 h (96 outputs). The DL model, on the other hand,
receives as input one 16 rows times 8 columns matrix, in which each row is associated with each one of
the GFS times (t = −24, −18, . . . , +60, +66 h), whereas the columns contain the 7 input variables and
the observed flow at t = 0, which is repeated on each row. The output is a 16 rows times 6 column
matrix (Figure 5b), in which the first column contains the flow at times t = −24, −18, . . . , +60, +66 h,
the second column the flow at t = −23, −17, . . . , +61, +67 h, and so on until the last column contains
the flows at t = −19, −13, . . . , +65, +71 h. It is important to notice that the DL model was not used
in the standard recursive way, in which the past time-series dependent variable (flow in this case) is
recursively used as input for predicting the flows for the following time-steps. The proposed forecast
model predicts at once the entire flow time-series for 1 day in the past and 3 days in the future with no
need of the past flow. This constraint was required because the continuum real-time observations of
the flow are not reliable, thus being necessary to only estimate the flow at t = 0 in case of failure of the
real-time flow monitoring system. This is one of the novelties of this manuscript.

Finally, for both forecasts, the input and output variables were normalized by subtracting the
mean value and dividing it by the standard deviation, and the entire data set obtained for each flow
station was randomly subdivided into three subsets: 70% of the data set for training the weights of the
net, 10% for validating (hyperparameter tuning), and 20% for testing (model evaluation). The testing
subset is used for evaluating the metrics of the model skills. Table 2 summarizes the hydrological
features (maximum flow, mean flow, minimum flow and percentile 90% and 99%) of each subset,
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for each one of the nine flow stations, showing that for each flow station, no significant differences in
the hydrological characteristics as a function of the subset. This is an important aspect since previous
research has shown that the decomposition into train, validation and test subsets has consequences on
the final outcome of the data-driven model [20].

Table 2. Summary of hydrological features of the train, test and validation subsets for each of the
studied watershed.

River ID Subset Number of
Data Block

Flow (m3/s)

Max Average Min Percentile (90%) Percentile (99%)

Maipo
River

1 Train 74,780 1078.6 121.1 32.8 209.6 517.8
Validation 21,366 1078.6 119.8 33.6 207.5 459.3

Test 10,683 1078.6 124.6 33.6 222.1 525.0
2 Train 72,282 61.6 9.1 0.1 22.8 48.1

Validation 20,652 61.6 9.6 0.1 24.5 50.2
Test 10,326 61.6 9.2 0.1 23.1 49.9

3 Train 68,258 124.1 9.7 0.4 25.9 75.2
Validation 19,502 88.5 9.7 0.4 27.2 74.3

Test 9751 124.1 10.2 0.4 26.7 75.2
4 Train 76,946 165.0 7.6 0.4 27.1 56.2

Validation 21,985 165.0 7.9 0.4 27.5 58.6
Test 10,992 165.0 8.1 0.4 28.6 58.6

Mapocho
River

5 Train 66,317 26.8 1.5 0.1 2.7 9.3
Validation 18,948 26.8 1.4 0.1 2.6 7.6

Test 9474 26.8 1.5 0.1 2.6 8.1
6 Train 39,768 20.4 1.5 0.1 2.6 12.9

Validation 11,362 20.4 1.6 0.4 3.0 11.3
Test 5681 20.4 1.5 0.3 2.7 12.8

7 Train 48,610 256.6 4.3 0.4 7.8 27.3
Validation 13,889 256.6 4.2 0.4 7.8 29.3

Test 6944 256.6 4.2 0.4 7.4 28.9
8 Train 78,629 8.5 1.2 0.1 2.8 5.9

Validation 22,465 8.5 1.2 0.1 2.8 5.5
Test 11,233 8.5 1.2 0.1 2.7 5.5

9 Train 41,520 3.3 0.3 0.1 0.5 2.5
Validation 11,863 3.1 0.3 0.1 0.5 2.1

Test 5931 3.3 0.3 0.1 0.5 2.6

2.4. Evaluation Metrics for Model Skills

Six indexes were used to evaluate the performance of the trained models: the root mean square
error (RMSE), the Nash–Sutcliffe efficiency index (NSE), the normalized RMSE by the average flow,
Pearson correlation coefficient Cxy, the error of time to peak discharge and the error of peak discharge.

