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Abstract: Studies have shown that biochar has the potential to remove organic and inorganic
contaminants from wastewater. pH is known to have a crucial role in the transformation of pollutants.
In this research, we explore the feasibility of using biochars properties to control the pH near
the water–air interface, so the gaseous emissions from water (or wastewater) could be mitigated.
This study aimed to test the effects of a thin layer biochar addition on the spatial and temporal
variation of water pH. Two types of biochar and water were tested. Highly alkaline porous (HAP;
pH 9.2) biochars made of corn stover and red oak (RO; pH 7.5) were applied surficially to tap (pH
9.5) and deionized water (DI) (pH 5.4). The spatial pH of solutions was measured every 1 mm of
depth on days 0, 2, and 4 after biochar application. The results showed that HAP biochar increased
the pH of both tap and DI water, while RO decreased tap water pH and increased DI water pH.
On day 0, there was no effect on tap water pH, while a pH change in DI water was observed due to
its lower buffer capacity. In addition, the pH (temporal) migration from topically applied biochar into
an aqueous solution was visualized using a colorimetric pH indicator and corn starch to increase
viscosity (to prevent biochars from sinking). The results prove that the surficial application of biochar
to water was able to change both the pH near the water–air interface and the pH of the solution with
time. The pH change was dependent on the biochar pH and water buffer capacity. These results
warrant further research into the floatability of biochars and into designing biochars with specific pH,
which could be a factor influencing gaseous emissions from liquids that are sensitive to pH.

Keywords: biochar; pH; water; buffering capacity; wastewater; highly alkaline porous biochar;
gaseous emissions; colorimetric; visualization

1. Introduction

The increase in energy consumption, industrialization, and urbanization are having an impact on
the environment that stems from wastewater discharged from agricultural, municipal, and industrial
sources [1]. The United States Environmental Protection Agency (EPA) and the United States Geological
Survey (USGS) examined treated and untreated water samples from approximately 25 different water
treatment plants and reported ~250 microbiological and chemical contaminants [2]. A wide range of
technologies is used for wastewater treatment, including biological treatment, chemical precipitation,
phytoremediation, membrane removal, and ion exchange [3–5]. However, these treatments require
significant operating, maintenance, and energy costs, and do not always show a sufficient removal of
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contaminants [6]. Adsorbent materials are considered to be one of the possible wastewater treatment
approaches and is especially applicable for organic compounds and heavy metals removal [7].

Biochar, a soil amendment, has shown great potential as an effective and low-cost adsorbent
of contaminants from wastewater. Biochar is a solid carbonaceous by-product (char) obtained from
pyrolysis, gasification, or torrefaction of biomass in low-oxygen conditions [8]. Sources of biochar
include forestry and agricultural residues, animal manure, and sewage sludge [9]. Its properties
vary due to the process temperature and duration and source of raw material. Typically, biochar is
characterized by its ash content, pH, porosity, surface area, and C, H, O, N content [10,11]. Biochar
has shown high removal capability of organic pollutants, and heavy metals from wastewater and pH
of a solution had a significant impact on the removal rate. Table 1 shows the range of contaminants
remediated from aqueous solutions by biochar.
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Table 1. Relation of aqueous solution pH and biochar sorption.

Biochar Material Scale of the Study Objective of the
Study Biochar pH Aqueous

Solution pH
Solution pH after

Biochar Application
Spatial pH

Studied pH Range

Anaerobic sludge
digester [12] laboratory NH4

+ removal
from water 8.57–10.60 2–10 N/A No Adsorption significantly

increased at solution pH 2–6

Maple wood biochar
[13] laboratory

NH4
+ removal

from aqueous
solution

3.69–8.13 N/A N/A No The greatest adsorption observed
at pH 3.69 of biochar

Activated carbon [14] laboratory Phenols
adsorption 3.4–10.4 2–12 N/A No Reduction decreased with

increasing pH

Food waste [15] laboratory Phenol adsorption 6.40 3–11 N/A No Reduction decreased with
increasing pH

