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Abstract: In this paper, the study area was the Inner Niger Delta (IND) in Mali, West Africa. The IND
is threatened by climate change, increasing irrigation, and dam operations. 2D hydrodynamic
modelling was used to simulate water levels, discharge, and inundation extent in the IND. Three
different digital elevation models (DEM) (SRTM, MERIT, and a DEM derived from satellite images
were used as a source of elevation data. Six different models were created, with different sources
of elevation data and different downstream boundary conditions. Given that the performance of
the models varies according to the location in the IND, the variable under consideration and the
performance criteria, Bayesian Model Averaging (BMA) was used to assess the relative performance
of each of the six models. The BMA weights, along with deterministic performance measures, such as
the Nash Sutcliffe coefficient (NS) and the Pearson’s correlation coefficient (r), provide quantitative
evidence as to which model is the best when simulating a particular hydraulic variable at a particular
location. After the models were combined with BMA, both discharge and water levels could be
simulated with reasonable precision (NS > 0.8). The results of this work can contribute to the more
efficient management of water resources in the IND.

Keywords: Inner Niger Delta; data scarcity; TELEMAC 2D; bayesian model averaging

1. Introduction

The Inner Niger Delta (IND) is the second-largest wetland in Africa, and its maximum inundated
area can exceed 30,000 km2 during wet years [1]. Its main water sources are the Niger and Bani Rivers,
which enter the study area at Ké-Macina and Sofara, respectively, flowing through the Delta over
several hundred kilometers, before both exit at Diré (Figure 1). The maximum inundation area shrinks
to around 10,000 km2 in dry years [2] under the combined impacts of climate variability, irrigation
withdrawals, and dam operation. The IND faces many environmental challenges due to upstream
water interventions on the river system, as well as high precipitation variability.
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Figure 1. Location map of the study area, the Inner Niger Delta, Mali, West Africa.

The IND is considered as a hub of human activities, including agriculture, fishing, transport, and
tourism. The Delta plays an important role in promoting sustainable development for food security,
water management, and the environment. Some upstream dams and irrigation structures are already in
place, while more are at the planning stage. The infrastructures aim to increase economic development
and food security. However, damming a river often implies a transfer of benefits from the downstream
to the upstream regions. Thus, damming the main course or branches of the Niger River can impact
on food security, ecology, and the environment as a whole by altering flow and inundation patterns.
The operation of existing dams, such as Sélingué, Markala, and Talo has already modified flow patterns
in the Delta, and planned dams, such as Fomi and Djenné, may exacerbate the changes. Figure 2 shows
the location of existing and planned dams/reservoirs upstream of IND. Zwarts and Frerotte [1] have
shown that on average, 9% of the total flood extent area has been lost due to the effects of the Selingue
and Markala dams. Liersch et al. [3] anticipated an average reduction of 24% flood extent compared to
the natural condition due to the combined effect of existing and planned water infrastructures in the
watershed. The situation may get worse due to increased evaporation as a result of global warming [4].
However, changes in precipitation are uncertain [5] where some models project a wetter, and others a
drier future in the Upper Niger basin [6]. A lower flow rate, in combination with a smaller flood plain,
will most probably affect crop yields, fisheries, livestock, biodiversity, and environmental flow. To
understand the possible impacts of these future changes on ecosystems and livelihoods, a realistic
simulation of water levels, flow velocity, and inundations are required.
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Figure 2. Hydrodynamic model domain, along with dams and reservoirs in the Upper Niger basin.

Concerns about the hydrologic regime alterations in the watershed have triggered interest in
ecosystem services and environmental health, especially in the IND area. The evaluation of ecosystem
health requires the knowledge of relevant hydraulics parameters under altered flow scenarios. Such
knowledge can only be achieved using hydrodynamic modelling. Unfortunately, previous attempts to
develop a hydrodynamic model of the IND were only partially successful. For instance, Neal et al. [7]
applied LISFLOOD-FP [8], a raster-based sub-grid model, but model results were affected by the
low-resolution (about 1 km) structured grid and simplified assumptions about the solution of the St.
Venant equation. Dadson et al. [9] applied a one-dimensional model with 25 km grids, and presented
the inundation as a fraction of the cells which did not show the variability of inundation. Haag [10]
applied the D-Flow FM [11,12], a shallow-water solver based on the finite-volume method on an
unstructured grid to study the flood in the delta, and ended up having an imperfect simulation of
water level, where inundation resulted from poor calibration efforts.

This study is an attempt to develop a working hydrodynamic model for the IND in support of
ecosystems studies in the area. The modelling was done using TELEMAC 2D [13], a finite-element
computer program suite that solves shallow-water equations using the finite element method. Given
the lack of accurate digital elevation models of the study area, two global digital elevation models
were considered: the Shuttle Radar Topography Mission (SRTM) [14], and the Multi-Error-Removed
Improved-Terrain (MERIT DEM) [15]. However, the elevation accuracy of the DEMs makes their use
in hydrodynamic modelling challenging. Rodriguez et al. [16] reported an elevation error (standard
deviation) of about 4.68 m of SRTM DEM in Africa. Yamazaki et al. [15] reported a relative vertical
height error of about 2 m of MERIT DEM for 58% of the land mapped by the DEM. A third DEM was
therefore derived using the waterline method [17–19].

Downstream boundary conditions were imposed by prescribing rating curves either in the form
of discharge as a function of water level or water level as a function of discharge. Inflows in the
domain were a combination of measurements and simulations using a Soil Water Assessment Tools
(SWAT) hydrological model [20] of the Upper Niger Basin. The combination of all available DEMs
and downstream conditions led to a total of six models with different performances in simulating
discharges, water levels, and inundation extents. Bayesian Model Averaging (BMA) [21] was used
to combine the outputs of these six models to get improved results and identify the best individual
models that could be used to simulate water levels and discharges with relatively high performance.