The root means square error, RMSE, is defined as

RMSE =

√
1
N

∑N

i=1
(Oi − Pi)

2 (8)

where Oi and Pi denotes the observed and predicted value, N the total number of observations used for
computing RMSE. The RMSE has units of flow (m3/s) and quantifies the standard error in the prediction.

The NSE (Nash–Sutcliffe efficiency index) is defined as

NSE = 1−

∑N
i=1(Oi − Pi)

2∑N
i=1

(
Oi −O

)2 (9)

where O denotes the average observations. NSE is a dimensionless index that quantifies the magnitude
of the RMSE with respect to the standard variation of the observed flows. NSE is equal to 1 for the
perfect fit and it can take values smaller than 0 if the RMSE is larger than the standard deviation of
the observations.
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The normalized RMSE (RMSE/Qavg) is the RMSE divided by the average observed flow, and it
quantifies the magnitude of the error with respect to the observed flow:

RMSE
Qavg

=

√
1
N

∑N
i=1(Oi − Pi)

2

1
N

∑N
i=1 Oi

(10)

The correlation coefficient Cxy takes values between −1 and 1, being equal to 1 if there is a perfect
correlation between observed and predicted flows, Cxy = −1 if there is a perfect inverse correlation,
and is equal to 0 if there is no correlation between observed and predicted flows.

Cxy =

∑N
i=1

(
Oi −O

)(
Pi − P

)
√∑N

i=1

(
Oi −O

)2
√∑N

i=1

(
Pi − P

)2
(11)

The error to maximum flow (EQp) was introduced by [25], and in the context of this article it
quantify the relative error in predicting the maximum flow for the following three days. It is defined as

EQp = 100
Qm

max −Qp
max

Qp
max

(12)

where Qm
max denotes the measured maximum flow for the next three days, and Qp

max the predicted
maximum flow.

Finally, the error of time to maximum flow (ETp) was also introduced by [25], and it is the absolute
difference in hours between the time at which the maximum flow is observed (Tm

max) versus the time at
which the maximum flow is simulated. (Tp

max). It is defined as

ETp = abs
(
Tm

max − Tp
max

)
(13)

The last two indexes are used to evaluate the performance of the early warning system.

2.5. Structure of the Data-Driven Weather-Runoff Forecasts Models

The structure of the ANN and DL weather-forecast models is defined by the transfer functions,
the number of hidden layers and the number of hidden neurons, whose values were determined by
minimizing the RMSE of the validation subset of Maipo en el Manzano, and the same structure was
used for all of the flow stations.

Table 3 lists the functions and parameters to be defined in the ANN model along with the range of
values investigated. The number of layers and the number of hidden neurons were initially set equal to
two and fifty, respectively. Then, the model was evaluated with two different transfer functions in the
hidden layers: Linear and a rectified linear (Relu). The transfer function of the output layer was set to
linear, which is recommended for regression problems. Each case was trained and evaluated ten times
to characterize their variability. The results are presented in Figure 6a, the mean value is illustrated with
a grey circle and the standard deviation by error bars. The best results are obtained with a Relu transfer
function in the hidden layers. Then, the performance was evaluated with one to five hidden layers;
each case was trained and evaluated ten times. The results presented in Figure 6b indicate that the best
results are obtained with four hidden layers. Lastly, Figure 6c shows the performance with different
number of neurons in the hidden layers, which is optimum for 300 neurons. Therefore, the final
architecture that will be used hereinafter for the ANN model is four hidden layers with 300 neurons
each and for Relu transfer functions, the output layer has 96 neurons and a linear transfer function.
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Table 3. Parameters and functions associated with the ANN forecast model.

Parameters and Functions Value

Transfer function Linear/Relu

Number of hidden layers 1–5

Number of hidden neurons 25–400
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Figure 6. Root mean square error (RMSE) of a Maipo en el Manzano validation subset as a function of:
(a) Transfer function for the ANN model, (b) the number of hidden layers, (c) the number of hidden units.