Pinewood [16] laboratory Mg, Ca, Cr, and Pb
adsorption Not given 1–7 N/A No High sorption with increasing pH

of the solution from 1 to 7

Magnetic Oak Bark Char
Magnetic Oak Wood

Char [17]
laboratory Pb and Cd

remediation
8.0
7.2 2–8

Initial pH raised after
mixing with biochar
for acidic solutions

No The greatest sorption occurred at
highest solution pH (8)

Mansonia wood
sawdust [18] laboratory

Cu and Pb
removal from

aqueous solution
6.71 2–6 N/A No The greatest sorption occurred at

highest solution pH (6)

Pine woodchip
Jarrah

Activated carbon [19]
laboratory Cu and Zn

removal

7.79
9.43
9.93

2–6
Initial solution pH

increased after
biochars application

No

Removal rate increases with
increasing solution pH.

Activated carbon > Jarrah > Pine
woodchip
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Several hypotheses regarding the mechanism of how sorption capacity of biochar related to pH
of the solution have been proposed. Moreno-Castilla et al. stated that adsorption of weak phenol
compounds on carbonaceous char surface depended on the degree of dissociation of the compounds
and charge on the surface of the char and both processes were related to pH of the aqueous solution [18].
According to Niazy et al., the highest sorption of As(III) was observed in the 3–7 pH range, while
removal decreased at pH from 8–10 [19]. Abdel-Fattah claimed that the highest sorption occurred at
pH 6–7 for Mg(II), Ca(II), and Pb(II), while Cr(VI) had maximum adsorption at pH 1 [20]. All these
studies showed the importance of pH on the efficiency and mechanism of the removal of pollutants
from aqueous solutions. To date, the majority of research has been focused on biochar-aided sorption in
aqueous solutions. However, biochar properties (e.g., low density) could be also exploited to mitigate
emissions of pH-sensitive pollutants to the air.

The objective of this study was to test the effects of biochar addition on the spatial (changing with
depth) and temporal (changing with time) distribution of water pH (Figure 1). The surficial application
of biochar (~6 mm thick layer) was used for its techno-economic feasibility of scaling up to mitigation
of gaseous emissions from large area sources. Two types of biochar and water were tested. Highly
alkaline porous (HAP; pH 9.2) biochars made of corn stover and red oak (RO; pH 7.5) were applied
surficially to tap (pH 9.5) and deionized water (DI) (pH 5.4). Because this experiment included not the
only diffusion of OH- ions from biochar, but also the convection during measurements, the colorimetric
method, using pH indicator was used to visualize changes in pH distribution with time and depth.
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Figure 1. The objective of this study—the study of the spatial and temporal distribution of pH due to
surficially applied biochar to water.

2. Materials and Methods

2.1. Biochar Properties

Highly alkaline and porous (HAP) biochar made of corn stover and red oak (RO) biochar were
used. 5 g of biochar was added to 25 mL of DI water then pH was measured after 3 h of equilibration.
To measure pH at a zero-point charge (ZPC), the solids addition method was used, where the initial pH
of 1M NaCl solution was changed from pH 2 to 11 by addition of 1M HCl and 1M NaOH. After adding
0.1 g of biochar into each solution and shaking them for 24 h, the final pH of every solution was
measured. Difference between initial and final pH against initial pH was plotted and the intersection
of resulting curve and initial pH was ZPC [21].

A C/N combustion analyzer was used to determine elemental content (C, H, N, and S) of
biochars [22]. Biochar properties such as moisture content, volatile matter, fixed carbon, and ash
content were measured according to method Rover et al. [23]. Properties of HAP and RO biochars are
shown in Table 2, below:
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Table 2. Properties of HAP and RO biochars used in the experiment.

Properties HAP RO

pH 9.2 7.5
Zero-point charge 8.42 6.75

C (%) 61.37 78.53
H (%) 2.88 2.54
N (%) 1.21 0.62
S (%) 0..07 0.02

Moisture (%) 1.93 3.03
Volatile matter (%) 16.27 26.38
Fixed carbon (%) 34.98 54.76

Ash (%) 46.82 15.83

Fourier transform infrared (FTIR) analysis was used to examine the biochars samples for functional
groups. The sample was scanned 32 times at a resolution of 4 cm−1 on a Thermo Scientific Nicolet iS10
(Thermo Fisher Scientific Inc., Waltham, MA) with attached Smart iTR accessory, with a wavenumber
range of 750–4000 cm−1. The results of the FTIR analysis are shown elsewhere [24].