The paper is organized as follows: Section 1 contains the background and objective of the
study; Section 2 presents the materials and methods, which includes available data, topographic
data derivation, river network, bathymetric data, floodplain friction, adjustment of the elevation of
SRTM and MERIT DEM, model setup, model calibration, and the theory of BMA; Section 3 deals with
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calibration results, BMA prediction, validation results, inundation extent, and performance of global
DEMs; and finally, some concluding remarks complete the study.

2. Materials and Methods

2.1. Available Data

2.1.1. Discharge and Water Level

Water levels and discharge at Ké-Macina, Sofara, Mopti, Akka, and Diré, as well as a rating curve
at Diré were obtained from the Malian hydrometric services (Direction Nationale de l’Hydraulique,
DNH). Water level data have been referenced to Institut national de l’information’s (IGN) datum. Water
entered into the study area at KeMacina and Sofara through the Niger and Bani rivers, respectively.
Mopti is located downstream of the confluence of the Bani and Niger rivers. Akka is situated almost at
the middle of the study area, along the Niger River. Water drains the system at Dire station.

2.1.2. Topographic Data Sources

The SRTM DEM has been available at a resolution of one arc-second (about 30 m) since 2014. It is
a widely used DEM: Biancamaria et al., Schumann et al., and Neal et al. [7,22,23] used SRTM gridded
data for hydraulic modelling of the Ob in western Siberia, the Scioto River in the eastern U.S., and the
Niger River (Inner Niger Delta) in Mali, respectively. The SRTM elevation data used in this study were
downloaded from https://earthexplorer.usgs.gov/.

The MERIT DEM is available at three arc-sec resolutions (about 90 m), and was derived from
SRTM and AW3D-30 m [24] by removing multiple error components, such as absolute bias, stripe
noise, speckle noise, and tree height bias [15]. The MERIT DEM was used by Hawker et al. and Archer
et al. [25,26] for the flood modelling study of the Ba catchment, Fiji. The MERIT DEM was downloaded
from http://hydro.iis.u-tokyo.ac.jp/~{}yamadai/MERIT_DEM/.

2.1.3. DEM Derivation Using the Waterline Method

An additional DEM was developed using the waterline method from the combined uses of the
water extent map derived from Landsat satellite images by Zwart et al. [2] and water level data
collected on particular dates. The waterline method involves determining the horizontal position of
the land–water boundary from a time series of remotely sensed images taken during different periods,
and then superimposing on this boundary the heights relative to a datum.

The procedure is as follows:

1. Seven inundation extent polygons derived from Landsat satellite images by Zwarts et al. [2] for
dates 5 July 1985, 10 June 2001, 8 August 1984, 28 July 2001, 25 October 1984, 16 October 2001,
and 28 November 1999 were selected to represent the range of possible water elevations in the
Inner Delta.

2. For each of the seven flood inundation maps, water levels at Ké-Macina, Mopti, Akka, and
Diré were used to calculate the slope of the water surface along principal flow paths between
Ké-Macina and Akka, between Mopti and Akka, and between Akka and Diré. In the absence of
additional information, it was further assumed that the water level variation between any two
stations is linear.

3. A series of orthogonal lines were drawn at 30 m intervals along principal flow paths.
4. It was assumed that water levels along these lines are constant. Therefore, an elevation value

could be set at the intersection points between water extent polygon and the orthogonal lines.
5. At the end of the process, an altitude was estimated for each point within the flood extent polygons.
6. Areas outside the larger polygon were populated using SRTM elevation data.
7. GIS was used to interpolate the elevation data inside the study area.

https://earthexplorer.usgs.gov/
http://hydro.iis.u-tokyo.ac.jp/~{}yamadai/MERIT_DEM/
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The mean elevation of the Waterline DEM, SRTM, and MERIT DEM were 264.86 m, 267.06 m, and
266.77 m, respectively (Figure 3).

Figure 3. Digital elevation model derived from the waterline method (left), Shuttle Radar Topography
Mission (SRTM) (middle), and Multi-Error-Removed Improved-Terrain (MERIT DEM) (right).

2.1.4. Satellite Imagery

This study makes use of the water extent maps derived from Landsat images by Zwarts et al. [2].
Zwarts et al. [2] processed Landsat 5 TM images captured on 24 different dates spanning from 1984 to
2003, and derived 24 water extent maps for the study area. The images provide evidence of the water
extents of inundation areas, along with known water levels at Mopti, Akka, and Diré. The inundation
extent obtained from the images on 28 July 2001 and 16 October 2001 are shown in Figure 4.

Figure 4. Satellite Images of inundation extents of the Delta on 28 July 2001 (left) and 16 October 2001
(right) (Source: Zwarts, et al., 2005).

To validate the simulated inundation, a series of Moderate Resolution Imaging Spectroradiometer
(MODIS) images were processed to derive the inundation extent. A summary of the satellite data
usage is given in Table 1.
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Table 1. Satellite images used in the study.

Image Source/Name Satellite Path/Row Purpose Date Captured Resolution

Several images from
Zwart et al. [2] Landsat 5 TM 197/49 and

197/50
Model setup,
Calibration 1984 to 2001 30 m

MOD09A1.A2008241
MOD09A1.A2008281
MOD09A1.A2009017

MODIS - Model
validation

28 August 2008
7 October 2008
17 January 2009

500 m

We used two spectral indices to separate water pixels from non-water pixels. The indices are the
Modified Normalized Difference Water Index (MNDWI) [27] and the Normalized Difference Moisture
Index (NDMI) [28].