Furthermore, Table 4 lists the parameters and functions to be defined in the DL model along
with the range of values investigated. The procedure to select the best parameters was the same
for the ANN model. First, the number of neurons in the LSTM and FFNN hidden layers were set
equal to one hundred and the number of LSTM and FFNN hidden layers to one and two, respectively.
The transfer function of the FFNN output layer was set to linear and then the performance of the two
transfer functions in the hidden FFNN layers was evaluated. Once the transfer functions were selected,
the model was evaluated with different combinations for the number of LSTM and hidden FFNN
layers. Finally, the model was evaluated for different number of hidden units. Each combination was
trained and evaluated ten times with the validation subset of Maipo en el Manzano. The results of
the sensitivity analysis are presented in Figures 7–9. Therefore, the final architecture for the detailed
forecast model is three LSTM layers with 300 neurons each and one output FFNN layer with a linear
transfer function. This means that there are only two FFNN layers: The input and the output layers.
This architecture will be used hereinafter for all nine flow stations.

Table 4. Parameters and functions associated with DL forecast model. FFNN stands for feedforward
neural network. LSTM for long short-term memory.

Parameters and Functions Value

Transfer function (FFNN) Linear/Relu

Number of LSTM layers 1–4

Number of hidden FFNN layers 0–3

Number of neurons in the LSTM layers 50–400

Number of neurons in the FFNN layers 50–400
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LSTM, (c) results for three layers of LSTM, (d) results for four layers of LSTM.
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3. Results

3.1. Performance of ANN versus DL Weather-Runoff Forecast Models

To evaluate the differences between the ANN and DL weather-runoff models, Figure 10 shows
the direct comparison between observed and predicted maximum and average flow for the DL model
((a) and (b)) and the ANN model ((c) and (d)); using the test subset (the goodness of the fit is indicated
in Table 5). The same figure for the rest of flow stations showed, in general, good agreement between
predicted and observed maximum and average flows for both the DL and the ANN models, however,
the performance of the DL weather-runoff model was better than the ANN model (see Figures S1–S8 in
Supporting Information and Table 5). The normalized RMSE for the DL model were 5.9% and 4.3% for
Qavg and Qmax, respectively; NSE and Cxy were very close to 1, and the RMSE was 7.0 m3/s and 4.3 m3/s
for Qmax and Qavg, respectively (see Table 5). With respect to performance in predicting the entire
time-series of the flow for the following 3 days, Figure 11 shows the comparison between the observed
and predicted flow for different cases identified with open circles in Figure 10. These examples were
chosen based on the cumulative frequency of the average observed flow, using percentiles of 99.9%,
99.6%, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91% and 90%, for panels (a) to (l), respectively. Finally,
Figure 11 compares predicted and observed flow time-series for the maximum flow event. Similar
figures for the rest of the flow stations are found in the Supporting Information.

The results show that the ANN model makes an acceptable prediction of the average flow, but
has difficulties in recognizing temporal changes. This is reflected in greater errors in the predicted
maximum flow, with a tendency to underestimate it. This is explained by the fact that ANN do not
have a temporal “memory”, and therefore are not good at predicting temporal changes. The DL model,
which incorporates LSTM cells, has a much better prediction performance for the time-flow series as
well as for the maximum and average flow, demonstrating that the temporal capacity of LSTM-based
algorithms allows a prediction of temporal changes.
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Table 5. Summary of errors for data-driven weather-runoff forecast models. The testing subset was
used for computing these indexes.