Pore images of biochars were taken using scanning electron microscopy (SEM) (FEI Quanta 250
FE-SEM). Samples were attached to carbon adhesive disks and coated with iridium to improve imaging
of the samples.

2.2. Water

The properties of the tap water that was used for the experiment are given in Table 3:

Table 3. Properties of the tap and DI water used in the experiment [25].

Properties Tap DI

pH 9.2 5.4
Chlorine residual (ppm) 2.82 0

Note: Additional properties are listed in Tables A1 and A2 (Appendix A).

2.3. Bromothymol Blue Solution (BTB)

BTB solution was prepared as a pH indicator which would visualize pH change of tap and DI
water. BTB ACS reagent (Acros Organics, Morris Plains, NJ, USA) was used to prepare a BTB solution.
Corn starch (Argo, Oakbrook Terrace, IL, USA) was used to increase the viscosity of the BTB solution,
and sulfuric acid with 36 Normality was used to adjust its pH to 6.

2.4. Experiments

The research was divided into two experiments:

• The determination of biochar type influence on spatial and temporal distribution of pH in tap and
DI water;

• The visualization of pH change from different types of biochar in controlled solutions.

2.5. The Determination of Biochar Type Influence on Spatial and Temporal pH of Tap and Deionized Water

Three glass containers for food storage with a volume of 1700 mL (dimensions 19 cm × 14.5 cm ×
7.5 cm) were filled with 800 mL of tap water and another three filled with 800 mL of DI water. The HAP
and RO biochars were surficially applied on two of the triplicated treatments, and remaining triplicate
was a control. The matrix of the experiment is presented in Table 4.
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Table 4. The matrix of the experiment.

Treatment Water Used

RO biochar Tap Deionized
HAP biochar Tap Deionized

Control (no biochar) Tap Deionized

A thin pH microelectrode (MI-415 Series Micro-Combination pH Probe, Microelectrodes, Bedford,
NH, USA) [26], connected to an Accumet AB 15 pH meter [27], was calibrated with 4, 7, 10 pH buffer
solutions and attached to a laboratory stand. A manual lab jack, with a container on the top of it,
was placed under the pH probe, and the jack was elevated in increments of 1 mm using a ruler placed
next to it. After the probe had penetrated the water to the depth of 3.5 cm, pH measurements were
collected every 1 mm of the depth. The pH probe was rinsed and wiped before taking measurements
from the next container. 6.35-mm-thick (~1/4 inch) layers of HAP and RO biochar with weights of
48 g and 58 g, respectively, were applied on Day 0, and measurements were taken for each container
on Days 0, 2 and 4. The experimental stand is presented in Figure 2. The selection of biochar dose
(thickness) was driven by our previous experience with thin biochar layers with swine manure for the
control of gaseous emissions [28].
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Figure 2. Experimental design for testing biochar influence on spatial pH distribution in water.

Tap and DI water were titrated to identify their buffer capacity. 0.1 M of sulfuric acid was prepared
by adding 5.611 mL of stock solution in 1000 mL of DI water, and 5.281 mL of concentrated NaOH was
added to prepare a 0.1 M solution. A drop of sulfuric acid and NaOH was added in tap water and DI
water respectively using graduated burette and pH was measured after each drop.

2.6. The Visualization of pH Change from Different Types of Biochar Diffusion in Controlled Solutions

To visualize the influence of two types of biochar on pH change in a controlled solution, a separate
experiment was carried out with a colorimetric pH indicator. BTB was used as a pH indicator. The pH
indicator solution was prepared according to the following procedure [29]:

1) 0.1 g of BTB powder was mixed with 10 mL of a 4% solution of sodium hydroxide;
2) 20 mL of 99.9% of methanol was added;
3) The solution was diluted in 1 L of DI water.
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BTB changed color according to its pH. After mixing 25 mL of BTB solution and 75 mL of tap and
DI water, respectively, the solutions were ‘deep blue’ at pH 11.4 and then poured into a 200 mL bottle.
The pH-controlled solution was prepared according to the following procedure:

1) To acidify the BTB solution, a solution of 20 µL sulfuric (VI) acid (H2SO4) in 25 mL of tap water
was added, drop by drop, until the pH of the BTB solution dropped to 6 and the color turned to
‘light yellow’. The pH was read using the thin pH probe connected to pH meter.