MNDWI and NDMI indexes are expressed as follows:

MNDWI =
Green−MIR
Green + MIR

(1)

MDMI =
NIR−MIR
NIR + MIR

(2)

For MODIS images, Green, NIR, and MIR represent reflectance from Band 4 (545 nm–565 nm),
Band 2 (841 nm to 876 nm), and Band 6 (1628 nm to 1652 nm), respectively. The study makes use of the
finding by Ogilvie et al. [29] on the threshold value of NDMI and MNDWI. They analyzed MODIS
images to study the spatial and temporal dynamics of floods across the Niger Inner Delta over the
period of 2000–2011. Water was classified when the pixel had a threshold value of 0.15 for NDMI, and
for the MNDWI, classifying pixels above the threshold of −0.34 was considered a flooded area.

2.2. River Network

The river network was derived from the inundation extent map derived from a Landsat image
on 8 July 1985 by Zwarts et al. [2]. Only major rivers and channels were extracted. Small channels,
especially at the northern part of the delta, could not be taken into consideration due to their haphazard
geometry and complex meandering. Figure 5 shows the delineated river network used in the model.

Figure 5. River network for the model.
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2.3. Channel Geometry

The bed elevation of river sections at Ké-Macina, Mopti, Akka, and Diré was approximated
using hydraulic geometry equations proposed by Leopold and Maddock [30]. Hydraulic geometry
relationships are a series of power laws that relate river width (w), depth (d), and velocity (v) to
discharge. These functions are:

w = aQb (3)

d = cQ f (4)

v = kQm (5)

Here, a, c, and k are coefficients, and b, f, and m are exponents with b + f + m = 1, and

a× c× k = 1.

Empirical values of the hydraulic geometry coefficients and exponents derived by Hey and
Thorne [31] for Gravel-Bed Rivers in Britain were used in this study. Hey and Thorne [31] found that
a = 3.67, b = 0.45, c = 0.33, and f = 0.35 were a fair representation of hydraulic geometry. The same
coefficients were used by Neal et al. [7] in the IND.

Leopold [32] suggested taking the bankfull discharge for the analysis, as it is related to channel
morphology. The bankfull discharge is often assumed to be the discharge, with a return period
of about 1.5 years. Table 2 shows the river bed elevation at KeMacina, Mopti, Akka, and Dire.
Elevations of other points in between the sections were calculated assuming a linear variation along
the longitudinal direction.

Table 2. Bed elevation of the Niger River at Ke-Macina, Mopti, Akka, and Dire.

Monitoring
Stations

Bankfull
Discharge (m3/s)

Bankfull Stage
(mIGN)

Bankfull Depth
(m)

Bed Elevation
(mIGN)

KeMacina 3518.00 274.31 5.81 268.50
Mopti 2340.00 266.42 5.04 261.38
Akka 1816.00 262.81 4.61 258.20
Dire 1760.00 261.45 4.56 256.89

2.4. Estimation of Inflow at Ungauged Inlets

Observed streamflow time series were available only at two inlets of the hydrodynamic model
domain, namely Ke-Macina and Sofara. Streamflow at the seven other inlets was generated by local
precipitation that generate ephemeral streams which ultimately end up in the IND. These ungauged
inflows were estimated using a SWAT model of the upper Niger and Bani Rivers basins developed in
a previous project [33]. SWAT is a process-based and spatially semi-distributed hydrological model.
In the SWAT model, the whole watershed is divided into multiple sub-basins, and each sub-basin
is divided into several Hydrological Responsible Units (HRUs) that consist of unique homogeneous
combinations of soil, land use, and topographic features in each sub-basin [34]. The hydrological cycle
simulated by the SWAT model is based on the water balance equation [35]:

SWt = SW0 +
i=0∑
i=1

(
Rday −Qsur f − Ea −Wperc −Qgw

)
(6)

where SWt, SW0 are the final and initial soil water content (mm/d), respectively; t is the time (day);
Rday is the precipitation(mm/d); Qsur f is the runoff (mm/d); Ea is the evapotranspiration (mm/d);
Wperc is the percolation (mm/d); and Qgw is the return flow (mm/d). The SWAT model implements
multiple options for the description of hydrological processes, such as the Soil Conservation Service
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(SCS) curve number method [36] for runoff calculation and the Penman-Monteith [37] method for the
estimation of potential evapotranspiration. The details on SWAT modelling tools can be found from
Arnold et al., [20], Arnold et al. [33], and Neitsch et al. [35].

The SWAT model of the UNB contains 32 sub-watersheds (Figure 6a). The model was calibrated
and validated using streamflow from 14 hydrometric stations listed in Table 3, along with the calibration
and validation performance. The performance criteria used in the calibration and validation process
is NS. Sensitivity analysis was performed to select the parameters to use for calibration: CN2 (SCS
runoff curve number for moisture condition II), RCHRG_DP (Deep aquifer percolation fraction), and
RES_K (Hydraulic conductivity of the reservoir bottom, mm/hr) which were tuned during calibration.
The Sequential Uncertainty Fitting program, SUFI-2 [38] was used for calibration purposes. A detailed
description of the model used in this study can be found in Seidou [33] and Maiga [39].

Table 3. Calibration and validation performance of the Soil Water Assessment Tools (SWAT) model.