River ID Variable
DL Model ANN Model

RMSE/Qavg NSE RMSE (m3/s) Cxy RMSE/Qavg NSE RMSE (m3/s) Cxy
% Glacier in
Watershed

Maipo

1
Qmax 0.049 0.996 5.829 0.998 0.155 0.955 18.344 0.982

7.7
Qavg 0.028 0.998 2.705 0.999 0.074 0.988 7.199 0.995

2
Qmax 0.146 0.983 1.285 0.992 0.255 0.949 2.248 0.977

12.2
Qavg 0.206 0.973 0.485 0.987 0.582 0.784 1.370 0.885

3
Qmax 0.143 0.990 1.326 0.995 0.583 0.840 5.412 0.939

12.0
Qavg 0.109 0.993 0.629 0.997 0.180 0.980 1.037 0.994

4
Qmax 0.214 0.986 1.519 0.993 0.823 0.799 5.836 0.919

15.0
Qavg 0.103 0.993 0.484 0.996 0.229 0.964 1.076 0.983

Mapocho

5
Qmax 0.082 0.995 0.115 0.998 0.261 0.952 0.366 0.977

3.2
Qavg 0.072 0.992 0.082 0.996 0.127 0.974 0.144 0.988

6
Qmax 0.097 0.994 0.142 0.997 0.319 0.932 0.464 0.968

0.1
Qavg 0.055 0.995 0.062 0.998 0.105 0.983 0.118 0.992

7
Qmax 0.355 0.984 1.385 0.992 1.279 0.797 4.991 0.895

1.8
Qavg 0.055 0.998 0.012 0.999 0.144 0.986 0.032 0.993

8
Qmax 0.075 0.994 0.086 0.997 0.199 0.958 0.229 0.981

8.1
Qavg 0.048 0.997 0.043 0.999 0.119 0.983 0.107 0.993

9
Qmax 0.093 0.996 0.026 0.998 0.277 0.964 0.077 0.982

4.4
Qavg 0.147 0.994 0.348 0.997 0.529 0.921 1.250 0.960



Water 2019, 11, 1808 17 of 22Water 2019, 11, x FOR PEER REVIEW 17 of 22 

 

 
Figure 11. Comparison between predicted and observed flow for different cases identified with red 
open circles in Figure 11, associated to percentiles of 99.9%, 99.6%, 99%, 98%, 97%, 96%, 95%, 94%, 
93%, 92%, 91% and 90%, for panels (a–l), respectively. (m) Plots predicted and observed time-series 
for the event with maximum flow. 

3.2. Performance of the Early Warning System 

In order to verify the early warning advantage of the DL weather-runoff model, two extreme 
events were analyzed in detail. These events correspond to floods that occurred in April of 2016 (with 
a peak flow of 1078.6 m3/s, Figure 12a), and in May of 2012 (with a maximum flow of 546.1 m3/s, 
Figure 12b). For each event, the DL weather-runoff forecast model was run several times, starting at 
different days before the time at which the maximum flow was observed. As an example, Figure 12 
shows three of these runs: One that starts 6 days before the peak flow and ends before the flow start 
to rise (black line that starts with the circle and ends with the black x); the second (blue simulation) 
that starts 4 days the peak flow, at the beginning of the storm, and ends before the peak flow was 
observed; and the third simulation starting on 2 days before the peak flow, in the middle of the storm, 
and ending after the peak flow has passed. Similarly, Table 6 shows the errors of time to peak ETp 
(Equation 13), and peak discharge, EQp (Equation 12), calculated for each one of the different 
simulations. 

In terms of the early warning system, the blue simulation of April 2016 would have predicted at 
the beginning of the storm an important increase in the flow of Maipo River, while the red simulation 
would have predicted the magnitude and timing of the peak flow with two days in advance, as well 
as the flood duration. A similar situation is observed for the May 2012 event. In terms of the errors 
EQp and ETp (Table 6), the relative error in predicting the maximum flow tends to be smaller for larger 
maximum flows, and it takes positive values; so that, in this case, the model predicts maximum flows 

Figure 11. Comparison between predicted and observed flow for different cases identified with red
open circles in Figure 11, associated to percentiles of 99.9%, 99.6%, 99%, 98%, 97%, 96%, 95%, 94%, 93%,
92%, 91% and 90%, for panels (a–l), respectively. (m) Plots predicted and observed time-series for the
event with maximum flow.