2) To prevent random biochar sinking in the BTB solution and the effects of convection, 5 g of corn
starch was added and mixed while heated at the temperature of 80 ◦C. This process increased
the viscosity.

3) After complete dissolution of starch, the prepared mixture was poured to 3 glass bottles with
200 mL of volume. Bottles were filled in half and kept in room temperature for cooling and
increase of viscosity.

4) HAP and RO biochars were applied to the top of the two solutions, and the third one was a
control. Biochars were applied surficially with a thickness of 10 mm.

For inhibition of biological decomposition of starch, bottles with pH-controlled solutions and
biochars were kept in the refrigerator under 4 ◦C during the 4 days of the experiment. Each day, bottles
were taken out from the refrigerator, and photos showing the changes of pH were taken. Photos were
taken using a smartphone with the following specifications: dual camera: (1) 16 MP, f/1.7, 27 mm
(wide), 1/2.8”, 1.12 µm, PDAF; (2) 20 MP, f/1.7, 27 mm (wide), 1/2.8”, 1.0 µm, AF, PDAF.

To correlate BTB color with its pH, 5 mL of BTB solutions were prepared at pH < 4.6, 6.05, 6.60, 7.05,
8.5 (Figure 3), following the above-mentioned procedure. The mobile application “Color Grab” [30]
was used to measure L*A*B values of color results were presented in Table 5. After addition of 0.1 g of
corn starch into each BTB solution at different pH, the colors became brighter (Figure 4), and new color
values were showed in Table 6. The color of pH indicator changes to yellow-green-blue when pH is
acidic-neutral-alkaline, respectively.
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Table 5. L*A*B values of BTB solutions at different pH.

pH L A B Color
<4.6 57.6 19.8 63.7
6.05 55.3 −26.9 58.6
6.60 19.9 −22.3 7.2
7.05 9.9 4.6 −22.0
8.5 28.9 25.3 −56.3
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Table 6. L*A*B values of BTB solutions at different pH after adding starch.

pH L A B Color
<4.6 53.0 5.6 57.4
6.05 42.4 −9.2 12.7
6.60 43.1 −14.5 43.5
7.05 41.6 −18.0 33.5
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2.7. Statistical Analysis

A simple linear regression model was used in the R program (R i386 3.6.0. Ink) to analyze the
data and estimate p-value. A level of significance of 0.05 was used to determine statistical significance.

3. Results

3.1. The Determination of Biochar Type Influence on Spatial and Temporal pH of Tap and Deionized Water

After application, HAP biochar sank immediately, and on day 3, most of the biochar particles
had settled on the bottom of the container for both tap and DI water. However, there was still a
thin floating layer of biochar close to the water surface and suspended particles floating in the water.
Contrariwise, most of the RO biochar was floating on the top of the tap and DI water surface. The top
of the biochar layer remained dry until day 4, while the lower wet part of the layer that interacted with
the water expanded (Figure 5). Figures 6 and 7 document how HAP and RO biochars sank after days 0,
2, and 4, with red boxes indicating biochar floating on the surface of the water and green and blue
boxes illustrating the suspended and settled fractions of biochar, respectively.
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According to Figure 8, on day 0, HAP biochar had significant (p < 0.0001) influence on tap
water pH one hour after application. There was significant (p < 0.0001) difference in pH between tap
water control and HAP biochar treated water after 2 days where pH increased from 8.3 to 9.2; then,
pH dropped to 8.9 (p < 0.0001) on day 4. However, HAP biochar had a significant (p < 0.0001) effect on
DI water and raised its pH from 5.4 to 9.5 (p < 0.0001) 1 h after application, and it stayed approximately
the same until day 4.
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The same trend was observed with RO biochar, which had a significant effect (p < 0.0001) on the
pH of tap water on day 0. However, the pH of tap water decreased on day 2 from 8 to 7.8 (p < 0.0001)
and stayed the same until day 4. RO biochar raised the pH of DI water from 5.4 to 6.7 (p < 0.0001) and
7 (p < 0.0001) on days 2 and 4, respectively (Note: additional interpretation of treatments effect by days
is presented in Figure A1, Appendix A).
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3.2. The Visualization of pH Change from Different Types of Biochar Diffusion in Controlled Solutions