Monitoring Station Latitude Longitude NS at Calibration NS at Validation

Kankan 10.38 −9.31 0.65 0.8
Baro 10.51 −9.72 0.68 0.73

Kouroussa 10.64 −9.88 0.68 0.78
Banankoro 11.68 −8.67 0.86 0.9
Sélingué 11.64 −8.24 0.45 0.64

Koulikoro 12.85 −7.56 0.87 0.93
Kirango 13.69 −6.08 0.86 0.82

Ké-Macina 13.95 −5.36 0.9 0.91
Bougouni 11.39 −7.45 0.77 0.78

Pankourou 11.44 −6.58 0.74 0.6
Douna 13.21 −5.9 0.79 0.9
Mopti 14.49 −4.21 0.8 0.78
Akka 15.4 −4.24 0.87 0.84
Diré 16.27 −3.39 0.9 0.75

The calibrated SWAT model was forced with observed climate data, and the discharge from
surrounding watersheds was assumed to enter the area where the main channel crosses the boundary
of the study area (red dots in Figure 6b). Yellow dots in Figure 6b indicates observed discharge stations.
The formulas used to calculate inflows into the hydrodynamic model domain from the SWAT model
outputs are provided in Table 4.

Table 4. Inflows into the hydrodynamic model domain from the SWAT model outputs.

Inlet Point Location SWAT Model Subbasin(s) Remarks

Inlet boundary 1
(Inlet B. 1) Watershed 9 60% of the outflow of watershed 9

Inlet boundary 2
(Inlet B. 2) Watershed 9 40% of the outflow of watershed 9

Inlet boundary 4
(Inlet B. 4) Watershed 1 0.2126 * (Inflow of watershed

1-Outflow of watershed 1)

Inlet boundary 5
(Inlet B. 5) Watershed 2 Outflow of watershed 2

Inlet boundary 6
(Inlet B. 6) Watershed 1 0.125 * (Inflow of watershed

1-Outflow of watershed 1)
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Table 4. Cont.

Inlet Point Location SWAT Model Subbasin(s) Remarks

Inlet boundary 7
(Inlet B. 7) Watershed 3 Outflow of watershed 3

Inlet boundary 8
(Inlet B. 8) Watershed 6 and watershed 7 Outflow of watershed 6 + Outflow

of watershed 7

* 0.2126 and 0.125 are the fractions of watershed 1 that lie outside the study area in each case.

Figure 6. (a) Extent of the SWAT model with calibration stations (Source: Seidou, 2019) and (b) locations
of the liquid boundaries in the hydrodynamic model.
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2.5. Floodplain Friction

The Manning roughness coefficient was derived from the USGS Global Land Cover
Characterization [40] database following Asante et al. [41]. Figure 7 shows the distributed Manning’s
roughness coefficient at the IND.

Figure 7. Manning’s coefficient at the floodplain of Inner Niger Delta (IND).

2.6. Hydrodynamic Model Setup

The hydrodynamic modelling was performed using TELEMAC 2D, a hydrodynamic model used
worldwide. TELEMAC-2D solves the depth-integrated Shallow Water Equations (SWEs) using the
finite element method on an irregular mesh.

In TELEMAC 2D, the SWE’s are solved using a fractional step method [42], whose main principle
is that the hyperbolic and parabolic parts of the SWE’s should be treated separately. The solution
comprises two steps: a solution of advection terms, and the solution of the propagation, diffusion, and
source terms. Several schemes are available for the advection step, where the Method of Characteristics
has been applied to solve the advection of u and v. The Streamline Upwind Petrov-Galerkin (SPUG)
method [43] has been applied to solve the advection of h in the continuity equation. Variational
formulations and space discretization transform the continuous equations into a linear triangular
element, where the dependent variables u, v, and h are expanded using equal order interpolation
functions. In the second step, the propagation, diffusion, and source terms are coupled through an
implicit time scheme, and the resulting linear system is solved with a variant of the conjugate gradient
method [44].

2.6.1. Mesh Generation

The entire domain was discretized using a system of irregular triangular elements. In the channel
mesher, the rivers and channels were discretized separately, and in the combined mesher, the river and
flood plain were joined together to form a combined mesh. The combined mesh has 220,289 nodes and
438,716 elements. The smallest length of the elements is about 50 m, and maximum length is about
844 m.

2.6.2. Model Boundary Conditions

The model has ten liquid boundaries. Nine of the liquid boundaries are inlets, while the last one is
an outlet boundary. The location of liquid boundaries is shown in Figure 6b. Time-varying discharges
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were used to prescribe flows at the inlet boundaries. Among the nine inlets, two are fed with the
measurement, and seven comes from the output of a SWAT model. The downstream boundary is
prescribed with two types of rating (stage-discharge) curves, where the Type (1) rating curve is in
the form of water level as a function of discharge, and the Type (2) rating curve is in the form of
discharge as a function of water level. We used a relaxation parameter to the Type 1 rating curve to
possibly obtain a stable simulation of water level and discharge free from oscillation, as suggested
by Hervouet [13]. Relaxation to the rating curve gives rise to the possibility of a smoothly varying
boundary condition, which may otherwise trigger instabilities [13].

Rainfall was not included in the hydrodynamic model, because local rainfall has some effect on
IND flood magnitude. The IND is in a semi-arid area, and most of the water flowing in it comes from a
very humid region in Guinea, 600–900 km upstream. The headwaters’ annual rainfall can go up to
1750 mm. However, in IND, average annual rainfall varies between 200 mm/yr at the downstream and
500 mm/yr at the upstream [2]. We did account for precipitation and evaporation on the watershed
through the SWAT model, but chose not to include precipitation directly on the water body. Zwarts [45]
found that local rainfall was too limited to influence the flood height in IND.

The authors acknowledge that constant evaporation has a lot of limitations, but the estimation
of evaporation in the IND is an ongoing debate, with multiple papers published on the topic, and
rather diverging estimates. Evaporation varies between 160 and 240 mm per month, with an average
of 200 mm per month [2]. Ogilvie et al. [29] found evaporation rates were between 4 mm/day and
7 mm/day over the years 2008–2009.