3.2. Performance of the Early Warning System

In order to verify the early warning advantage of the DL weather-runoff model, two extreme
events were analyzed in detail. These events correspond to floods that occurred in April of 2016
(with a peak flow of 1078.6 m3/s, Figure 12a), and in May of 2012 (with a maximum flow of 546.1 m3/s,
Figure 12b). For each event, the DL weather-runoff forecast model was run several times, starting at
different days before the time at which the maximum flow was observed. As an example, Figure 12
shows three of these runs: One that starts 6 days before the peak flow and ends before the flow start to
rise (black line that starts with the circle and ends with the black x); the second (blue simulation) that
starts 4 days the peak flow, at the beginning of the storm, and ends before the peak flow was observed;
and the third simulation starting on 2 days before the peak flow, in the middle of the storm, and ending
after the peak flow has passed. Similarly, Table 6 shows the errors of time to peak ETp (Equation (13)),
and peak discharge, EQp (Equation (12)), calculated for each one of the different simulations.

In terms of the early warning system, the blue simulation of April 2016 would have predicted at
the beginning of the storm an important increase in the flow of Maipo River, while the red simulation
would have predicted the magnitude and timing of the peak flow with two days in advance, as well as
the flood duration. A similar situation is observed for the May 2012 event. In terms of the errors EQp

and ETp (Table 6), the relative error in predicting the maximum flow tends to be smaller for larger
maximum flows, and it takes positive values; so that, in this case, the model predicts maximum flows
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slightly smaller than the measurements. With respect to the error in the time to maximum flow, it is
equal to 0 most of the time.
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Table 6. Errors of time to peak, ETp, and peak discharge, EQp, calculated for different starting time of
simulations with the DL weather-runoff model for two flood events. The time 0 days 0 h corresponds
to the time at which the maximum flow was observed.

April 2016 May 2012

Starting Time
of Simulation

Qmax EQp ETp Starting Time
of Simulation

Qmax EQp ETp

(m3/s) (%) (h) (m3/s) (%) (h)

−3 days 15 h 527.1 0.1 0 −3 days 2 h 386.2 3.1 0
−3 days 3 h 705.1 −0.5 0 −2 days 14 h 546.1 0.6 0
−2 days 15 h 1078.6 0.5 0 −2 days 2 h 546.1 0.5 0
−2 days 3 h 1078.6 0.6 0 −1 day 14 h 546.1 0.5 0
−1 day 15 h 1078.6 0.6 0 −1 day 2 h 546.1 1.7 0
−1 day 3 h 1078.6 −0.1 0 0 day 14 h 546.1 −0.3 0
0 day 15 h 1078.6 0.4 0 0 day 2 h 546.1 13.2 0
0 day 3 h 1078.6 3.2 0 0 day 1 h 144.4 5.4 0
0 day 9 h 429.1 −1.0 0 0 day 1 h 88.3 2.0 0

4. Discussion

In this article, we detailed a methodology that couples a process-based meteorological model
that forecasts atmospheric conditions in the near future, with data-driven weather-runoff forecast
models, which use these meteorological inputs for predicting hourly flow time-series in the near
future. We implemented this methodology in región Metropolitana of Chile, for which two data-driven
techniques were used for the weather-runoff forecast models—a simple ANN approach and a DL
approach based on LSTM cells.

The data-driven weather-runoff models were designed based on the following three central ideas:
(i) The near future flow (3 days) in the studied flow stations responds to both the precipitation rate of
the storm, but also to changes in the watershed area or rate of snow melt (see Figure 11f). Consequently,
a rainfall-runoff scheme (e.g., [25]) is not enough for predicting near-future flow, which justifies the
weather-runoff concept that also uses air temperature and relatively humidity and the 0 ◦C isotherm for
predicting the near-future flow. Both, air temperature and relatively humidity were important variables
that improved the performance of the weather-runoff model in the preliminary exercises. Particularly,
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air temperature at 3500 m a.s.l. can be associated with snow melt rate, whereas air humidity at the 0 ◦C
isotherm controls the limit between liquid and solid precipitation [42]. (ii) Real-time flow observations
are in general available, but it is not possible to rely on the availability of a continuous measured
time-series for forecasting the near-future flow, especially during large storms. As a consequence,
the weather-runoff forecast model is predominantly based on the (very reliable) GFS-NCEP model,
although the flow at t = 0 is (always) needed as input. In case of not having flow observation for
t = 0, this flow can be estimated using simple cross correlations with the other flow stations. (iii) Early
warning systems should be able to give accurate warning for extreme events, but should also be able
to give accurate forecasts for small flows to avoid false positive warnings that eventually reduce the
reliability of the system [6,43]. In this context, both data-driven approaches used the entire set of flow
observations for training, validating and testing the forecast models, without paying specific attention
to high flow events which are the important ones in early warning systems. For example, the range of
predicted flows in the Maipo en el Manzano station varies between 25 to 1100 m3/s.