On day 0 and ~2 h after HAP biochar application on tap water/BTB/starch solution, the pH
indicator changed its color from yellow (pH 6) to blue (pH 8.5 and higher) due to the high alkalinity of
the HAP biochar, and the thickness of the blue portion of the solution was ~4 mm. The influence of the
HAP biochar increased over the following days, and the blue color thickened to 10, 12, and 19 mm on
days 2, 3 and 4, respectively. The influence of RO biochar on tap water/BTB/starch solution was also
observed (Figure 9).

HAP biochar had the same influence trend on DI water/BTB/starch solution, with blue color
thicknesses of 4, 10, 13, and 19 mm on days 1, 2, 3, and 4, respectively. The influence of RO biochar on
the solution could be observed on days 3 and 4 with a color change from yellow (pH 6) to light green
(pH 6.6–7.05). The thickness of green color due to the influence of RO biochar was 3 and 6 mm on days
3 and 4, respectively (Figure 10).
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Figure 9. Visualization of pH change from different types of biochar in a controlled solution. RO 
biochar on top of tap water/BTB/starch solution on the left; HAP biochar on the middle changes pH 
indicator color from yellow to dark green; control solution on the right. 

Table 7. L*A*B values for color changes of tap water/BTB/starch solution due to HAP biochar 
influence on day 4. 

pH L A B Color 
Case #1 40.3 −18.1 −4.4  
Case #2 62.2 3.7 45.7  
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Figure 9. Visualization of pH change from different types of biochar in a controlled solution. RO biochar
on top of tap water/BTB/starch solution on the left; HAP biochar on the middle changes pH indicator
color from yellow to dark green; control solution on the right.

Colorimetric L*A*B values for both solutions were analyzed by “Color grab” application and are
shown in Tables 7 and 8.

Table 7. L*A*B values for color changes of tap water/BTB/starch solution due to HAP biochar influence
on day 4.

pH L A B Color
Case #1 40.3 −18.1 −4.4
Case #2 62.2 3.7 45.7

Table 8. L*A*B values for color changes of DI/BTB/starch solution due to HAP biochar influence on
day 4.

pH L A B Color
Case #5 47.4 −3.8 30.1
Case #3 43.6 −20.4 6.9
Case #4 66.7 3.1 49.2
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Figure 10. Visualization of pH change from different types of biochar in a controlled solution. RO 
biochar on top of DI water/BTB/starch solution on the left changes pH indicator color from yellow to 
light green (pH 7); HAP biochar on the middle changes pH indicator color from yellow to dark green. 

Table 8. L*A*B values for color changes of DI/BTB/starch solution due to HAP biochar influence on 
day 4. 

pH L A B Color 
Case #5 47.4 −3.8 30.1  
Case #3 43.6 −20.4 6.9  
Case #4 66.7 3.1 49.2  

4. Discussion 

Biochar layer 

pH case #3 
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Day 1 Day 2 
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Figure 10. Visualization of pH change from different types of biochar in a controlled solution. RO biochar
on top of DI water/BTB/starch solution on the left changes pH indicator color from yellow to light green
(pH 7); HAP biochar on the middle changes pH indicator color from yellow to dark green.

4. Discussion

4.1. The Determination of Biochar Type Influence on Spatial and Temporal pH of Tap and Deionized Water

Both biochars had less effect on tap water on day 0, while water pH changed due to the influence
of HAP and RO biochars on days 2 and 4 (Figure 10). DI water changed its pH from 5.4 to ~9.4
and 7 due to HAP and RO treatments, respectively, on day 0 and had no apparent change after that.
The reason for the immediate effect of biochars on DI water pH was low buffer capacity of DI water in
comparison with tap water (Figure 11).