Given the huge uncertainty in the estimated evaporation and the fact that our main purpose was
flood wave propagation, we believe that the choice of constant evaporation had little impact on the
results. The authors are considering the inclusion of dynamic precipitation and evaporation in the
model that involves modifications of the TELEMAC 2D routines.

2.6.3. Initial Conditions

An introductory simulation was performed with prescribed constant discharges at each inlet,
as well as a constant prescribed elevation at the outlet boundary to obtain the initial condition for
subsequent runs. The simulation time step was set as 60 sec. It was selected in such a way so that
it would not produce any instability on the simulation. It is to be noted that the courant number
gives the impression of the stability of the model to perform the calculation. The courant number
of the simulation was kept below 4. Manning’s friction coefficient, as discussed in the previous
section, was assigned to the nodes. The Manning coefficient at the floodplain was constant during
simulation. However, the Manning’s coefficient at the river channel was considered variable, and
tuned during calibration.

2.6.4. Model Configurations

Given that three elevation data sets were available and that there were two possibilities for
downstream boundary conditions to be set (by prescribing a rating curve in one of the following
forms: discharge as a function of water level—type 1 or water level as a function of discharge—type
2), we obtained total of six different hydrodynamic models (Table 5). Prescribing Type 1 boundary
conditions often leads to resonances or uncontrollable oscillations because of the feedback of the
level on the local discharge. To address the issue, the developers of TELEMAC 2D estimated water
levels at time t as a weighted average of the water level, corresponding to the discharge prescribed at
time t and the water level corresponding to the discharge prescribed at time t − 1. The weight of the
water levels corresponding to the prescribed discharge at time t is called the relaxation coefficient (R).
The developers of TELEMAC 2D recommend a value of R between 0.01 and 1.0 to smoothly prescribe
discharges. In this paper, the value of R has been set to its default value of 0.02.
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Table 5. Configuration of the six models.

Model Number Elevation Data Downstream Boundary Condition

Model 1 Merit DEM Rating curve in the form of water level as a function of discharge, R = 0.02
Model 2 Merit DEM Rating curve in the form of discharge as a function of water level
Model 3 SRTM DEM Rating curve in the form of water level as a function of discharge, R = 0.02
Model 4 SRTM DEM Rating curve in the form of discharge as a function of water level
Model 5 Waterline DEM Rating curve in the form of water level as a function of discharge, R = 0.02
Model 6 Waterline DEM Rating curve in the form of discharge as a function of water level

Ogilvie et al. [29] found that the years 2001–2002 and 2008–2009 experienced relatively few clouds.
Our study used these two periods as the calibration and validation period, respectively. MODIS and
Landsat images during the months of September–February were considered for extracting water extent,
as these months showed fewer clouds than the other months [29]. The periods between 1 July 2001
to 28 February 2002, and from 1 July 2008 to 28 February 2009 were thus chosen for calibration and
validation, respectively.

2.7. Calibration

In flood modelling, the roughness coefficient is typically used as a calibration parameter [46].
It is commonly recognized that friction varies in space, and that the precision of simulation can be
improved through calibration and the use of effective friction coefficients [47,48]. The model was
calibrated by changing the Manning coefficients in the reaches of the Niger river: KeMacina to Mopti
(slope = 0.052 m/km), Mopti to Akka (slope = 0.029 m/km), and Akka to Dire (slope = 0.007 m/km).
The Manning coefficient in the other reaches was assumed to be constant (0.02). As discussed before,
the Manning coefficient of the floodplain was derived from GLCC. The calibration period of the model
was chosen as July 2001–February 2002. The simulation results were evaluated by Pearson’s correlation
coefficient (r) and Nash-Sutcliffe coefficients (NS) at Akka and Mopti. Pearson’s correlation coefficient
(r) and Nash-Sutcliffe coefficients (NS) are described in the following equations:

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(7)

NS = 1−

∑n
i=1(xi − yi)

2√∑n
i=1(xi − y)2

(8)

Here, x represents the observed, and y the simulated value of a variable. x and y are the averages
of the observed and simulated values, respectively.

Models 1, 3, and 5 (Table 5) were calibrated for discharge and water level, and the calibration
parameters were used for Models 2, 4, and 6, respectively.

After having a good calibration of the models against discharge and water level, we moved to
further adjust the waterline DEM with respect to the inundated area. Adjustment was made on the
elevation data to match the observed inundation area. Inundation extent maps by Zwarts et al. [2]
on 28 July 2001, 25 October 1984, and 16 October 2001, which represent small, medium, and high
flooded areas corresponding to 166 cm, 331 cm, and 432 cm water heights at Akka, respectively, were
chosen for this purpose. The model was run for 1984–1985 with same parameter and Manning’s
coefficient. Underprediction, agreement, and overprediction areas were calculated by comparing
simulated and observed inundation. Over- and under-predicted areas were those areas that were
not supposed to submerge or dry in real cases. Simulated water depth at the overpredicted and
underpredicted areas were extracted from the simulation result. The topography of the areas where
inundation was overpredicted was adjusted by adding the water depth with the elevation at the grid
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points, and vice versa. This process continued until a good match was obtained between observed and
simulated inundation.

2.8. Bayesian Model Averaging

Bayesian model averaging (BMA) is a statistical procedure used to infer a consensus prediction
by weighing individual predictions based on their probabilistic likelihood measures. A BMA which
assesses the performance of a model using its likelihood of predicting the observation is called the
model’s marginal likelihood, or Bayesian Model Evidence (BME) [49]. The BME is often normalized
and transformed into model weights. The better the model, the higher its evidence, hence its weight.
A BMA’s outcomes have more skill and reliability than the original ensemble members generated by
competing models [50,51]. Several authors [51,52] applied BMA to combine hydrological simulations.
For instance, Zhu et al. [53] applied BMA for flood prediction and uncertainty estimation of flood
event predictions. Beckers et al. [54] applied BMA to a set of water-level forecast models used in the
Flood Forecasting and Warning System for Rhine and Meuse rivers.