With respect to the performance of data-driven weather-runoff forecast models, it is possible
to argue that both approaches are accurate for predicting Qavg and Qmax; however, flow prediction
based on the DL approach is far more accurate than the flow prediction based on ANN approach,
as shown in Table 5. This was pointed out by [25] with a rainfall-runoff model, and it is verified in this
new approach with a weather-runoff model. The DL approach has an excellent performance, with
values of RMSE 5%, compared to RMSE 15.5% for ANN approach for the prediction of the peak flow in
station 1 (Table 5). These results are explained in the fact that, approaches such as ANN are not exactly
adequate for the analysis of sequential data, such as the flow time series. To address the forecast of
sequential data, is required to keep a certain memory of the previous state of the system, thus allowing
the prediction using not only the present information but also the previous state. Since ANN do not
have a temporal memory, they have difficulties in recognising temporal changes. This is reflected in
greater error when predicting flow floods and therefore tend to underestimate the flow, as shown in
Figure 11. In this context, one of the most successful techniques based on Recurrent Neural Networks
(RNN) is the DL approach based on LSTM cells [24–26]. Although we use only one value of the flow as
initial condition, the previous state for DL approach is obtaining through the seven sequences of the
meteorological and geomorphological inputs of the previous days, which is used in the DL approach
for generating the output sequential data.

Furthermore, another important feature of the proposed architecture of the DL weather-runoff

forecast (Figure 5b) is that it is capable of predicting an output time-series with a finer temporal
resolution (1 h) than for the input time-series (6 h), thus enabling the use of DL as a temporal
downscaling technique. This allows to precisely locating the time at which the peak flow will occur,
which gives the system an early warning advantage, as shown in Figure 12 and Table 6. The DL
weather-runoff model is capable of capturing the peak flow, the time at which it will occur and the
flow duration. All of this information would be available from three days in advance, which is very
useful for allocating resources and warning the communities at risk.

Finally, it is important to notice that the methodology that was implemented for the nine flow
stations in Maipo and Mapocho rivers, can, in principle, be scaled to the entire set of flow stations
with real-time measurement in Chile (approximately 450 flow stations). The coupling between the
GFS-NCEP model forecast and the DL weather-runoff forecast model may not vary; however, input
variables to DL weather-runoff forecast model should be different in flow stations located in the desert
of northern Chile (latitude: −22◦ S) to the flow stations located in the austral part of southern Chile
(latitude: −45◦ S). For example, presumably, the air temperature associated to glacier melt should not
be a relevant input data in northern Chile where there are no glaciers.

5. Conclusions

The intensification of the hydrological cycle because of the global warming raises growing concerns
about future floods and their impact on large cities where exposure has also increased, such as the
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región Metropolitana of central Chile. Adequate water adaptation solutions as early warning systems
are crucial. Given that the early warning systems give more importance to the simplicity and robustness
of the forecasting model rather than an accurate description of the various internal sub-processes, it is
certainly worth considering data-driven approaches for improving real-time runoff forecasts.

In this article, we implemented a coupled model of a near-future global meteorological forecast
with short-range runoff forecasting systems based on DL, showing that DL is a valuable technique
that allows the acceleration of the development of hydrological forecasting and early warning tools.
The coupling between meteorological forecasts and the DL weather-runoff forecast model, on the
other hand, are able to satisfy two basic requirements that any early warning system should have:
The forecast should be given in advance in a time-frame larger than catchment concentration time,
and should be accurate and reliable. In this context, meteorological forecasts are accurate and reliable
in predicting near-future meteorological conditions, which feed the DL weather-runoff forecast, thus
enabling a reliable flow forecast in advance.