The larger pores of HAP biochar could also be the reason for its sinking in both types of water,
whereby water easily penetrates into the HAP biochar pores and makes it sink, while RO, with smaller
pores, floats on the top of tap and DI water (Figure 12).
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Figure 12. SEM results showing and pores of HAP (a) and RO (b).

This experiment opened promising approaches to treating wastewater or manure stored in animal
housing by amending the pH at the air–liquid interface. This could open up research to mitigate
hazardous and odorous compounds emissions by using biochar as a topically applied bio-cover that is
able to influence pH. As was shown in Figures 6 and 7, biochar with properties close to RO used in this
experiment (which was floating on the water surface), would be most suitable as the bio-cover.

Further study will be testing the effect of topically applied biochar on spatial and temporal change
of pH of swine manure. According to Mroz, manure acidification is able to inhibit NH4

+ transformation
into NH3 [31]. Biochar floating on top of manure, could potentially change manure pH (which could
lead to a reduction of ammonia emissions) and capture volatile compounds due to its porous matrix.

Surficial application of a powdery substance like biochar to large areas of water or wastewater
could be problematic. This is due to the potential hazards linked with self-ignition, and practical issues
related to the storage and transportation of biochar. A potential solution could be the pelletization
of biochar [32,33], which greatly densifies the biochar and reduces the potential of hazardous gas
emissions from the biochar itself. Pelletized biochar could be easier to apply using existing technology.
However, the floatability and gradual dissolution of pellets to create a floating cover on the water–air
interface warrants further research.
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4.2. The Visualization of pH Change from Different Types of Biochar Diffusion in Controlled Solutions

The buffer capacity of the water was also a key parameter in the experiment of visualization of
pH migration. The pH of tap water/BTB/corn starch solution was not affected due to RO biochar and
retained the same color for 4 days. However, DI/BTB/corn starch solution pH changed with the RO
biochar and turned light green on day 3 due to the lower buffer capacity of DI water in comparison
with tap water. Corn starch, which was used to increase viscosity the solution, could slow down
pH migration, where it took several days to change the solution pH for biochars, while they had a
fast influence on clean water pH. The innovation of this experiment was in using corn starch, which
increased the viscosity of the aqueous solutions without changing their pH. Starch could be applied to
make aqueous solutions with increased viscosity without affecting its properties needed to visualize
pH changes.

5. Conclusions

This research opens promising approaches for treating wastewater or animal manure by amending
the pH in the air–liquid interface. The results of controlled experiments showed that HAP biochar
increased pH of both tap and DI water pH, while RO decreased tap water pH and increased DI water
pH. On day 0, there was no effect on tap water pH, while a pH change in DI water was observed due
to its lower buffer capacity. In addition, the pH (temporal) migration from topically applied biochar
into an aqueous solution was visualized using a colorimetric pH indicator and corn starch to increase
viscosity. The results prove that the surficial application of biochar to water was able to change both the
pH near the water–air interface and the pH of the solution with time. The pH change depended on the
biochar pH and water buffer capacity. The result warrants further research of floatability of biochars
and designing biochars with specific pH, which could be a factor influencing gaseous emissions from
liquids that are sensitive to pH.
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Appendix A

Table A1. Properties of tap water used in the experiment.

Treated Water Quality Value

Non-carbonate hardness, ppm 123
Total hardness, ppm 174

Total hardness, grains per liter 2.7
Fluoride content, ppm 0.68

Iron content, ppm 0.02
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Table A2. Water purification system specifications for DI water.

Carbon filter

Chlorine removal 0 ppm at carbon effluent
Organics removal Natural occurring, large molecular weight

Ultraviolet light-1

Purpose Bacterial reduction
Water quality High purity water
Wavelength 254 nm

Dosage 30,000 microwatt s cm−2 after 9000 h
Microbacterial (E-coli) reduction 99.9%

Ultraviolet light-2

Purpose Bacterial reduction
Water quality High purity water
Wavelength 254 nm

Dosage 30,000 microwatt s cm−2 after 9000 h
Microbacterial (E-coli) reduction 99.9%
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