In this study, we applied BMA to the predicted water level and discharge by the six models
developed in this paper, with the expectation that these models’ outputs will be combined into a robust
prediction. BMA was applied at each location (Akka and Mopti) and for each variable. Therefore,
the combined model would be different according to the location and variable of interest. A brief
description of the methodology is given below, as per Hoeting et al. [21]

If ∆ is the quantity of interest, then its posterior distribution, given data D, is

pr(∆|D) =
K∑

k=1

pr(∆|Mk, D)pr(Mk|D) (9)

This is an average of the posterior distributions under each of the models considered, weighted by
their posterior model probability. In Equation (9), M1, . . . , Mk are the models considered. The posterior
probability for model Mk is given by:

pr(Mk|D) =
pr(D|Mk)pr(Mk)∑K
l=1 pr(D|Ml)pr(Ml)

(10)

where

pr(D|Mk) =

∫
pr((D|θk, Mk)Pr((θk|Mk)dθk (11)

pr(D|Mk) is the integrated likelihood of model Mk, θk is the vector of parameters of model Mk (e.g.,
for regression θ =

(
β, σ2

)
), Pr(θk|Mk) is the prior density of θk under model Mk, pr(D|θk, Mk) is the

likelihood, and pr(Mk) is the prior probability that Mk is the true model. pr(Mk|D) is also known as
the BMA weight wk, and the sum of wk is equal to 1, that is,

∑K
k=1 wk = 1.

The Bayesian Model Evidence (BME) is defined as:

BMEk = pr(D|Mk)pr(Mk) (12)

The posterior mean and variance of ∆ are calculated as follows:
Mean:

E[∆|D] =
K∑

k=0

∆̂kpr(Mk|D) (13)

Variance:
Var[∆|D] =

∑K

k=0

(
Var[∆|D, Mk] + ∆̂2

k
)

pr(Mk|D) − E[∆|D]2 (14)

where [55,56]
∆̂k = E[∆|D, Mk]. (15)
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The successful implementation of the BMA requires estimates of the weights, wk and standard
deviationsof the conditional probability density function (pdfs) of the ensemble members. Their values
can be estimated through the maximum likelihood method [51].

Let
θ = {wk, σk, k = 1, . . .K}. (16)

The logarithmic likelihood function can be approximated as follows:

l(θ) =
T∑

t=1

log

 K∑
k=1

wk prk(∆|Mk, D)

 (17)

Equation (17) cannot be solved analytically forθ. The BMA weights can be calculated by two approaches,
such as the Markov Chain Monte Carlo (MCMC) [57] algorithm and Expectation-Maximization (EM) [58]
algorithm. We applied the EM algorithm, as recommended by Raftery et al. [51], to get the optimum
value of θ.

3. Results and Discussion

3.1. Calibration Results

The calibration performance of all models is shown in Table 6.

Table 6. Correlation (r) and Nash-Sutcliffe (NS) coefficients for simulated discharge and water level at
the calibration.

Models

Discharge Water Level

Mopti Akka Mopti Akka

NS r NS R NS r NS r

Model 1 0.975 0.996 0.879 0.944 0.984 0.992 0.946 0.988
Model 2 0.975 0.995 0.863 0.983 0.984 0.999 0.941 0.992
Model 3 0.954 0.995 0.908 0.983 0.951 0.999 0.907 0.992
Model 4 0.954 0.995 0.871 0.974 0.954 0.999 0.915 0.986
Model 5 0.956 0.994 0.958 0.986 0.981 0.997 0.871 0.998
Model 6 0.956 0.994 0.945 0.983 0.981 0.997 0.838 0.994

The results in Table 6 show that the downstream boundary condition affects model performance.
Although the NS of discharge and water level at Mopti has no variation, the model performance varies
in Akka in the simulating discharge and water level. Models 1, 3, and 5 generally performed better
than Models 2, 4, and 6 in terms of NS. Results suggest that prescribing the downstream boundary
condition, ‘water levels as a function of discharge (Type 1)’, leads to better simulations than prescribing
the boundary, ‘discharge as a function of water level (Type 2)’. The authors speculate that providing
a Type 1 boundary condition leads to better results. The reason seems to the use of the relaxation
coefficient (R), as described in Section 2.6.4, which smooths out the solution, but introduces some
errors in the algorithm.

Models have been ranked in order of decreasing performance when simulating discharge (resp.
water levels) in Table 7 (resp. Table 8). While models built on MERIT DEM generally performed well,
the order of the models can change according to the boundary condition, the location (Akka or Mopti),
the performance measure (r or NS), and finally, the variable under investigation. The results are in line
with the findings of Pappenberger et al. [59] that the boundary condition is a source of uncertainty.
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Table 7. Model ranking based on performance (NS and r) for discharge at Mopti and Akka.

Hydrometric Station MOPTI AKKA

Variable Discharge Discharge

d/s Boundary Condition Type 1 a Type 1 Type 2 b Type 2 Type 1 Type 1 Type 2 Type 2

Performance Criteria NS r NS r NS r NS r

Best models/associated
DEM MERIT d (M1 c) MERIT (M1) MERIT (M2) MERIT (M2)

and SRTM(M4) Waterline (M5) Waterline (M5) Waterline (M6) Waterline (M6)
and MERIT(M2)

Second
model/corresponding

DEM
Waterline (M5) SRTM (M3) Waterline (M6) - SRTM (M5) SRTM (M3) SRTM (M4) -

Third
model/Corresponding

DEM
SRTM (M3) Waterline (M5) SRTM (4) Waterline (M6) MERIT (M1) MERIT (M1) MERIT (M2) SRTM (M4)

a Type 1: d/s Boundary condition—water level as a function of discharge; b Type 2: d/s Boundary condition—discharge as a function of water level; c M1, M2 . . . : Model 1 and Model 2 and
so on; d MERIT DEM.