Furthermore, DL significantly improves runoff forecasts when compared with a simple ANN
approach, being accurate in predicting the time-evolution of output variables, with an error for
predicting the peak flow of RMSE 5% compared to RMSE 15.5% for the ANN approach, which is
adequate to warn communities at risk and initiate disaster response operations. Another interesting
aspect of this approach is that it is capable of predicting an output time-series with a finer temporal
resolution than the input time-series. This temporal downscaling allows us to precisely locate the time
at which the peak flow will occur. Finally, the real-time implementation of these DL models can be
found in the open access webpage www.AlertaHidrica.com.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/9/1808/s1,
Figures S1–S8 are to Figure 11 of the manuscript, but for stations 2–9. Figures S9–S16 are equivalent to Figure 12 of
the manuscript, for stations 2–9. Figure S1: Station 2. (a) Comparison between observed and predicted Qmax for
flow station 1 and the DL model. (b) Same as (a) for the average flow Qavg. (c) and (d) same as (a) and (b) for
the ANN model. Red open circles define examples plotted in Figure S9. Figure S2: Station 3. (a) Comparison
between observed and predicted Qmax for flow station 1 and the DL model. (b) Same as (a) for the average flow
Qavg. (c) and (d) same as (a) and (b) for the ANN model. Red open circles define examples plotted in Figure S10.
Figure S3: Station 4. (a) Comparison between observed and predicted Qmax for flow station 1 and the DL model.
(b) Same as (a) for the average flow Qavg. (c) and (d) same as (a) and (b) for the ANN model. Red open circles
define examples plotted in Figure S11. Figure S4: Station 5. (a) Comparison between observed and predicted
Qmax for flow station 1 and the DL model. (b) Same as (a) for the average flow Qavg. (c) and (d) same as (a) and (b)
for the ANN model. Red open circles define examples plotted in Figure S12. Figure S5: Station 6. (a) Comparison
between observed and predicted Qmax for flow station 1 and the DL model. (b) Same as (a) for the average flow
Qavg. (c) and (d) same as (a) and (b) for the ANN model. Red open circles define examples plotted in Figure S13.
Figure S1: Station 7. (a) Comparison between observed and predicted Qmax for flow station 1 and the DL model.
(b) Same as (a) for the average flow Qavg. (c) and (d) same as (a) and (b) for the ANN model. Red open circles
define examples plotted in Figure S14. Figure S7: Station 8. (a) Comparison between observed and predicted
Qmax for flow station 1 and the DL model. (b) Same as (a) for the average flow Qavg. (c) and (d) same as (a) and (b)
for the ANN model. Red open circles define examples plotted in Figure S15. Figure S2: Station 9. (a) Comparison
between observed and predicted Qmax for flow station 1 and the DL model. (b) Same as (a) for the average flow
Qavg. (c) and (d) same as (a) and (b) for the ANN model. Red open circles define examples plotted in Figure S16.
Figure S9: Station 2. Comparison between predicted and observed flow for different cases identified with red open
circles in Figure S1. (m) plots predicted and observed time-series for the event with maximum flow. Figure S10:
Station 3. Comparison between predicted and observed flow for different cases identified with red open circles in
Figure S2. (m) plots predicted and observed time-series for the event with maximum flow. Figure S11: Station 4.
Comparison between predicted and observed flow for different cases identified with red open circles in Figure S3.
(m) plots predicted and observed time-series for the event with maximum flow. Figure S12: Station 5. Comparison
between predicted and observed flow for different cases identified with red open circles in Figure S4. (m) plots
predicted and observed time-series for the event with maximum flow. Figure S13: Station 6. Comparison between
predicted and observed flow for different cases identified with red open circles in Figure S5. (m) plots predicted
and observed time-series for the event with maximum flow.
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