Table 8. Model ranking based on performance (NS and r) for water level at Mopti and Akka.

Hydrometric Station MOPTI AKKA

Variable Water Level Water Level

Boundary Condition Type 1 a Type 1 Type 2 b Type 2 Type 1 Type 1 Type 2 Type 2

Performance Criteria NS r NS r NS r NS r

Best model/associated
DEM MERIT d (M1 c) SRTM (M3) MERIT (M2) MERIT (M2)

and SRTM (M4) MERIT (M1) Waterline (M5) MERIT (M2) Waterline (M6)

Second
model/corresponding

DEM
Waterline (M5) Waterline (M5) Waterline (M6) Waterline (M6) SRTM (M3) SRTM (M3) SRTM (M4) MERIT (M2)

Third
model/Corresponding

DEM
SRTM (M3) MERIT (M1) SRTM (M4) Waterline (M5) MERIT (M1) Waterline (M6) SRTM (M4)

a Type 1: d/s Boundary condition—water level as a function of discharge; b Type 2: d/s Boundary condition—discharge as a function of water level; c M1, M2...: Model 1 and Model 2 and
so on, d MERIT DEM.
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3.1.1. BMA Weights

The BMA weights calculated in the calibration period (2001–2002) for each of the six models are
given in Table 9.

Table 9. Bayesian Model Averaging (BMA) weights of the models.

Model
BMA Weight to Obtain Discharge BMA Weight to Obtain Water Level

Mopti Akka Mopti Akka

Model 1 0.0002 0.1177 0.3650 0.9602
Model 2 0.7931 0.0000 0.1820 0.0000
Model 3 0.1417 0.0000 0.0001 0.0000
Model 4 0.0000 0.0000 0.0000 0.0398
Model 5 0.0614 0.8823 0.3320 0.0000
Model 6 0.0017 0.0000 0.1200 0.0000

The fact that the best-performing model depends on several factors was an incentive to use Bayesian
Model Averaging (BMA) at each location for each variable to get a location-specific combination of
models exploiting the relative strength of the available models. For instance, the combined BMA
simulation of discharge at Akka relies on Model 1 (weight = 0.1177) and Model 5 (0.8823), and almost
completely ignores Models 2, 3, 4, and 6 (wight = 0.0000 each); the combined BMA simulation of water
level at the same location relies more on Model 1 (weight = 0.9602) and Model 4 (0.0398) than on
Models 2, 3, 5, and 6 (wight = 0.0000 each). BMA allows the end-user to have a robust estimate of key
parameters by varying the weight according to location and variable of interest. If one location and
one variable are more important for the end-user and resources are not available to run six models in
parallel, the BMA weights will help them identify which model to maintain.

One of the assumptions in the BMA approach is that BMA weights should reflect relative model
skill. BMA weights were highly correlated with model performance statistics [52]. Model weights and
BME are probabilistic model performance measures, and both are typically associated in the context
of BMA [60], as shown in Equation (12). On the other hand, NS, “r”, daily root mean square error
(DRMS), and daily absolute error (DABS) are used for deterministic model performance measurements.
Previous authors [52,53] used performance statistics such as Nash-Sutcliffe (NS), DRMS, or DABS to
examine the consistency of the BMA predictions in terms of their weight. In this exercise, we compared
model performance in term of NS and “r” with their BMA weight.

If we compare the highest NS values in Table 5 with the highest BMA weight in Table 6, we can
see that the highest NS value corresponds to the highest BMA weight, though the “r” values give
a mixed picture. The high correlation between NS statistics and BMA weight confirms one of the
central assumptions of the BMA scheme, that better-performing models receive higher weights [52].
BMA weights provide an additional means to assess the relative credibility of the six models. If we
take NS statistics and BMA weight together, Model 1 was found to perform well in simulating water
levels at Mopti and Akka, and Model 2 is better in simulating discharge at Mopti. Finally, Model 5
outperformed the others in simulating discharge at Akka. Thus, we considered Models 1, 2, and 5 to
be the best three among the six models.

3.1.2. BMA Estimates of Water Levels and Discharge in the Calibration Period

The models were combined based on their respective weight values, as shown in Table 6.
The maximum weights of the value of the individual model was found to contribute more to the
resultant forecast. For instance, the BMA forecast of discharge at Mopti mainly comes from the
combination of Model 2 and Model 3 with 79.31% and 14.17%, respectively, from their simulated
discharge. A comparison of the discharge and water level from the best individual models, as well as
the BMA prediction at the stations, are given in Figure 8.
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Figure 8. Comparison of discharge (top) and water level (bottom) of the best models and BMA.

The BMA estimate of discharge and water level at the monitoring stations is shown in Figure 8,
where there seems to be a good match between observed values (red) and BMA predictions (black).
The highest NS values (Figure 9) confirms that BMA outperforms each best individual model.

Figure 9. Comparison of the Nash-Sutcliffe (NS) coefficient of BMA and the three best individual models.

3.2. Hydrodynamic Models Validation

The model results were validated using the 2008–2009 discharge, water levels, and water extent.
Each of the models was run with inflows of 2008–2009 at the model inlets keeping the same parameters
as obtained at the calibration. Table 10 summarizes the NS and “r” statistics of the model simulations.
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Table 10. Correlation (r) and NS coefficients for simulated discharge and water level in the
validation period.

Models

Discharge Water Level

Mopti Akka Mopti Akka

NS r NS R NS r NS r

Model 1 0.982 0.995 0.836 0.918 0.962 0.984 0.940 0.992
Model 2 0.982 0.995 0.803 0.979 0.964 0.997 0.975 0.994
Model 3 0.939 0.995 0.830 0.979 0.933 0.997 0.917 0.994
Model 4 0.939 0.995 0.800 0.975 0.939 0.997 0.953 0.996
Model 5 0.935 0.990 0.882 0.976 0.973 0.993 0.876 0.988
Model 6 0.935 0.990 0.857 0.975 0.974 0.993 0.881 0.995

BMA 0.972 0.995 0.887 0.972 0.978 0.990 0.940 0.983

3.3. BMA Validation

The weights obtained from the calibration periods were used to compute BMA predictions for the
validation period. The performance statistics, including NS and “r”, were again employed to examine
the consistency of the BMA predictions. A comparison of NS statistics between BMA and each of the
models 1, 2, and 5 are shown in Figure 10.

Figure 10. Comparison of NS coefficient of BMA to each of Models 1,2, and 5.

Discharge and water levels simulated by Models 1, 2, and 5 have been compared to BMA
estimates in Figure 11. The figure shows a good match between observed values (red) and BMA
predictions (black).

It can be seen that the BMA predictions perform better than the best individual in most of the cases.
Minor degradation of NS statistics also took place; for instance, BMA performance in the validation
is slightly worse than that of Models 1 and 2 in predicting discharge at Mopti and the water level at
Akka, respectively. Although there is some minor degradation in the performance when the BMA
result is compared with the best individual models, BMA is generally superior to that of the individual
models, which is consistent with previous studies [52,61]. The improvement due to BMA is relatively
low when NS is close to 1, as there is then little room for improvement. When the NS is low, like in
the simulation of discharge at Akka (Figures 9 and 10), the improved accuracy is much more obvious.
The use of BMA for estimating both variables is, therefore, preferable to the use of individual model
simulations. This feature of BMA is particularly interesting in data-scarce environments, such as Mali,
where the only available information often comes from global sources with rather coarse resolutions.
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Figure 11. Comparison of discharge (top) and water level (bottom) from the best individual models
and BMA prediction at the validation.

3.4. Simulated Inundation Extent from Best Individual Models

This section provides a brief comparison between simulated and satellite-derived inundation
extents for 2008–2009. Only the best individual models (Models 1, 2, and 5), as obtained from
Section 3.1.1, are considered in the comparison. The reference inundation extents were derived from
MODIS imagery for three days, representing the rising, peak, and recession limb of the 2008–2009
hydrograph. These images were taken on 28 August 2008, 7 October 2008, and 17 January 2009. The
inundation extent simulated with Models 1, 2, and 5 along with the satellite-derived inundation extent
is shown in Figure 12. The simulated inundation in the central part of the study area, containing Lakes
Walado, Debo, and Korientze, shows better agreement with the observed inundation for Model 5 for
almost all the three days. The flood extent between KeMacina and Akka on 28 August was better
simulated by Model 5 than Models 1 and 2. The inundation pattern simulated by Model 5 also closely
matched with the observed inundation on 7 October.

It was also found that, while Model 5 performed well in reproducing the inundation extent of
28 August 2008 and 7 October 2008, it performed poorly in reproducing the inundation extent of 17
January 2009 (receding flood), especially in the area between Ke-Macina and Akka. The simulations
show water in interconnecting channels that seem to be dry in the satellite images. This, however, has
to be interpreted with care, as the coarse resolution of the MODIS images (500 m) does not allow the
detection of narrow channels.

Based on the above facts, we can consider Model 5 to be the best in terms of simulating inundation.
It is worth mentioning here that among the individual models, Model 5 was calibrated against
inundation obtained from Landsat images captured in the 2001–2002 season. This probably makes this
particular model the best among the participating models in simulating inundation extent.
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Figure 12. Inundation extent on 28 August 2008 (left panel), 7 October 2008 (middle), and 17 January
2009 (right panel).

3.5. Potential Usages of the Developed Model

The IND is a complex floodplain that is used by 1.5 million people, where there is little information
about floodplain dynamics. Simple empirical equations are used to link water levels at key stations to
inundation extents, and flood forecasting is done using linear regressions [62]. A hydrodynamic model,
even if not perfect, provides more insight into the flood dynamics, and will be more useful for decision
making. The model developed here will be later used to replace or improve the empirical relationships
currently used by local authorities, and to develop a process-based flood forecasting model.

4. Conclusions

In this study, six different hydrodynamic models of the Inner Niger Delta (IND) in Mali
were developed using three different DEMs and two different downstream boundary conditions.
The elevation data came from two global DEMS (SRTM and MERIT), as well as a DEM derived from
satellite imagery and water level observations using waterline methods. Given the data scarcity in the
area, a considerable amount of input data, such as bathymetry, the river network, friction coefficient,
and inundation extent were derived from secondary sources, leading to a high level of uncertainty in
the simulations. The six models which were developed showed unequal performances in simulating
water levels, discharges, and floodplain extent, with none of them outperforming the others in all
fronts. It was found that specifying the boundary condition (water levels as a function of discharge)
led to better results. The reason for this seems to the use of the relaxation coefficient in the algorithm of
the stage-discharge curve. Overall, the MERIT DEM was the best DEM among the ones considered
in this paper, as it is a processed DEM by removing errors from SRTM. Bayesian Model Averaging
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(BMA) was used to produce a more robust estimate of water levels and discharges. BMA also helped
to identify which individual models had the highest value for an end-user who is more interested in a
particular location in the IND and a particular hydraulic variable.
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